
ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

1

ISEB Practitioner Course Notes
Based On Certificate Syllabus

Mark Robinson – 11 June 2005

mark.robinson@sioux.nl

New Features For This Version:

• Too many changes to mention, throughout document. Thanks Bryan
and Mario! (Thanks also to Erik for the encouragement!)

Thanks to fellow contributors:

Bryan Bakker – absolutely tons of contributions throughout document.

Steven Deneir – starting the ISEBCertification Yahoo! group and exam tips added to
 Appendix B.
Mario Peeters – an unfeasibly large number of improvement suggestions, contributions and
 V-model table (Appendix A) and many diagrams.

Hans Schotanus – very many contributions throughout document, including Risk
 categorisation diagrams.

Thanks to all these chaps for their help. Occasionally their work is directly credited in this document, but
most of the time the references are made directly to the source documents. So, though it is not obvious to
third parties, these guys have put in a lot of work. Thank you very much: Bryan, Steven, Mario and Hans:
it was real team work.

Thanks also to Erik van Veenendaal who taught the ISEB Practitioner course we all took very well and
wrote “The Testing Practitioner” book that we use and extensively quote here. Erik – without you we
would have found passing the exam much harder… and this document would be much thinner!

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

2

0 INTRODUCTION TO THIS DOCUMENT ...5

0.1 AUTHOR’S NOTES...5
0.2 OBJECTIVES OF THE PRACTITIONER CERTIFICATE QUALIFICATION ...5
0.3 YOUR CONTRIBUTIONS TO THIS DOCUMENT ...6
0.4 ABBREVIATIONS ...6
ABBREVIATION ..6

1 INTRODUCTION..7

1.1 REVIEW OF FOUNDATION CERTIFICATE SYLLABUS ..7
1.2 TESTING IN THE LIFE CYCLE ...7

2 TEST PROCESS ..14
2.1 GENERIC TEST PROCESS ...14
2.2 TEST PLANNING..14
2.3 TEST SPECIFICATION...15
2.4 TEST EXECUTION..19

2.4.1 Preparation for Test Execution..19
2.4.2 Executing the Tests..19

2.5 TEST CHECKING AND RECORDING ...19
2.5.1 Test Checking..19
2.5.2 Test Recording ..20

2.6 CHECKING FOR TEST COMPLETION..21
3 TEST MANAGEMENT...22

3.1 TEST MANAGEMENT DOCUMENTATION...22
3.1.1 Test Policy...23
3.1.2 Test Strategy..23
3.1.3 Project Test Plan...25
3.1.4 Phase Test Plan...25

3.2 TEST PLAN DOCUMENTATION ...26
3.3 TEST ESTIMATION...27
3.4 SCHEDULING OF TEST PLANNING ..30
3.5 TEST PROGRESS MONITORING AND CONTROL..30

4 TESTING AND RISK..32

4.1 INTRODUCTION TO TESTING AND RISK...32
4.2 RISK MANAGEMENT ...33

4.2.1 Introduction to Risk Management ..33
4.2.2 Risk Identification ...34
4.2.3 Risk Analysis ...35
4.2.4 Risk Mitigation..39

5 TEST TECHNIQUES ..42
5.1 FUNCTIONAL / STRUCTURAL TESTING TECHNIQUES...42

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

3

5.2 NON-FUNCTIONAL TESTING TECHNIQUES..43
5.3 DYNAMIC ANALYSIS...47
5.4 STATIC ANALYSIS...47
5.5 NON-SYSTEMATIC TESTING TECHNIQUES..49
5.6 CHOOSING TEST TECHNIQUES ...50

6 REVIEWS ..52

6.1 INTRODUCTION TO REVIEWS ...52
6.2 THE PRINCIPLES OF REVIEWS ..53
6.3 INFORMAL REVIEW...57
6.4 WALKTHROUGH ...57
6.5 TECHNICAL REVIEW ...58
6.6 INSPECTION ..58

7 INCIDENT MANAGEMENT ...63
DISPOSITION: ...64

8 TEST PROCESS IMPROVEMENT ...65

9 TEST TOOLS...67

9.1 OVERVIEW ...67
9.2 TOOL SELECTION..69
9.3 TOOL IMPLEMENTATION ...70

10 PEOPLE SKILLS ...72

10.1 INDIVIDUAL SKILLS ...72
10.2 TEST TEAM DYNAMICS..73
10.3 FITTING TESTING WITHIN AN ORGANISATION ...74
10.4 MOTIVATION...74

APPENDIX A: V-MODEL TABLE...75

APPENDIX B: EXAM TIPS ..77

B.1 TIPS FROM ISEB FOR THE PRACTITIONER EXAM...77
B.2 FURTHER TIPS ..79
B.3 EXAM ESSENTIALS..80

APPENDIX C: USEFUL WEBSITES ...81

APPENDIX D: SUMMARY OF TEST TECHNIQUES...82
D.1 INTRODUCTION ...82
D.2 EQUIVALENCE PARTITIONING..82
D.3 RANDOM TESTING ..82
D.4 BOUNDARY VALUE ANALYSIS ..83
D.5 STATE TRANSITION TESTING...83
D.6 CAUSE EFFECT GRAPHING ..83
D.7 SYNTAX TESTING ...83
D.8 STATEMENT TESTING..84

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

4

D.9 BRANCH / DECISION TESTING ...84
D.10 DATA FLOW TESTING ..84
D.11 AD HOC TESTING ..85
D.12 ERROR GUESSING ..85
D.13 EXPLORATORY TESTING ..85

APPENDIX E: LIST OF STANDARDS..86

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

5

0 Introduction To This Document

0.1 Author’s Notes
• These notes provide answers to the points raised in the syllabus. They are not intended to

be a full explanation of all topics covered on the ISEB Practitioner Course but hopefully
address most of the points in the Syllabus. (The course sometimes goes beyond the syllabus
since the goal is not just to pass an exam but learn techniques that can usefully be applied in
the real world.)

• Text in italics is direct from the syllabus (sometimes the format is changed slightly, e.g. use
of bullet points). Non-italic text are my answers and comments.

• The references to the appropriate pages are shown as follows:
 CN/A-03/1-2: pages 1 & 2 of module A-03 of course notes.
 CN/TMR/41 page 41 of Test Management Reader of course notes
 TP/45: page 45 of “The Testing Practitioner”.
 MARK: no notes could be found, I have made my own.

• Thanks to http://www.wordsmith.org/anagram for providing anagram suggestions (if you do
not like the ones I chose, you can replace them with your own using this site). Anagrams
are rendered in GREEN BOLD CAPITALS (hopefully not too garish).

• Disclaimer: this document has been provided for free as a service by myself and others
mentioned in the preceding pages. It is not guaranteed in any way, e.g. free from errors or
complete. Furthermore, it is not intended to break copyright or in any way infringe upon
ISEB. Hopefully, rather, it encourages people to take the course and helps them to pass the
exam.

0.2 Objectives of the Practitioner Certificate Qualification
(This section is copied directly from the syllabus.)
The successful candidate should be able to:

• Describe strategies for the software testing of both new development and the maintenance of
existing systems.

• Describe different strategies for the testing for both complete life cycles and individual
phases.

• Plan the testing needed at any level from component to user acceptance testing and
document it in compliance with IEEE Std. 829-1998.

• Analyse risks and use the results to prioritise the testing.
• Specify and design test cases.
• Define requirements for an appropriate test environment.
• Run tests using defined test procedures.
• Log, analyse and report incidents.
• Interact effectively with others such as users, developers and managers.
• Participate in reviews.
• Select and implement tools to support testing activities.
• Assess testing and development activities for possible improvement.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

6

0.3 Your Contributions To This Document
If you would like to add to the document, please write out (or draw) in full what you want to add so that I
can just copy and paste it. Please make sure that all I need to do is Ctrl-C, Ctrl-V. Anything else is hard
work…  Please use same formats (e.g. paragraphs, bullet points and justification). I may change it
before adding it, or not add it at all. Please mention paragraph numbers (which are fixed) rather than
page numbers (which vary between versions).

If you have any ideas for improvement, if you spot defects or if you have any other constructive criticism,
please let me know.

If you think this document is useful I would be very glad to hear from you (nice to know it was worth the
effort). You may distribute it to others (but new versions will be made exclusively by me).

0.4 Abbreviations

Abbreviation Explanation
BS British Standard
CCB Configuration control Board
CE Cause Effect Graphing
CI Configuration Item
DSDM Dynamic System Development Method
ECT Elementary Comparison Test
ET Exploratory Testing
FMEA Failure Mode and Effect Analysis
IEEE Institute of electrical and Electronics Engineers
ISEB Information Systems Examinations Board
PBR Perspective Based Reading
PM Project Manager
RAD Rapid Application Development
ROI Return On Investment
RPN Risk Priority Number
SUMI Software Usability Measurement Inventory

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

7

1 Introduction

1.1 Review of Foundation Certificate Syllabus
Introduce the issues, philosophy and key points of software testing as covered in material based on the
current syllabus of the ISEB Foundation Certificate in Software Testing.

Error: mistake made by human.
Fault: result of an error (may go unnoticed).
Failure: visible effect of a fault. TP/13

Provide an introduction to the ISEB Practitioner Certificate as the next stage in career development.

1.2 Testing in the Life Cycle
Describe how testing fits into the different life cycles: sequential (e.g. waterfall, V-model), iterative (pre-
planned incremental delivery and evolutionary delivery) and RAD (e.g. DSDM).

Waterfall: project is developed in phases, e.g. Requirements, Design, Coding, Integration, Testing. Testing
is done only at end. MARK

V-Model: testing is performed throughout the life cycle. Static testing (reviewing of documents, by
Inspection, Walkthrough or Peer (Technical) Review) is performed on documents early in life cycle (e.g.
on User Requirements, System Requirements, Global Design, Detailed Design and Code). Testing later in
life cycle is also performed in five phases, each complementary to the early phases (Component Testing,
Integration in the Small Testing, System Testing, Integration in the Large and Acceptance Testing). TP/23-
29

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

8

User Reqs

System Reqs

Global Design

Detailed Design

Implementation

Component Test

Integration Test In The Small

System Test

Integration Test In The Large

Acceptance Test

These arrows indicate reviews.

These arrows show the relation between the

requirements and the respective level of testing.

Testing compares actual and expected outcome.

The expected outcome comes from the

requirements or design.

Testing includes code reviews.

These arrows indicate testing.

Pre-Planned Incremental Delivery: similar to waterfall but broken up over a number of increments.
Requirements are broadly outlined for all increments at start of project. A software release occurs at the
end of each increment in which two tests occur: thorough testing of new functionality and regression
testing (partial re-testing of previous version). The amount (of regression testing) may grow or may need
to be refined at each increment. MARK

Evolutionary Delivery: similar to pre-planned incremental delivery but requirements are developed
separately for each increment, often during the life time of the previous increment. TP/29

RAD (Rapid Application Development): Similar to Evolutionary but each increment is over a much shorter
time span, typically two weeks. Requirements may not formally be specified. MARK

Four cornerstones of TMap: Life Cycle, Techniques, Infrastructure, Organisation TP/31

Introduce the concept of interfaces between test process and other processes, such as project management,
configuration management and change management, software development, technical support and
technical writing.

The test process does not exist in isolation in a project but rather works together with other processes. For
example:

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

9

Project Management: without a project plan there is no basis for testing. The project plan identifies
stakeholders, defines the life cycle, defines the deliverables, defines milestones, provides estimates upon
which scheduling is based, establishes risk management which identifies where test effort should be
focused, tracks effort, schedule and risk and stores measurement data. PM are ultimately responsible for
all deliverables and need to manage and communicate changes. CN/A-03/1, TP/367

Requirements Management: without managed requirements (formal) test designs are almost impossible.
Requirements are documented and reviewed. Requirements are basis for design, code, deliverables and
testing. Changes are permitted only via a documented procedure. Requirements Traceability must exist
(horizontal and vertical throughout V-model). May make use of supporting tools. CN/A-03/1-2

Configuration Management: without CM it is impossible to know what has been changed and what needs
to be tested. It is a set of procedures for tracking and documenting products through their life cycle, to
ensure all changes are recorded and the current state of the products is known and reproducible. It is
concerned with identification, control, auditing and status accounting. CM is necessary for managing
changes during development, test and delivery. Also used for testware and test environment. CN/A-03/1-
2, TP/367

Change Management: see Configuration Management above. Or Structured Configuration Management,
below. MARK

Structured Configuration Management: prepared for each project. Everything (software, documents)
placed under CM. Change Requests and Problem Reports are initiated, recorded, reviewed, approved
(prioritised) and tracked. A Configuration Control Board (CCB) exists and a member of the test team
should be on it. This is to inform the CCB of estimates (including risks) for each change and so that testers
know what changes are accepted. Products are created from the software baseline library and their release
is controlled according to a documented procedure. The status of Configuration Items (CIs) is known.
Software baseline audits are conducted. CN/A-03/3, TP/367

Software Development: Life cycle has a big impact on testing. Phased releases have cumulative test cases
and more regression. A small change can mean a lot of testing, re-testing and regression testing.
Development (effort) and testing (effort) are related but the relationship is not always linear (directly
proportional). Also agree release time, content and procedures. Interact regarding faults and change
management. CN/A-03/2, TP/367

Technical Support: testers can ask TS questions regarding live faults, quick fixes and (potential)
workarounds. Testers can improve their tests by finding out from TS about faults found in the real world.
Testers can help TS by carrying out priority regression testing. TP/367

Technical Writing: technical authors can gain information on the system operation and performance by
working with the test team. The test team can validate any products, e.g. user guides. They can help TAs
(Technical Authors) understand how the product will be used. TP/367

Software Design: During test case design, numerous queries will arise from a technical design nature,
which will require confirmation. Including a designer in the review process for testing is useful as it can

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

10

often highlight areas that have been missed or are considered to have insufficient coverage from a technical
design viewpoint.

TEST

Project

Mgt

Requirements

Mgt

Configuration

Mgt
Software

development

Software

Design

Technical

Writing

Technical

Support

CCB

TP 366

Show how early test planning may be balanced with the later test execution using the ‘V’ model. Explain
the differences between verification and validation, and that in the early life cycle phases these are
typically achieved using reviews. Highlight the requirement for change management and configuration
management in the software engineering process.

At each stage in the early life of the V-model tests can be planned which are later executed in the later life
of the V-model. Furthermore, testing can be begun earlier in the life cycle:

Early Life – Testing Early Life – Planning Late Life - Execution
Review acceptance
criteria. (Walkthrough)

Acceptance criteria =>
define acceptance tests.

Execute acceptance
tests.

Review requirements
document. (Walkthrough)

Business requirements =>
define system tests.

Execute system tests.

Review design document.
(Technical)

Overall design => define
integration tests.

Execute integration
tests.

Review detailed designs.
(Technical)

Detailed design => define
component tests.

Execute component
tests.

An Inspection is useful in each of these phases before the document goes to the next phase.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

11

Validation: “Is this the right specification?”
Verification: “Is the system correct to specification?”
(Both from BS7925-1 1998) TP/14

Or:
Validation: “Are we making the right product?”
Verification: “Are we making the product right?”
MARK

The walkthrough of a working document is part of the validation process. TP/134

Change Management and Configuration Management are detailed above.

Provide a definition of the test phases: component testing, component integration testing, functional system
testing, non-functional system testing, system integration testing and acceptance testing. Explain that each
test phase has the following characteristics: objective, scope, entry and exit criteria, test deliverables,
applicable test techniques, metrics, test tools and applicable testing standards.

See Appendix A: V-Model Table for further details.

Component Testing

• Planned early with detailed designs before coding.
• Run before system testing.
• Based on detailed design specs.
• Based on internal workings of components and at extreme/failure conditions.
• May be carried out by testers or developers.
• May require non-functional as well as functional tests.
• Will use both white box and black box testing.
• May require test tools.

Component Integration Testing (Integration “in the Small”)

• Planned and designed early, with system designs.
• Run late but before system testing.
• Based on detailed design specs.
• Based on links between components and at extreme/failure conditions.
• Carried out by testers or developers.
• Functional and non-functional tests.
• May require tools.

System Testing

• Planned and designed early.
• Run late but before acceptance testing.
• Based on acceptance criteria and requirements.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

12

• Based on whole system.
• Carried out by testers or developers.
• Functional and non-functional tests.
• Mainly (solely) black box.
• May require tools.

System Integration Testing (Integration “in the Large”)

• Planned and designed early.
• Run late but before acceptance testing.
• Based on acceptance criteria and requirements.
• Based on how whole system interacts with others in its environment: interoperability.
• Carried out by testers.
• Functional and non-functional tests.
• Black box.
• May require tools.

Acceptance Testing

• Planned and designed early.
• Run late (last) in life cycle.
• Based on acceptance criteria and business view of system.
• May be contractual
• Tested by end users.
• Functional and non-functional tests.
• Black box.
• May require tools.

TP/26-29

Acceptance testing - Test techniques
• Equivalence partitioning
• Sometimes Cause/Effect(CE) graphing or Elementary Comparison Test (ECT)
• Use cases / Process Cycle Test
• Non-systematic techniques (Exploratory Testing(ET))

Typical non-functional attributes
• Usability
• Sometimes Performance.

CN/C-15/1

For a more complete list of test techniques at different levels, see Appendix A: V-Model Table.

Each test phase has the following characteristics: Objective, Scope, Entry and Exit criteria, Deliverables,
Techniques, Metrics, Tools and Standards. (Copied from syllabus, above.) OSEEDTMTS anagram of
MODE TESTS.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

13

Explain how the development process can influence the testing process, for example the object-oriented
development paradigm where development makes testing more difficult because of information hiding.

As development process differs, so the risks will change. For example, in an evolutionary life cycle, the V-
model can be applied in miniature (can build up processes from informal to formal). TP/29

Explain the differences between testing, retesting and regression testing.
Testing: “demonstrating that a system is fit for purpose” TP/17 or “the process of exercising software to
verify that it satisfies specified requirements and to detect errors.” TP/18

Retesting: “to discover whether or not a previously reported fault has been fixed” MARK

Regression Testing: “testing a representative part of a system to verify that the basic functionality works,
often used when releasing a patch or in incremental delivery.” MARK

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

14

2 Test Process

2.1 Generic Test Process
Introduce the generic test process as comprising the following activities:

• Test planning.
• Test specification.
• Test execution.
• Test checking and recording.
• Checking for test completion.

TEST

SPECIFICATION

TEST

EXECUTION

CHECK AND

REPORT

CHECK

COMPLETION

TEST PLAN

REVIEWS

INTEGRITY

LEVELS

TEST CASE

DESIGN

INCIDENT

MANAGEMENT

TEST COVERAGE

MEASURES

TP 46

PSERC, see “3.3 Test Estimation” TP/46

Test plan: integrity levels, reviews.
Test specification: test case design, reviews.
Test execution: <no details>.
Test checking and recording: incident management.
Checking for test completion: Test coverage measures. TP/46

Indicate how this generic test process fits within the software development process.

This test process can be applied in each phase of the later life of the V-model (e.g. component testing,
integration testing, system testing and acceptance testing). MARK

2.2 Test Planning
This topic is covered in detail in section 3.

Section 3 is “Test Management”.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

15

2.3 Test Specification
Explain that the choice of test specification techniques should be dependent on

• the risks to be mitigated,
• the knowledge of the software under test and
• the source documents

and that the choice should be justified in the test plan/strategy.

Risks are covered in detail under “4 Testing and Risk”.

Explain the role of BS 7925-2:1998 as a source of definitions of test specification (test case design)
techniques. Explain that test specification comprises three stages.

• First to identify the test coverage items (analysis),
• Second to create test cases that exercise the identified test coverage items (design) and
• Third, organise the test procedure/script and test environment from the test cases (build).

Prioritisation criteria identified within risk analysis and test planning may be applied at both the analysis
and design stages.

BS 7925-2:1998 contains a list of definitions of test techniques that are commonly used throughout the
ISEB Practitioner course, e.g. black box testing. Specific techniques are shown in the table below.

Characteristics

Static

D
ynam

ic

B
lack B

ox

W
hite B

ox

Form
al

Inform
al

N
o form

al coverage m
easure

Form
al coverage m

easure

Techniques

Equivalence Partitioning X X X X
Ad Hoc Testing X X X X X
Branch (Decision) Coverage X X X X
State Transition X X X X
Walkthrough X X X X X
Cause/Effect Graphing X X X X
Complexity Analysis X X X X
Random Testing X X X X
Statement Coverage X X X X
Data Flow Testing X X X X X

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

16

Syntax Testing X X X X
Inspection X X X X X
Error Guessing X X X X X
Boundary Value Analysis X X X X
Informal Review X X X X X

CN/A-Handouts/3

Examples (of three stages of test specification)
Analysis: situations, conditions, attributes, state transitions.
Design: test design specification, test case specification.
Build: may also include organising test data and defining test execution scenario. CN/A-04/7

Explain that BS-7925-2:1998 is one source of definitions of test case design techniques, some of which may
be used for component testing, component integration testing, functional system testing, non-functional
system testing, system integration testing and acceptance testing. Explain that test cases may be generated
from an analysis of business scenarios and/or use cases.

So, BS-7925-2:1998 contains many definitions of test case design techniques which are used in all test
phases.

Describe the requirement for each test case in the test specification to include the test input(s), expected
outcome, the rationale for the test (i.e. which test coverage items are being exercised by this test) and any
test case-specific pre-requisites, such as the initial state of the software and its environment.

CN/A-04/8

Explain that to generate the expected outcome and to perform the analysis stage, knowledge of the
specification for the software under test is required. In some situations this knowledge may not be formally

Requirements
Test coverage

items

Pre-conditions
Other test cases

Test Input

Test actions
Change process

Expected outcome,
outputs, states, etc.

Te
st

 o
bj

ec
tiv

e.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

17

specified. Therefore it is sometimes necessary to identify alternative sources, such as technical and/or
business knowledge. RAD is a particular example of where the requirements may not be formally
specified. If expected results cannot be generated then testing cannot be performed.

To specify the tests, the following are needed:

• Functional specification.
• Knowledge of the software specification.
• If no documentation is available, access to business and technical experts.

The test specs need to be reviewed for testability.

The expected outcome needs to be identified, otherwise no testing can take place. CN/A-04/7

Explain that the test outcome must include not only outputs but the final state of the software under test and
its environment.

(The comments below are related to the paragraph above but not a specific explanation: see point 7.)

Use case test template could consist of the following fields:

1. Test case identifier.
2. Software to be tested and version.
3. Goal of test.
4. Description (including Context and Actors).
5. Preconditions.
6. Description of main flow.
7. Expected results (outputs including final state).
8. (Alternative flows and expected results.)
9. Failure conditions (for usability testing, e.g. instructions not clear).
10. Additional attention points (e.g. note response times.)

TP/245

Describe the non-functional attributes that may have been tested (including reliability, memory
management, security, recovery, disaster recovery, volume, performance, stress, usability, maintainability,
procedure, configuration, portability, installability, interoperability, compatibility and conversion). The
non-functional attributes to be tested should be in the specification of the software under test.

Non-functional attributes (or quality characteristics) are:

• Functionality.
 Suitability.
 Accuracy.
 Interoperability.
 Security.

• Reliability.
 Maturity.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

18

 Fault-tolerance.
 Recoverability.

• Usability.
 Understandability.
 Learnability.
 Operability.
 Attractiveness.

• Efficiency.
 Time behaviour.
 Resource utilisation.

• Maintainability.
 Analysability.
 Changeability.
 Stability.
 Testability.

• Portability.
 Adaptability.
 Installability.
 Co-existence.
 Replaceability.

Memory aid: PERFUMe.

Note that “Compliance” can be added to each list, e.g. complying to standards relating to Functionality, etc.
TP/381

Explain that reviews/inspections, static analysis and dynamic analysis are also used to detect faults and so
may be specified as required tests to be performed on the software under test, where the software under
test may be requirements specifications, design specifications and code (and test plans).

Additional information:

For static and dynamic lists of tests, see previous table. Reviews are all static tests and may be performed
on code or documentation. Review types for documents are:

1. Walkthroughs.
2. Peer (technical).
3. Inspections.
4. Informal.

MARK

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

19

2.4 Test Execution

2.4.1 Preparation for Test Execution

Explain that the following are the pre-requisites for test-execution:
• Test procedure and / or test script.
• Identification and establishment of the test environment to include room, desks, trained

people, hardware, software, tools, peripherals, communications means, data set-up and
security.

• That all those who will be responsible for the creation and maintenance of the test
environment are identified and available.

• That support activities such as configuration management and incident management are in
place.

• Verification that the test environment is complete and works correctly, i.e. it will correctly
demonstrate both test passes and test failures and it is a satisfactory replica of the target
environment.

Pre-requisite summary: procedure, environment, personnel, support, test environment verification. MARK

2.4.2 Executing the Tests

Explain the importance of following test procedures, to ensure that there is complete auditability of the
tests and that there is repeatability for retest or regression test. A formal means should also be provided
for testers to suggest additional tests that they may like to add.

If someone does not follow the test procedure and misses a fault, then the cost of repairing it will increase
when it is discovered during a later phase or when the product is in the field. MARK

Explain that to ensure confidence in the tests, it is sometimes necessary to get the potential owner of the
developed software, or someone acting for them, to witness the testing.

The customer may not have the knowledge fully to understand the testing during an earlier phase, e.g.
component, so explanation will be needed. Otherwise this participation should be kept to a later phase, e.g.
acceptance testing. MARK

Involving the customer during tests ensures that the tests executed are verifying what the customer sees as
being important. The customer can also indicate what are the most common problems that were present in
previous projects, as such he can indicate what pieces of the system should be tested more rigidly. MARIO

2.5 Test Checking and Recording

2.5.1 Test Checking

Explain that this is a comparison of actual and expected outcomes and that the expected outcome must be
generated prior to test execution.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

20

So, say what should happen and then see whether that is the case.

Explain that if any discrepancy between actual and expected outcomes is observed then it shall be logged
and analysed to establish where the fault, if any, lies (e.g. fault in the testing, fault in the software under
test) and where in the test process we should return to either fix the fault in the testing or test the fix made
to the software. Ideally, data to support a subsequent root cause analysis should be recorded.

Faults could be:

• Test environment.
• Computer itself (other software).
• Error during software installation.
• Tester not following instructions correctly.
• Test instructions not correct.
• Software error.

MARK

2.5.2 Test Recording

Explain that every test case is logged in the test record for the purpose of:
• auditing the testing and
• recording test coverage measures for subsequent checking against test completion criteria.

For example, one of the exit criteria might be 90% branch coverage, so the amount of coverage needs to be
recorded.

Another example is 100% of critical tests, 80% major and 50% minor. MARK

Need to record the software tested and its version number. TP/21

Describe the contents of the test record based on those required for component testing described in BS
7925-2:1998 and explain how test records are used in the other phases of testing.

Component Test Recording
The test records for each test case shall unambiguously record the identities and versions of the component
under test and the test specification. The actual outcome shall be recorded. It shall be possible to establish
that all specified testing activities have been carried out by reference to the test records.

The actual outcome shall be compared against the expected outcome. Any discrepancy found shall be
logged and analysed in order to establish where the error lies and the earliest test activity that should be
repeated in order to remove the discrepancy in the test specification or verify the removal of the fault in the
component.

The test coverage levels achieved for those measures specified as test completion criteria shall be recorded.

Standard for Software Component Testing, Working Draft 3.4 (Grey section 7, second folder)

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

21

Test records can be used in other phases:

• To help localise a fault found (reference can be made to earlier tests).
• To help identify the value of testing at each phase by collecting metrics.
• (To help identify root causes of faults.)
• To identify risks, so that later testing can focus on particularly error prone areas.

MARK

2.6 Checking for Test Completion
Explain that before exiting the test process a check against the test completion criteria is mandatory and
present examples of test completion criteria for each of the test phases. If the criteria are not met,
normally additional tests shall be required. Alternatively, the test plan may be revised to permit the
relaxation (or strengthening) of test completion criteria. Any changes to the test completion criteria must
be documented, ideally having first identified the associated risk and agreed the changes with the
customer.

All exit criteria for each phase will be identified in each phase test plan. They will be determined by a risk
analysis. TP/46

Completion Criteria Examples For Printer Software:

• Component Testing: when software is running in a test environment (so not on a printer) and
a test stub is used to simulate the printer. An example would be: 95% of test cases are
exercised, zero critical defects and five or less serious defects.

• Integration Testing: when the various components are run together, in this case possibly a
user interface and print manager software. Completion criteria could be no memory leaks or
performance loss (needs to be measured – a specific tool would be of use).

• System Testing: running on a printer. Completion criteria could be no critical defects
observed after 100 000 printouts (following established test cases).

• Acceptance Testing: could be run by end users on a printer. Completion criteria could be
established against usability criteria, e.g. “ease of use, 3/5 or better”.

MARK

Explain that if all test completion criteria are met then the software is released, e.g. to the next phase of
testing.

How do completion criteria help?
1. Helps focus testing on the test objectives
2. Allows an end position to be identified
3. Allows progress towards the end position to be measured and monitored
4. Prevents “wrong” decisions being made under pressure
5. Tell you when you have finished the testing as agreed during the planning phase
6. Note: They should be specified per test level/phase
CN/A-11/5

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

22

3 Test Management

3.1 Test Management Documentation

Provide a description of the following documents:

Test Policy a document characterising the organisation’s philosophy towards software testing.
Test Strategy a high-level document defining the test phases to be performed and the testing within

those phases for a programme (one or more projects).
Project Test Plan a document defining the test phases to be performed and the testing within those

phases for a particular project.
Phase Test Plan a document providing detailed requirements for performing testing within a phase

e.g. component test plan, integration test plan.

For this syllabus, the above four documentation types are used and treated as individual documents,
however some organisations may amalgamate and split documents to form different sets which, in total,
should contain the same information.

PROJECT TEST PLAN

PHASE TEST PLAN

TEST PROCESS

INCIDENT MANAGEMENT

TEST STRATEGY

TEST POLICY

TEST PROCESS IMPROVEMENT

T

E

S

T

T

E

R

M

I

N

O

L

O

G

Y

T

E

S

T

D

O

C

U

M

E

N

T

A

T

I

O

N

ORGANISATION

PROJECT

PHASE

TP/44

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

23

Note that Incident Management is not per phase but per project. This is because here it means
management, not recording and handling (fixing) of incidents. So here it implies, e.g. a CCB (Change
Control Board).
MARK.

3.1.1 Test Policy

Explain that an organisational approach to testing starts with a test policy, which is normally developed by
the IT department (or equivalent), but represents the philosophy of the whole organisation.

Explain that a test policy is typically a short, high-level document that comprises:

• a definition of testing (e.g. “Checking that the software solves a business problem.”),
• the testing process (e.g. “Development and execution of a test plan in accordance with

departmental procedures and user requirements.”),
• the evaluation of testing (e.g. “Measurement of the cost of faults detected after release.”),
• quality levels to be achieved (e.g. “No more than one high severity fault per 1000 lines of

delivered code to be found in the first six months of operation.”) and
• the organisational approach to test process improvement (e.g. “Post-project reviews will be

performed after each project.”)

How can these five points (definition, process, evaluation, quality and improvement) be remembered?
DPEQI: Do, Perchance, English Queue Intensely? MARK

Another policy definition:
- definition of testing
- definition of the test process (level of independence)
- strategic view towards the test profession
- evaluation of testing (performance indicators)
- quality levels to be achieved (important quality attributes)
- approach to test process improvement (objectives)
CN/A-04/2

Explain that the testing policy applies to both new development and maintenance testing activities.

3.1.2 Test Strategy

Explain that the test plan should be based on the test policy.

Explain that the scope of the test strategy (as used within this syllabus) covers the generic test
requirements for an organisation or programme (one or more projects).

Describe a test strategy as a document that addresses the risks and presents a process for mitigating those
risks in line with the testing policy, explicitly showing the link between the risks and the testing. A test
strategy will thus typically comprise two main parts:

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

24

• the risks that are to be addressed by the testing of the software and
• the particular testing which will be used to address the identified risks.

100% testing of software is impossible which is why a test strategy is developed, determined by risk
analysis. The aim is to focus the most testing effort on the areas where defects are most likely to be found,
or where the defects are most likely to have the highest impact (or both). TP/34

Explain that the testing described in a typical test strategy will include a description of the test phases that
are to be used. For each of these phases, the following shall be described at a high level (along with the
rationale for its selection):

• the entry and exit criteria for each test phase;
• the approach to testing, such as top-down, bottom-up, priority-driven;
• the test case design techniques to be used;
• the test completion criteria;
• the degree of test independence;
• any standards that must be complied with;
• the environment in which software tests will be executed;
• the approach to test automation;
• the degree of reuse of software;
• the approach to retesting and regression testing;
• the test process that shall be used, including test deliverables, such as test reports;
• measures / metrics to be captured;
• the approach to incident management to be used.

A CAD PRIME TIRES or ERIC, A MAD PRIEST (note Eric with a ‘c’): E(ntry & Exit), R(egression &
Retesting), I(ndependance), C(ompletion Criteria), A(pproach), M(etrics), A(utomation), D(eliverables),
P(rocess of Testing), R(euse of Software), I(ncident Management), E(nvironment), S(tandards), T(est Case
Design Techniques).

Explain that the above information will not necessarily be presented within a single document, but may be
spread across a set of documents, which could typically be labelled as:

• corporate test strategy,
• specific site / location test strategies,
• programme test strategies (for a series of projects),
• project test strategies and
• also may be presented as part of the test plans.

Describe why different strategies are appropriate for different application areas, giving examples from
disparate areas such as safety-critical software and non-critical web-based software.

E.g. the software in an aeroplane guidance system is much more safety-critical than that in on-line
shopping system. Or the security in an on-line shopping system is much more important than that in a car’s
navigation system (which has no contact with other computers). MARK

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

25

Explain that the results of any test process improvement initiatives are considered when creating the test
strategy.

E.g. how can the testing be faster, cheaper or better? TP/306

3.1.3 Project Test Plan

• Explain that, for this syllabus, a project test plan documents, for a particular project, the
implementation of the overall test strategy.

• The project test plan will either confirm compliance, or explain non-compliance, with the
test strategy.

• The project test plan shall normally be referenced from the project plan, which would
identify the critical path.

Explain that, in addition, a project test plan includes information to enable the tester:

• To identify project testing costs and timescales to obtain approval for the release of funds
and / or resources.

• To identify test cycles based on the software project release plan.
• To satisfy management and users (customers) that adequate testing will be performed for

this project.
• To define and communicate the contributions of everybody who is expected to assist in

delivering the testing for this project.
• To identify the project deliverable(s) to be tested.

MEDIC: M(anagement), E(verybody), D(eliverables), I(dentify), C(osts & Timescales).

3.1.4 Phase Test Plan

Explain that, for this syllabus, a phase test plan documents a detailed approach to a test phase (e.g.
component test plan). The phase test plan describes in greater detail the implementation of the project test
plan for a particular phase.

For instance, it would normally include a sequence of test activities, day-to-day plan of activities and
associated milestones.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

26

Phase Test Plan details
The phase test plan is the detailed document that will include all the information required to control testing
for each phase.

The phase test plan will contain details such as:

• Details of modules/functions/processes to be tested in that phase
• Details of the business risks associated with those functions
• Test coverage requirements
• Test techniques to be applied
• Methods and tools
• Test specifications and execution requirements
• Details of the test environments to be used
• Testing schedule
• Details of any variations from the project test plan or the test strategy

CN/TMR-41

3.2 Test Plan Documentation
Explain how to develop Project Test Plans and Phase Test Plans in compliance with IEEE Std. 829-1998.

Test Plan Outline (IEEE 829):
1. Test Plan Identifier.
2. References. Not officially part of IEEE 829.
3. Introduction.
4. Test Items.
5. Software Risk Issues. Not officially part of IEEE 829.
6. Features to be Tested.
7. Features not to be Tested.
8. Approach.
9. Items Pass / Fail Criteria.
10. Suspension Criteria and Resumption Requirements.
11. Test Deliverables.
12. Remaining Test Tasks.
13. Environmental Needs.
14. Staff and Training Needs.
15. Responsibilities.
16. Schedule.
17. Planning Risks and Contingencies.
18. Approvals.
19. Glossary. Not officially part of IEEE 829.

CN/IEE 829 Test Plan Outline (Grey section 7, first folder)

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

27

3.3 Test Estimation
Explain that an estimate is an approximate calculation or judgement, typically based on the professional
understanding of experienced practitioners.

Describe the need to estimate the number of tests, effort and / or time required for each phase, and number
of iterations or cycles required for each phase, and any other costs, such as hardware, tools, etc. Explain
that estimates include time for test planning and preparation as well as test execution. Explain why it is
difficult to predict how long test execution will take when the quality of the software under test is not
known.

Test process includes: plan, specification, execution, check & report and completion. This is worth
memorising! PSERC (See “2.1 Generic Test Process”.) TP/46

Explain how the duration of a testing activity can be estimated, to include:

• Intuition, guesswork;
• Previous experience;
• Company estimating standards;
• A detailed work breakdown structure of all test activities;
• Formula based:

 Function points;
 Test points;
 Related to software development effort (e.g. 40% for new software);
 Metrics:

 Estimate the number of iterations or cycles of test – debug – retest based on
recent records of comparable test efforts;

 Calculate the average effort required per test on a previous test effort and
multiply by the number of tests estimated for this test effort.

Test

Estimation

size

strategy

productivity

test effort
cost

risks

Historical

data

CN/A-10/2

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

28

Wide Band Delphi can be used for work estimates.
CN/A-04/1

Estimation related to software development:
- Testing takes 30-40% of development effort
- System/acceptance testing takes 25%

Estimation based on metrics:
- Number of test cycles based on recent records
- Time per test phase or activity in previous test projects

Estimation without function points:
 X requirements critical * A * 1,25 = …
 Y requirements normal * A * 1,00 = …
 Z requirements low * A * 0.75 = …
…with A = average time to test a requirement
Apply environmental and productivity factor, plus planning and control allowance  testing time.

Estimation with function points. Test Point Analysis (TPA). Technique to estimate a structured system
and/or acceptance test

Needed:
1. Size of test object: # function points, corrective factors:

a) complexity
b) interfacing
c) uniformity

2. Importance of subsystems/functions
a) user importance
b) usage intensity

3. Quality attributes:
a) usability
b) efficiency,
c) risk level
d) …etc

4. Productivity:
a) Environmental factors: test basis, development test, tools, environment, …
b) Productivity figures per organization, skills test team, historical data

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

29

 Dynamic test points Static test points

Total test points

Primary test hours

Environmental factor

Total test hours

Planning&control
allowance

Estimation by work breakdowns and Wide Band Delphi:
- From test strategy and (standard) test approach determine all deliverables to be developed
- A WBD (Work Break Down) contains the tasks needed to produce the deliverables (test plan,
design, script, reports) and other tasks (reviews, test environment, management and control)

Wide Band Delphi
- Input: WBDs, data from previous projects
- Moderator
- Agreement on % maximum deviation
- Explain the WBS and discuss requirement quality, complexity, etc.
- Each participant estimates (each task max X hours) and documents assumptions (supported by an
“influencing factors” checklist)
- Moderator calculates averages and deviations and collects assumptions, then re-distributes
- Discuss outcome (based on criterion % max), the low and high explain their reasoning
- If necessary, a new estimation round is carried out

Test execution estimation: include estimation for rework!

Attention points:
- Include a contingency budget? 20%?
- What about estimation for tools and test environment?

Do not give in easily when the schedule is under pressure:
1. Relax entry criteria, but understand and communicate the risks involved
2. Add staff (but do they have the right skills?)
3. Reduce test execution time, accept lesser quality (relax exit criteria)  risk based, or overall lower
coverage
4. Reduce the number of features in the product

MARIO

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

30

3.4 Scheduling of Test Planning
Present reasons why planning should be done as early as possible, e.g. to give adequate warning to others
who will be involved and to give early visibility of potential problems.

Describe the benefits of using test planning to assist in the preparation of the development delivery plan
e.g. defining the priority given to a test activity could be used to determine which software components are
developed and delivered first.

Explain the advantage of releasing test plans in stages (iterations) if not all information is available in
time, in order to avoid delay.

Faults in test plans can therefore be found earlier.
Scheduling benefits:

- problem areas are now visible
- early test planning and scheduling will assist in development delivery plan, e.g. most important

functionalities delivered up-front
- dependencies are made clear- impact of slippage is more easily identified
- structured progress tracking (management) becomes possible

CN/A-10/11

3.5 Test Progress Monitoring and Control
Explain different means of monitoring the progress of the testing, to include the monitoring of incidents
and test cases and the use of statistical methods.

For example, test results can be summarised for management as faults found per week. This can be show
on a bar chart to indicate progress (towards the end of the test phase, the number of reported faults should
decrease, assuming developers are continually fixing the software and providing the testers with the most
recent stable version). MARK

Test execution monitoring

• Number of test cases executed as a percentage of all the test cases
• Number of high priority test cases executed as a percentage of all the high priority test cases
• Use of statistical methods

Regular meetings should be scheduled in order to track progress against plan.
Any milestones that are missed, or are in danger of being missed, need to be addressed.

CN/TMR/81-82

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

31

time

focus

Shift of

focus

Effort

focused

Quality

focused

This is

reflected
in the

reports!

CN/A-12/2

Explain that test reports are used to communicate test progress and that these reports may be tailored to
the different recipients. Describe how test progress can be presented graphically and using numerical
tables.

Identify the requirement to control test activities to minimise divergence from the test plan and describe
methods of control, to include reviewing the priority of tests, obtaining additional resources, extending the
release date and (only with project management support) changing the test completion criterion.

How to deal with slippage:

- discuss with all stakeholders
- defer release date (if not fixed)
- allocate additional resources
- execute highest priority tests in the time available
- revisit the test completion criteria
- or…deliver less functionality

CN/A-12/5

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

32

4 Testing and Risk

4.1 Introduction to Testing and Risk

Define risk as the chance that a problem may occur in the future. Explain that risk is a combination of
both the likelihood of a problem occurring and the impact of the problem. Such problems may impact the
product (e.g. a software failure that takes the delivered system out of operation) or the project (e.g. extend
the delivery timescales).

Describe typical risks (both product and project) to be considered such as those related to safety,
economic, security and political and technical factors and give examples of each of these.

Example risks:

Category Annoying Hindering Damaging Catastrophic
Safety: aircraft. Dashboard light

flashes
continuously.

Need to restart
computer every
36 hours.

Error in
guidance leads
to extra wear on
wings.

Undercarriage
does not always
respond to
software signal.

Economic:
market analysis
tool.

Companies
only identified
by codes in UI.

Not possible to
delete old
companies.

All profit
figures always
rounded up.

Profit displayed
for incorrect
company.

Security:
airport baggage
scanner.

Software takes
too long to start
(once per day).

Tuning too
high: alerts to
padlocks on
baggage.

Scan misses an
acceptable
amount of
metal (e.g.
razor blades).

Scan can
damage organic
material close
by.

Political – trial
release to new
customer.

User interface
contains
spelling
mistake.

User interface
requires too
many “clicks”.

Application
crashes once a
day with loss of
up to 30
minutes work.

Application
corrupts
database.

Technical –
printer
software.

Blank page
used at start of
print run.

Cancelling print
run results in
many pages of
“junk”
characters.

Arial font
rendered as
Wingdings.

More than one
page of
graphics
requires printer
reboot.

MARK

Explain that risks can be treated in either a qualitative or quantitative manner.

Qualitative: relating to quality. Involves categorising risk (high / medium / low).
Quantitative: relating to quantity. A mathematical way of determining risk and impact.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

33

For detailed explanation, see 4.2.3 “Risk Analysis”.

MARK

Explain that risk analysis can be used to:

• Target testing – different risks can be addressed by different types (and depths) of testing.
• Prioritise testing – give the testing of higher risk areas higher priority.
• Describe the risks of delivering a system – if testing is cut short (or not done at all) then the

risks that have not been addressed by testing will remain.

Explain that testing can be used to:

• Mitigate (reduce) risks – a primary way of mitigating product risks is to identify faults in a
product (testing) that are subsequently removed (debugging). Project risks may also be
mitigated by the appropriate choice of test strategy.

• Inform the risk assessment – the results of testing, such as high/low fault rates in certain
parts of a product can be used to improve the accuracy of the risk analysis.

4.2 Risk Management

4.2.1 Introduction to Risk Management

Introduce the core activities of risk management as comprising risk identification, risk analysis and risk
mitigation.

• Risk Identification: looks at ways of establishing what the risks are and where they are.
• Risk Analysis: looks into the critical, complex and potentially error prone areas. Identifies

the likelihood and impact. CN/A-06/2
• Risk Mitigation: tests built to try to reduce likelihood of risk. MARK

For more details, see sections below.

Explain that ideally all stakeholders should be directly involved at all stages of risk management.

Who owns the risks?

• All key stakeholders should be involved at all stages:
 Who is responsible?
 Who has a problem when things go wrong?
 Who needs the system at their work?

• Note that testers (and requirements engineers) have a responsibility to identify the risks.
• Ultimate decision is with the business owner of the system.

 The can only make this decision if they have objective information – that is the tester’s
role.

CN/A-06/2

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

34

4.2.2 Risk Identification

Introduce the following techniques that are used to identify risks:
• expert interviews;
• independent assessment;
• risk templates;
• lessons learned;
• risk workshops;
• brainstorming and
• checklists.

I BITE CLAW or ITALIC WEB.

Can also use FMEA (Failure Mode and Effect Analysis). CN/A-06/3-4.

Defining FMEA filed of application in Process and product Objective & team

members1

Preparation FMEA Workshop Detail product info to

team members2

Failure mode and effect analysis Potential failure modes

identified3

Criticality Analysis to prioritize the identified failure modes Focus with respect to

key-areas4

Definition of measures to elaborate confidence with respect to

identified key-areas
Actions, owners and

time schedule5

Reporting and follow-up Report to members &

stakeholders6

Brainstorm Meeting

FEMA Process.
CN/A-06/3

Stock level error.

Human error.

Stock entered incorrectly.

Database update incorrectly.

Backup restore

mechanism error.

Sold stock not

deducted from total.

Incoming stock

not added.

Returned stock

not added.

Ishikawa / Fishbone diagram. Each branch is made up of sub-branches which break down the risk further.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

35

Give examples of the appropriate use of the above techniques.

• Expert interviews: interviewing end users to identify cost (damage, etc.) if specific parts fail.
• Independent assessment: ask an expert in the field, e.g. ask an avionics expert where most

faults occur.
• Risk templates: includes factors such as likelihood and impact.
• Lessons learned: review where faults where found in previous project, a root cause analysis

=> prevention.
• Risk workshops: possibly straight after a requirements specification walkthrough meeting.
• Brainstorming: can use fishbone diagram.
• Checklists: list of questions to answer, e.g. what would be the impact on the business if this

module failed?
MARK

4.2.3 Risk Analysis

Introduce risk analysis as the study of identified risks.

After risks are found, they need to be analysed. MARK

Explain that risk can be calculated as (frequency * severity), and that if the frequency and severity
(likelihood and impact) can be described quantitatively then a quantitative value for risk (the exposure)
can be calculated. Point out that it is most often the case that frequency and severity will not both be
quantitatively defined and so direct calculation of risk is not possible. In these situations risk is defined as
one of a number of classes or categories.

• Value of a certain risk can be calculated as frequency * severity.
• Severity is a combination of likelihood and impact (quantitative).
• Both frequency and severity values are unlikely to be available.
• Risks are then defined by class (type) or category (qualitative).
• Usually this is based on perceived risk.

CN/A-06/5

FMEA Criticality analysis

• Assign Risk Priority Number (RPN) to identified risks
• RPN:

o Probability x Seriousness x Detecting difficulty
o Each on a 1-10 scale (agreed calculation criteria)
o 0<RPN<1000, guidance

 RPN<50 :no action
 RPN<150 :action desirable
 RPN>150 :action a must
 RPN>500 :critical

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

36

CN/A-06/6

Often the frequency and severity of a risk are not quantitatively defined (e.g. frequency 56%, severity €123
000 / day) so they are categorised, e.g. High / Medium / Low. MARK

Emphasise that unless trusted risk metrics are available, the analysis will be based on perceived
probability and consequence. Explain that because risk analysis is usually based on personal perceptions,
it is common for views to differ. Compare the different viewpoints of a software project manager, a
developer, an end-user and a tester. Explain that the results of the risk analysis should always include the
level of uncertainty in the resultant risks.

Perceived likelihood and impact:

• Views differ.
• As a consequence there is a level of uncertainty.
• This will diminish as the project progresses.

CN/A-07/2

Viewpoints:

• Software project manager wants the software to be delivered on time.
• Developer often wants to try out new things or do a “beautiful” design.
• End-user is interested in Return On Investment.
• Tester is focussed on quality.

MARK

Risk analyses, when applied to software products, generally need to be broken down into lower level risk
categories. The most common categories would relate to:

• Functional aspects (particularly important functions or processes to be supported).
• Non-functional aspects, e.g. performance, security, usability, etc.

Explain that a variety of approaches to risk analysis are possible, which employ varying degrees of rigour,
from the calculation of a quantitative value to the simple declaration of class of risk by the customer.

For example, a functional risk matrix (MoSCoW priorities), Rex Black Classification Scheme (where each
risk is given a weighting for impact, exposure and likelihood) or stakeholders can be asked to scale each
risk from 0 – 9.

Functional risk Matrix
MoSCoW (Must test, Should test, Could test, Won’t test)

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

37

Example Low level test

Example high level test

Could Test Must Test

Won’t Test Should Test

III I

IV II

Likelihoo
d

Impact

Statement coverage
70%
Pair inspection

Formal test
specification
Boundary Value
Analysis
Statement coverage
90%
Full code inspection

Free
format

Statement coverage
100%

Could Test Must Test

Won’t Test Should Test

III I

IV II

Likelihoo
d

Impact

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

38

 CN/A-06/6, CN/A-07/2-3

Give examples of both qualitative and a quantitative risk assessments.

Qualitative: risk likelihood and impact are categorised high / medium and low.
Quantitative: risk likelihood is expressed as a percentage and impact is expressed financially.
MARK

Risk management summary

• Functional risks
o Factors score sheet
o Risk matrix

• Non-functional risks
o Quality characteristics
o Structured questionnaire

CN/A-07/8

Explain that risk analysis should be ongoing throughout a project and that the results from testing can be
used to inform the risk analysis, such as allowing risk values to be increased/decreased and uncertainty
levels to be reassessed. For example, where a tested component is found to contain considerably more
than the expected number of faults, it may be decided that the component’s quality is less than expected,
giving rise to an increase in the likelihood of the component failing, and a subsequent increase in the risks
associated with this component. In response, it may then be decided to increase the testing necessary for
this component to mitigate the increased risks (see below).

Could Test Must Test

Won’t Test Should Test

III I

IV II

Likelihoo
d

Impact

Equivalence
Partitioning

Error Guessing

Process cycle test
Cause effect
graphing

Use cases
Equivalence
partitioning

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

39

4.2.4 Risk Mitigation

Explain that risk mitigation is the activity concerned with the response to the analysed risks.

Describe the possible responses as

• doing nothing,
• sharing risk,
• taking preventative action to avoid or reduce risk and
• planning for contingent action.

Possible responses:

1. Doing nothing
2. Sharing the risk (e.g. insurance)
3. preventive action (e.g. change architecture or change development process)
4. detective action (test)
5. corrective action (planning for contingency action)

CN/A-06/7

Explain that the choice of response will depend on the benefit of removing or reducing a particular risk.
Explain that in this respect testing is a form of preventative action that reduces risk by identifying faults
that are subsequently removed.

Cost / benefit ratio: cost of failure in operation vs. cost of finding and fixing now. (Also need to consider
what the possibility of new faults being introduced is.) MARK

Explain that knowledge of risks can be used to determine the content of the test strategy. Explain that this
knowledge can be used in two ways:

• First, the level of risk can be used to determine the ‘level’ of testing to be performed. This
approach is used by most safety-related standards, where specific test case design
techniques and test completion criteria are mandated for each level of risk, with four levels
typically being used. For instance, all components deemed to be at the highest level of risk
may have to be tested to achieve 100% branch coverage.

• Secondly, the type of risk can be used to determine the ‘type’ of testing to be performed, as
certain types of risks are known to be amenable to being mitigated by certain types of
testing. For instance, a risk associated with the product’s user interface may be mitigated
by performing more extensive usability testing.

This also helps to identify the priority of each of the tests, which is useful when budgets are cut.

Risk mitigation summary

• Select testing techniques
• Defining test levels (responsibility)
• Content V-model, completion criteria

 CN/A-07/7-8

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

40

Give examples of how project and product risks can be addressed by decisions documented in the test
strategy based on both the level and type of risk, such as which test phases to include and which test case
design techniques and test completion criteria to use.

Test project risks should contain:

- probability (low, medium, high or numeric)
- impact type (lead time, effort, quality)
- impact size (low, medium, high or numeric)
- trigger (how will we know “it is happening”)
- contingency plan

CN/A-09/2

Test case design technique = a method used to derive or select test cases

These to ensure the activities are:

• measurable
• controllable
• repeatable

Test techniques provide an understanding of the complexities imposed by most systems. The use of
techniques forces testers into thinking about what they test and why they are testing.

Static vs. Dynamic: dynamic test case design is carried out at the same time as the static review activities.
Early in the V-model lifecycle. The dynamic test cases are executed once the system has been built and
delivered into the test environment.
Static testing are primarily techniques aimed at preventing faults being propagated to the next phase or into
the test environment. Dynamic techniques (black or white) are intended to find faults in the translation of
the specifications into the actual system.

Systematic vs. Non-systematic:
Systematic techniques are based around a set of rules that make the activity mechanistic, repeatable and
measurable.
Non-systematic techniques are based on the experience of the tester (e.g. Exploratory testing). The biggest
draw back with these techniques is the lack of documentary evidence and therefore repeatability of the test
scenarios.

Functional vs. Non-functional:
Functional test techniques relate to establishing what the system does. Do the functions work?
Non-functional techniques focus on establishing how the system does what it does, i.e. is it secure? How
quickly does it respond? Is it reliable? ..Non-functional techniques often use tools to execute the tasks with
supporting tools analyzing the dynamic system activity, e.g. memory use, concurrent threads, …

Advantages/Disadvantages of test techniques:

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

41

Advantages Disadvantages
Objectivity Requires training to some degree
Formal coverage measures Time to implement – culture change
Early defect finding Everyone must be “bought in”
Traceability Not seen as useful for all applications
Coverage independent of the tester Takes more time than less formal design
Way to differentiate test depth based on
risks using different test techniques

Does not cover all situations (error
guessing still useful)

High level of re-use (re-usable testware) Little use of domain and product
knowledge of tester

Repeatability and reproducibility
Audit trails
Higher defect finding capability

MARIO

Explain that where testing is to be used to mitigate risk, and where there is a limited budget for testing,
then it will normally be necessary to prioritise the risks so that the higher risks are addressed by testing
first. This may mean that lower priority risks are not addressed by testing if the testing budget or project
timescales do not permit it. In this case project management will know that the unaddressed risks remain
and can take this into account when deciding whether to release the product and so accept the remaining
risks, or not.

This implies that completion criteria are very important. Otherwise, how do you know that it is “safe” to
stop? MARK

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

42

5 Test Techniques

5.1 Functional / Structural Testing Techniques
Provide an introduction to the test case design techniques defined in BS 7925-2:1998, classification tree
method [see M. Grochtmann and K. Grimm, Classification Trees for Partition Testing, Software Testing,
Verification and Reliability, 3:63-82, 1993] and to path testing [see Beizer’s Software Testing
Techniques]. Provide practical experience of applying Equivalence Partitioning, Classification Tree
Method, Boundary Value Analysis, State Transition Testing (to include Chow’s coverage measures),
Statement Testing and Branch Testing to create tests. Introduce an approach to requirements-based
testing. Explain that structural test case design techniques are nearly always linked with a corresponding
structural test completion criterion.

SC

DC BCC

MCDC

BCCC

EP

ECT

C/E

BCC
BCCC
C/E
DC
ECT
EP Equivalence Partitioning
MCDC
SC

BRYAN

See also Appendix D: Summary Of Test Techniques.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

43

5.2 Non-Functional Testing Techniques
Explain the techniques used for reliability testing, usability testing [details available at:
http://www.testingstandards.co.uk], volume, performance and stress testing [see Myer’s The Art of
Software Testing for descriptions of the last three techniques].

SUMI (software Usability Measurement Inventory)

• Well founded questionnaire (50 questions) : based on practical research.
• Referred to in ISO 9126 and ISO 9241.
• Quantitative, objective information of users’ subjective attitude to six usability aspects.
• Supported by an analysis tool.

SUMI - Metrics

• Affect – user’s feeling about interacting with the product.
• Efficiency – user’s perception of efficiency of task performance.
• Helpfulness – view of how communicative product is.
• Control – user’s feeling about product response in a normal manner.
• Learnability – How quick does the user becomes familiar with product.

Cost/benefit SUMI

• Easy to use; Fast well founded results
• Limited detailed analysis possible
• Objective indicator
• Low cost (3days, including reporting)
• Late lifecycle
• Minimum of 10 users doing the “same’ tasks.

CN/C-16

Use Cases

A user driven development and testing approach.

• Identification and specification of user scenario’s (High level use cases)
• User-centred approach
• Use case: sequence of transactions in a dialogue between user and system with a specified result.
• A use case depicts a typical way of using the system and nothing more.
• A use case has a beginning, a main body and an ending (=expected result)
• A use case fits on 1-2 pages.

Cost / Benefits

• Main tasks/functions are being tested (disadvantage: limited coverage)
• Preferably splitting test specification and execution (ask user to run the test case)
• Preferably early involvement (static testing)
• User focussed: real-world defects
• A different view and thus other defects.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

44

CN/C-17/1-4

How to make Use Cases:

1. Identification of users (actors) of the system + priority
2. Identification of use cases for each actor + priority
3. Identification of paths for each use case

(basic scenario, deviation scenario, failure scenario)
4. Decide on use cases to elaborate
5. Develop test procedure

CN/C-17/2-3

Note: Use cases are about validation: are we making the right product?
MARK / BRYAN

Usability (lab) testing

Testing with real users.

• Identifies usability problems that are very likely to occur in real use.
• End users performs tasks with a product, while being observed by usability specialists.
• User are interviewed after the test (SUMI?)
• In short: real user experience.

Cost / Benefits

• Representative for real use
• Time consuming
• Knowledge: usability expertise is needed to interpret results
• Users: 3-10
• Costs: “Expensive” with lab, high benefits
• Life cycle phase: working prototypes, working product.

CN/C-17/5-8

Maintainability:
A set of attributes that bear on the effort needed to make specified modification:
- Analysability
- Changeability
- Stability
- Testability
Reference: CN/C-03/1

Types of maintenance:
perfecting (enhancements), preventive, adaptive (changes in the environment), corrective + not planned/ad-
hoc corrective

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

45

CN/C-03/5

Heuristic evaluation
Usability: narrow focus: very local, e.g. navigation/help in screen
 broad focus: can users carry out their tasks  use cases
  effectiveness, efficiency and attractiveness
CN/C-04/1 and TP/269

Heuristics:

1. Visibility of system status
2. Match between system and the real world
3. User control and freedom
4. Consistency and standards
5. Design useful error messages
6. Recognition rather than recall
7. Flexibility and efficiency in use
8. Aesthetic and minimalist design
9. Error prevention
10. Help and documentation

CN/C-04/3

Component testing:
Different Coverage’s:
- Statement coverage
- Decision coverage ≈ Branch coverage
 Based on decision points branches linked to decision points
 + entry and exit points
- Branch Condition Coverage (each single condition)
- Branch Condition Combination Coverage (all possible combinations)  C/E graphing
- Modified Condition Decision Coverage (every condition determines twice the result)
 (min #testcases for 100% MCDC = #decision +1)
- Path Testing  lot’s of test cases
 Also: test business paths through a system
CN/C-05/2-5

Integration Testing in the Large:
About: interoperability, fault-tolerance (on external interfaces)
BRYAN

C/E graphing:
Steps:

1. determine causes (single conditions, positive way (don’t use NOT), ranking)
2. determine effects
3. establish decision table  possible simplification
4. determine test cases (incl. expected results)

CN/C-08/1-2

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

46

Reliability:
Capability of the software product to maintain a specified level of performance when used under specified
conditions:

- Maturity (MTBF, #breakdowns)
- Fault-tolerance (incorrect input) at system level
- Recoverability (MTTR, mean restart time)

CN/C-09/1

Approach: Fault avoidance
 Fault removal
 Fault tolerance
Static techniques (for reliability): reliability assessment, metrics (static code analysis, ISO9126 part 2/3)
design & code inspection
CN/C-09/2

Dynamic techniques (for reliability): syntax testing, random testing (operation profiles), volume, load &
stress testing (system boundaries)
 Software Reliability Engineering Testing
  achieving reliability
  reliability evaluation
CN/C-09/4-5

State transition testing:
The cases should include: starting state
 event
 expected action
 expected next state
CN/C-11/1

0-switch: transition of a component from one state to another
1-switch: transition of a component through two states
CN/C-11/2

Performance testing (efficiency according to ISO9126):
Capability of the SW product to provide appropriate performance, relative to the resources used, under
specified conditions:
- Time behaviour (response time, processing time, throughput rates)
- Resource utilisation (appropriate type and amount of resources)
 higher level (system testing)
CN/C-12/1

Stress testing: subjecting the program to heavy load or stress. Heavy stress is a peak volume of data
processing encountered over a short span of time.
Volume testing: Subjecting the program to heavy volumes of data  beyond operation profiles!
CN/C-12/2

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

47

Process Cycle Test:  suitability
Validation, used in acceptance test
 test suitability with respect to organizational procedures, e.g. task descriptions, user manual  possible
usability problems.
Needed: process description or flows
CN/C-18/1 + BRYAN

In depth PCT: measure 2 (path combinations, including 1 decision point)
Normal PCT: measure 1
CN/C-Handouts/36

Summary of typical test techniques:
Component test: BVA, C/E, ECT, (STT), (Syntax), Structural testing
Integration small: EP, Semantic, STT, Syntax (I/F), Use Cases
System Test: EP, C/E, CTM, ECT, Semantic, STT, Syntax (UI), Error Guessing, ET
Integration Large:
Acceptance: PCT, Semantic, Use Cases, EP, ET, Error Guessing
TP/222-249

Maintainability: Component
Performance: System
Usability: System  heuristic evaluation
 Acceptance  use cases
 usability lab
 SUMI
Reliability: System
BRYAN

5.3 Dynamic Analysis
Explain that dynamic analysis provides run-time information on the state of executing software, normally
achieved by instrumenting the program under test. Commonly used to monitor the allocation, use and de-
allocation of memory, flag memory leaks, unassigned points, pointer arithmetic and other errors difficult to
find ‘statically’.

5.4 Static Analysis
Explain that static analysis involves no dynamic execution of the software under test and can detect
possible faults such as unreachable code, undeclared variables, parameter type mismatches, uncalled
functions and procedures and possible array boundary violations.

Explain that any faults found by compilers are found by static analysis. Compilers find faults in syntax.
Many compilers also provide information on variable use, which is useful during maintenance.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

48

Describe in detail the concepts on which data flow analysis is based. Explain that data flow analysis
considers the user of data on paths through the code, looking for possible anomalies, such as ‘definitions’
with no intervening ‘use’ and the ‘use’ of a variable after it is ‘killed’.

Explain the use of, and provide an example of, the production of a control flow graph for a program. Use
the control flow graph notation as described in Hetzel’s The Complete Guide to Software Testing.

Introduce the use of complexity metrics, explaining the calculation of lines of code (LOC) and cyclomatic
complexity.

Can also calculated nested levels (e.g. maximum nesting).
Cyclomatic Complexity: Number of decisions + 1. MARK

Process: coding  static analysis  compiler  dynamic testing
CN/C-02/3

Checks the following:
- coding standards
- style guide
- language validation (syntax, constraints and semantics)
- metrics: function based, file based
CN/C-02/4+7

Static analysis =automated technique to “walk through” the source code and detect constructs non-
complying with pre-defined rules. Eg: Coding standard, Style guide (compiler is also a static analysis tool)

In time, Static Analysis is done after coding and before compilation – often Static Analysis is done after
compilation though.

Reviews are also part of static analysis

60% of the SW faults that were found in released SW products could have been detected by means of
STATIC ANALYSIS (including reviews)

Syntax is the formal set of rules by which valid language statements are constructed from the basic tokens
of the language.
Semantics are the rules governing how the language statements are interpreted
Constraint is a syntactic and semantic restriction on the rules of construction

Why static analysis:
1. Programmer makes mistakes
2. Programmer misunderstands the language
3. Compiler does not react as expected
4. Compiler contains errors

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

49

5. Program does not react as expected (run-time errors)

There are five levels of Static Analysis; it is best to start with level 1 as a start-point:
1. Adhere to programming best practices
2. Can easily be used and maintained by others
3. Can be integrated with other SW parts and made operational with little debugging and rework
4. Offers features and functionality that is expected and required by the SW user
5. Leads to a software product that is reliable and does not fail operation during use

Function based measurement (Based on the content of a single function):
• Number of function calls
• Cyclomatic complexity

File based measurement (based on the content of a file):
• Number of variables declared extern
• Number of variables declares as static
• Number of functions in the file

MARIO

5.5 Non-Systematic Testing Techniques
Make students aware of the benefits of including non-systematic testing techniques, such as exploratory
testing, ad hoc testing and error guessing, in their test process.

Exploratory Testing
Team based approach, formal test process, skills required.

• Test charters (objectives)
• Product exploration
• Test design
• Test execution
• Reviewable results (notes)
• Heuristics

Test Charters
• What (scope)
• What not (not within scope)
• Why (questions to be answered)
• How (brainstorm)
• Expected problems
• Reference (diagrams/modes)

Exploratory Testing is simultaneous exploration, design and execution.
CN/C-14/3

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

50

Error guessing
Should be carried out after more formal coverage has been achieved.

• No plan, no documentation
• Random, trying out
• Any fool can stumble across bugs…
• Domain/product expertise
• Hot spots/high risk areas (after more formal techniques)
• Low risk areas (as only technique)
• Sample to drive further testing
• Complementary to more formal techniques
• Friday afternoon

Error guessing – Disadvantages
• No clear objectives
• Coverage unknown
• Defect reproducibility/repeatability
• No re-usable test designs (testware)
• Finding defects is down to “luck”
• Hard to manage

Exploratory Testing vs. scripted testing

Fully Exploratory testing Ad-hoc
Scripted <---> testing
Testing Error guessing

CN/C-14

5.6 Choosing Test Techniques
Explain how the choice of which test techniques to use is made. Explain that it may be made based on
regulatory standards, experience, and/or customer/contractual requirement. Describe typical standards
that mandate particular techniques, to include as IEC/ISO 61508, DO-178B, Railway Signalling standards,
Nuclear industry standards, Pharmaceutical standards and MISRA guidelines for motor vehicle software.
Introduce the subsumes ordering of techniques. Describe the current state of knowledge with regard to the
effectiveness of different test techniques.

Choice can be based on, e.g.:

- risk
- documentation available?
- knowledge of testers
- time and budget
- supporting tools
- previous experience
- standards to be complied

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

51

- customer/contractual requirements

CN/A-08/2

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

52

6 Reviews

6.1 Introduction to Reviews
Present the arguments for using reviews, to include fault-finding and cost effectiveness.

Main objectives of review:

- find defects
- find defects earlier
- remove causes from the process

CN/B-01/1

There are three types of formal reviews:

Inspection – formal individual and group checking using sources and standards, according to detailed and
specific rules (checklists), support the author, find defects  verification

Technical review (= peer review) – group discusses a document and tries to reach agreement about the
technical content (approach), how things will be done.

Walkthrough – author guides the group through a document and his thought processes, so all understand
the same thing and reach consensus on changes to make (often with people outside the software project on
higher levels)  validation

All three formal review types have a different focus, however they aim to explain and evaluate the
contents of the document in order to improve its quality. In other words, they aim to find defects. The
types of defects found differ for the three review types.

In addition to the previous formal reviews, the IEEE 1028 standard mentions two other types of formal
reviews:

Management review – a project review in which the project status is evaluated against the plan (resources,
cost, progress, quality) and appropriate actions are defined.

Audit – independent evaluation of project and product using defined criteria (e.g. internal audit by QA-
group)

There are also informal reviews:

Informal review – a type of document review that doesn’t follow a formal process and entry/exit criteria.
Ask a colleague to provide comments. Rarely involves a meeting.
MARIO

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

53

Review advantages:
• Improves product quality (fault-finding).
• Improves cost-effectiveness (faults are cheaper to fix earlier).
• Improves quality attitude in team – people are more focused on quality.
• Trains people on how to produce good documentation, because everyone can learn from the

mistakes of others.
MARK

Explain that any written product can be reviewed. This could include all code and written documentation
e.g. requirement specifications, design documents, code specifications, test plans and all test
documentation.

Explain that for each review technique the primary objective is to find faults.
This is why I added this to each of the reviews below as the primary goal.

Introduce IEE Std. 1028-1997 Standard for Software Reviews.
This document introduces three of types of review covered by the Practitioner course (not Informal), plus
Management Reviews and Audits.
IEE Standard for Software Reviews, 1028-1997 (Grey section 7, first folder)

6.2 The Principles of Reviews
Explain that reviews are ideally performed when the source documents (those documents that specify the
requirements of the product to be reviewed) and those standards to which the product must conform are
available. Without source documents, reviews are generally limited to finding faults of consistency and
completeness within the document under review.
So, without external documents, the reviews can only focus on the document itself without any “points of
reference”. MARK

Describe the three possible outcomes of a review:

• First, it may be decided that the product can be used as it is.
• Second, it may be decided that there are issues that need to be dealt with, but it is

unnecessary to perform a further review on the product.
• Finally, if the fault level is found to be too high, then a further review is considered

necessary on the product after the issues have been dealt with.

Decision of the review can be:

- Document is OK, as is,
- Document is OK, after moderator has checked,
- Document is OK, after all participants have checked,
- New inspection required.

CN/B-04/3

Explain that those involved with reviews often have specific roles. These may be:

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

54

• The author of the product,
• The scribe, who records the issues raised at the review meeting,
• The chair, who runs the meeting and
• The presenter, who leads the meeting through the product.

The chair may also be referred to as the moderator. MARK

A trainee may also present to learn the process. CN/B-02/1

There will often be other reviewers, who simply review the product. There may be a leader for the
complete review process. Individual reviewers may be required to look for specific faults and, if so, are
often given checklists of fault types to look for.

These are called roles, e.g….

• Compliance to higher level document.
• Compliance to procedures and standards.
• Compliance to related documents.
• Testability.
• Completeness.
• Others…

CN/B-02/3 & MARK

The following roles can be identified:

- author
- moderator
- reviewer
- scribe
- presenter
- trainee

CN/B-02/1

Explain that more than one of the review techniques may be employed on a single product. For instance,
you could start with an Informal Review, make changes as a result of the review, and then perform an
Inspection.

Start of
document.

Released
document.

Informal review Technical
review

Inspection

Walkthrough Walkthrough

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

55

TP/137

Explain that when reviews (a form of static testing) are used on code then they should normally be followed
by dynamic testing, which can find those types of fault that cannot be found by static testing.

E.g. memory leaks. MARK

Reviews and dynamic testing will find different kinds of faults.
BRYAN

Explain that there are different types of review and that the different types have varying levels of formality
and some have secondary objectives. The different types should be compared, their relative strengths and
weaknesses highlighted and situations where each may be applicable identified.

Moderators always need to check that the focus of the review is on the document, not the author.

 Informal Walkthrough Technical Inspection
Formality Informal. Rather formal. Less formal. Very formal.
Primary Goal Find faults. Find faults. Find faults. Find faults.
Secondary
Goal

None. Gather information,
explain and
evaluate contents,
common
understanding,
establish
consensus,
education of
reviewers.
CN/B-06/3

Alternatives and
stylistic issues
discussed (see
below).

Assess concepts and
discuss alternatives,
establish
consistency, get
feedback, inform
participants.

Training.

Entry
Criteria

None:
document is
presented in
its current
state (does
not have to
be finished).

Product and source
documents
distributed. Should
be read but not
formally reviewed.
No formal criteria.

No formal criteria
(document may be
50 - 80% complete).
Kick-off very
important: author
can explain what
(not) to review.

Complete document,
every participant
needs to review it
and log defects.
Different
viewpoints.

Meeting None. Either to check Logging and No discussion during

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

56

 Informal Walkthrough Technical Inspection
direction of
document or to
explain contents to
(usually) non
technical people.

discussion not
separated.
Discussion
necessary. Check
only criticals and
majors, keep track of
people issues.

logging. Not
everyone needs to
remain for
discussion phase.

Process
Leader.

Author. Moderator (often
Test Manager).

Technical leader will
act as moderator.

Moderator (often
Test Manager).

Optimum
team size.

2 (author and
reviewer).

5 – 8. 4 – 6. 2 – 6 .

Preparation. None. Not extensive.
Defects are found
during the meeting.
Roles are not
needed.

Roles based on
specific question of
the author. Not too
many pages.

Formal preparation
using roles, based on
rules, at a slow
checking rate.

Materials
Needed.

Document to
review.

Document to
review.

Document to review. Document to review,
source documents,
standards, rules and
checklists.

Participants Anyone. Peers, technical
leaders and
participants from
outside the
software discipline.

Experts (technical
leaders), peers and
sometimes project
leaders.

Peers.

Logging. Informal
notes.

Separate scribe. Author. Author.

Exit Criteria None. No formal follow
up as a later review
is likely.

Author updates
document.
Technical leader
verifies.

Moderator decides:
document OK, or
rework needed, or
rework and meeting
needed.

Follow up. Informal. Moderator checks
whether action
items are closed.

Expert-based
decision regarding
the follow up.

Formal check by the
moderator and/or the
participants.

Strengths Quick and
cheap.

Education of
participants,
sharing of
knowledge, useful
for non-technical
staff.

Good for sharing
knowledge with
technical peers,
making strategic
technical decisions.

Very rigorous, best
review method for
finding defects.

Weaknesses Finds less
faults than
other
methods.

Finds less faults
than other
Technical Reviews
and Inspections.

No reference to
external documents.

Takes most time,
most expensive.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

57

 Informal Walkthrough Technical Inspection
Applicable
For

Unfinished
documents or
prior to other
formal
review with
more people
(especially
customers).

Unfinished
documents in early
stages, to check if
direction is
desirable.
And when
document is
(nearly) complete
to get agreement
(deployment).

Unfinished
documents, to check
technical contents.

Complete documents
prior to acceptance.

Comments Focus is only on
document under
review.

Aka Peer Review.
Expert driven.

MARK / TP/38.

6.3 Informal Review
Explain that Informal Reviews are simply one or more reviewers (other than the author) looking at a
product and providing comments on it and that they rarely involve meetings.

Explain that there is normally no statement of objectives documented for an Informal Review and that they
are characterised by there being no requirement for the results of the review to be documented.
Or archived.

6.4 Walkthrough
Explain that the product and source documents should be distributed to the reviewers so they can
familiarise themselves with the product ahead of the meeting.
Documents should be read, (participants should be familiar with them) but not formally reviewed. MARK

Describe how the author also acts as the presenter and leads the reviewers through the product, often
using scenarios for requirement and design models and dry runs through the code.

Explain that the secondary objectives, that distinguish Walkthroughs from other forms of review, are that
alternatives and stylistic issues are examined and the education of reviewers is considered an important
factor.

Summary:

• Author leads meeting.
• Other disciplines present.
• No formal preparation.
• Focus “only” on document under review.
• Different objectives (of participants, and of two different times when a walkthrough is held).
• Task scenarios and dry runs may be applied.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

58

• Moderator is still important.
• Author is not the scribe.

CN/B-06/5

6.5 Technical Review
Explain that a Technical Review is also referred to as a Peer Review.

Describe how the product and source documents are distributed to the reviewers and the reviewers are
expected to study the product ahead of the meeting.

Explain that a meeting is held where the reviewers report back on the document. The presenter at the
meeting is not the author of the product. The presenter leads the meeting through the product sequentially
(i.e. paragraph by paragraph). Reviewers discuss the issues raised and come to a consensus about what
should be done next.

Explain that more reviewers may be involved in Technical Reviews than Walkthroughs or Inspections.

Summary:

• More expert driven.
• Earlier in the process.
• Kick-off defines the questions and roles.
• Focus “only” on document under review.
• Focus on content and technical approach.
• Discussion needed and allowed.
• Technical leader may act as moderator.
• Process and logging forms (different for each type of review).
• Very suitable for project management documents (test plan / project plan).

CN/B-06/3

6.6 Inspection
The Inspection method to be explained is based on Fagan Inspections.

Explain that the Inspection process is formally defined and followed rigorously. The outcome of the
Inspection is based on whether the product meets pre-defined targets rather than consensus of the
reviewers.

It is important to define quantifiable (entry and) exit-criteria:

1. process: e.g. optimum checking rate
2. document: e.g. # Criticals / Majors per page < 3

BRYAN

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

59

Describe how an initial meeting is held so that all participants understand their responsibilities and the
product and source documents. The time to be spent in individual checking is planned, and the parts of the
product to be checked in more detail by a particular reviewer (also known as an inspector or checker) may
be identified.

There are two kinds of forms: Review Process Form and Defect Logging Form
CN/B-04/1 + CN/B-05/1

The initial meeting is often called the Kick-Off meeting.

Document

under

inspection

Type 2

Compliance to

standards

Type 1

Higher level

documents

Type 3

Related

documents

Type 4

User of the

document

TP/124

The diagram above shows how each reviewer can have a different perspective, or focus.

Perspective Based Reading is explained in more detail by the diagrams below.

Abstractions of information:

Initial procedures for

identifying information in this

document that is relevant

Uses of information:

Initial procedures for using

the information to

accomplish the task

Reading Technique:

Tested practices for

accomplishing a particular

task

Influences…

Are combined into…

What How

TP/147

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

60

PBR Inspection

Requirements

Use Cases

Design Notes

Initial

Test Cases

Design

(Re-used in

User

Manual)

(Re-used in

testing

Phase)

Code

TP/156

Explain that each reviewer inspects the product individually and reports back on the issues raised.

Describe how a logging meeting may be deemed necessary, dependent on the number of issues identified
by the individual checking or the likelihood of finding additional issues during the logging meeting as
predicted by measurements from previous inspections. The issues already found may be documented at
this meeting, and new issues may also be identified. Discussion of whether a raised issue is, or is not, a
fault is not permitted. No debugging is performed in the logging meeting.

Explain that there is a single leader for an Inspection, know as a Moderator or Inspection Leader, who
plans the Inspection, including choosing the rest of the reviewers who make up the Inspection team. The
Moderator also chairs any logging meeting and is responsible for ensuring that any raised issues are
properly dealt with. The author is not allowed to present the product at a logging meeting.

Describe how the Moderator collects statistics about the time spent by each participant and the faults
found. Estimates are calculated for the remaining faults per page, and the time/cost saved by the process.

Implementation steps:

- Management Support

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

61

- Provide people with some knowledge (presentation)
- Take a critical document to review
- Use experienced moderator the first time
- Train engineers and moderator
- Start inspecting
- Improve by using metrics and feedback sessions

CN/B-07/1

Stages of an inspection:

1. Planning: entry evaluation, define inspection strategy, gathering documents, invitation and planning
2. Kick-off: distribution of materials/documents, author introduces the document, moderator explains

the (changed) process
3. Preparation: focus on role and assignment, check against rules and sources, focus on important

defects, all documents
4. Meeting: logging (start, logging phase, decision phase (OK, moderator check, all participants

check, new inspection), discussion, causal analysis
5. Rework, follow up, exit: rework (CR’s on other docs, update doc by author, defect logging sheet as

checklist, SPI proposals by moderator), follow up (check doc, doc under CM, report metrics), exit

CN/B-02/1 – CN/B-05/1

Return On Investment (ROI), indicates the benefit of the review

ROI = (y1 + (0.25 * y2)) * z – x

x = time spent in reviews (cost)
y1 = number of criticals
y2 = number of majors (1 in 4 leads to failure, hence the 0.25)
z = time to solve 1 fault found in testing

If the number is positive the review process has paid off.

When will reviews not work?
- Quality not important enough
- Management not interested
- Untrained engineers and moderators
- Information on document quality used by management to evaluate individual performance
- Inspections implemented in a too formal or theoretical manner
- Review/inspection remarks are given/taken personally

Success factors for a good review process:
- Find a champion, who will lead the process on a project or organizational level
- Pick things that really count, select documents for formal review that are the most important in a
project

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

62

- Focus on role, but record all defects
- Checking not reading
- Respect preparation procedures
- Severity concept – critical, major, minor
- Explicitely plan and track formal review activities
- Follow the rules, keep it simple
- Respect optimum checking rates
- Collect data and provide feedback
- Continuously improve process and tools
- Perspective Based Reading
- Use a thorough entry check
- Report results
- Just do it!

MARIO

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

63

7 Incident Management
Describe and explain incident management as defined in IEEE Std. 1044-1993 Standards Classification for
Software Anomalies and the supporting IEEE Std. 1044.1-1995 Guide to Classification for Software
Anomalies.

Incident Management template should include:

• Unique identifier.
• Title.
• Date.
• Status:

 New
 Investigated
 Resolved
 Verified
 Closed
 Rejected.

• Description.
• Steps to reproduce.
• Test case.
• Tester name.
• Classification (Critical, Major, Minor, Textual).
• CR / PR (Change Request / Problem Report).

Advantages over Excel:

• Can assign status (force, e.g., investigated before resolved).
• Can determine access (e.g. only project manager may close).

Incidents need to be discussed in a CCB (Change Control Board). Here each item is discussed to
determine:

1. Whether it is a defect / change to be implemented.
2. Its priority (e.g. Must, Should, Could or Won’t (MoSCoW)).
3. When to be solved (this increment, next increment, postpone indefinitely).

MARK

Four Process Steps:
- Recognition
- Investigation
- Action
- Disposition

Each process steps has:

- Recording
- Classifying

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

64

- Identifying

CN/A-99/2

Steps:
a. Recognition: when an anomaly is found
b. Investigation: each anomaly is investigated to identify all known related issues and propose

solutions
c. Action: a plan of action is formulated on the basis of the investigation
d. Disposition: once all actions required are complete the anomaly shall be closed

At each step there are administrative activities:

Recognition:
Recording: who, what, where
Classifying: project activity, suspected cause, repeatability, …
Identifying impact: severity, priority, customer value, impact on schedule/cost/risk etc.

Investigation:
Recording: effort, investigator name, start & end time
Classifying: actual cause, source, type
Identifying impact: review + update impact assessment from previous step

Action:
Recording: items to be fixed, require action including corrective actions to prevent reoccurrence
Classifying: resolution (immediate, eventual, deferred, no fix) and corrective (departmental, corporate,
…)
Identifying impact: review + update impact assessment from previous step

Disposition:
Recording: action implemented, date closed, verification method (test case)
Classification: closed, deferred, merged, referred to other project
Identifying impact: review + update impact assessment from previous step

Above list taken from: IEEE 1044 – Standard classification for software anomalies
MARIO

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

65

8 Test Process Improvement
Explain that process improvement applies to both the software development process and to the testing
process.

Provide an overview of the SEI Capability Maturity Model (CMMI) and ISO/IEC 15504 (SPICE) process
improvement models. Make students aware of the SEI CMMI and briefly describe its relationship to the
SEI CMM and ISO/IEC 15504.

Describe, in detail, the Testing Maturity Model (TMM, as defined by IIT) and TPI®.

TMM
TMM is based on CMM(-i). Also has five maturity levels:

1. Initial.
2. Definition.
3. Integration.
4. Management and Measurement.
5. Optimisation.

Most organisations are at level 1.
TP/45 and MARK.

TMM Level 2 consists of: Test policy and goals, Test planning, Test techniques and methods, Test
environment
CN/D-02/7

Objective of testing are different for the TMM levels:
TMM L1: show that software “runs”
TMM L2: show that software meets its specification
TMM L3: provide insight into the quality of the product, e.g. outstanding risks
TMM L4: quality measurement (evaluation)
TMM L5: prevent defects from re-occurring in the future
CN/D-02/6-8

TPI
TPI involves tracking 20 KPAs (Key Process Areas) at up to four levels of maturity across 13 project levels
in a Test Maturity Matrix.

Pre-requisites for (S|T)PI:

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

66

- Management awareness
- Resources
- Realistic targets (t (time), € (money), Q (Quality))
- Focus not only on process, but also on change management
- Commitment on all organisation levels

CN/D-01/5

TMM vs. TPI
CMM(-I) related TMap related
All test levels (incl. static testing) Focussed on higher test levels
Testing=evaluation Testware engineering (practical)
Top-down model Bottom-up model
Management commitment Test engineering (practical)
Highly focussed 20 key areas (a lot!)
Detailed Highly detailed (start right away)
Research product Commercial product (foundation??)
Books and guidelines Book in public domain
5 levels 13 scales of maturity
Staged model Continuous model
Higher maturity Lower maturity
(TMML4 and TMML5)

CN/D-02/10 + BRYAN

Awareness

Strategy, scope

and approach

Assessment
Define

improvements

Planning

Implementation

Evaluation

CN/TPI-Reader/14

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

67

9 Test Tools
Note: this section is so detailed in the syllabus that it seems impossible to add further comments! MARK

9.1 Overview
Explain that tool support is available for many testing activities throughout the system lifecycle. Describe
each of the following types of tool and how they are used and explain the benefits and pitfalls of each:

• Requirements testing tools provide automated support for the verification and validation of
requirements models, such as consistency checking and animation.

• Static analysis tools provide information about the quality of the software by examining the
code, rather than by running test cases through the code. Static analysis tools usually give
objective measurements of various characteristics of the software, such as the cyclomatic
complexity measure and other quality metrics.

• Test design tools generate test inputs from a specification that may be held in a CASE tool
repository or from formally specified requirements held in the tool itself. Some tools
generate test inputs from an analysis of the code.

• Test input data preparation tools enable data to be selected from existing databases or
created, generated, manipulated and edited for use in tests. The most sophisticated tools
can deal with a range of file and database formats.

• Test running tools provide test capture and reply facilities. The tools capture user-entered
terminal keystrokes and capture screen responses for later comparison. For Graphical
User Interface (GUI) applications the tools can simulate mouse movement and button clicks
and can recognise GUI objects such as windows, fields, buttons and other controls. Object
states and bitmap images can be captured for later comparison. Test procedures are
normally captured in a programmable script language. When the script is executed this
replays the user-entered keystrokes, etc. and can compare actual responses with those
captured previously. Data, test cases and expected results may be held in separate test
repositories. These tools are most often used to automate regression testing.

 Advantages of automation:

 Tools can do boring jobs leaving testers to do more interesting work.
 Tools do not make mistakes (though the testers who programmed them may have

done).
 Tests are easy to repeat (simply run tool).
 Tests can be run outside of office hours.

 Disadvantages of automation:

 Cost of purchase: the tools are not cheap.
 Maintenance can be a lot of work (certainly basic tools).
 Difficult for non-programmers to maintain (adjusting scripts).
 Takes time to learn and get maximum benefit from.
 Risk of becoming shelfware (see 9.2 “Tool Selection”).

 MARK

1. Record & Playback

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

68

2. Test Programming
(split data & test flow)

3. Data Driven Testing
(test case in separate file and function library)

4. Keyword Driven Testing
(action words)

CN/C-13/3-6

• Test harnesses and drives are used to execute software under test which may not have a user
interface or to run groups of existing automated test scripts which can be controlled by the
tester. Some commercially available tools exist, but custom-written programs also fall into
this category.

• Test script generators generate test scripts from test specifications.
• Simulators are used to support tests where code or other systems are either unavailable or

impracticable to use (e.g. testing software to cope with nuclear meltdowns).
• Performance test tools have two main facilities: load generation and test transaction

measurement. Load generation can simulate either multiple users or high volumes of input
data. Load generation is done either by driving the application using its user interface or by
test drivers, which simulate the load generated by the application. Records of the numbers
of transactions executed are logged. Driving the application using its user interface,
response time measurements are taken for selected transactions and these are logged.
Performance testing tools normally provide reports based on test logs and graphs of load
against response times.

Load generation: e.g. multiple users, high volumes
Test transition measurement: e.g. network traffic, CPU usage, memory usage

Reference: CN/C-12/5

• Dynamic analysis tools provide run-time information on the state of executing software.

These tools are most commonly used to
 Identify unassigned pointers,
 Check point arithmetic,
 Monitor the allocation, use and de-allocation of memory to flag memory leaks and
 Highlight other errors difficult to find ‘statically’.

• Debugging tools are mainly used by programmers to reproduce faults and investigate the
state of programs. Debuggers enable programmers to execute programs line by line, to halt
the program at any program statement and to set and examine program variables. It should
be made clear that debugging (and debugging tools) are related to testing but are not testing
(or testing tools).

• Comparison tools are used to detect differences between actual results and expected results.
Standalone comparison tools normally deal with a range of file or database formats. Test
running tools usually have built-in comparators that deal with character screens, GUI

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

69

objects or bitmap images. These tools often have filtering or masking capabilities, whereby
they can ‘ignore’ rows or columns of data or areas on screens.

• Test management tools may have several capabilities. Testware management is concerned
with the creation, management and control of test documentation, e.g. test plans,
specifications and results. Some tools support the project management aspects of testing,
for example the scheduling of tests, the logging of results and the management of incidents
raised during testing. Incident management tools (also known as defect tracking tools) may
also have workflow-oriented facilities to track and control the allocation, correction and
retesting of incidents. Traceability tools allow the link between test cases and their
corresponding test coverage items to be recorded. Most test management tools provide
extensive reporting and analysis facilities.

• Coverage measurement (or analysis) tools provide objective measures of structural test
coverage when tests are executed. Programs to be tested are instrumented before
compilation. Instrumentation code dynamically captures the coverage data in a log file and
necessarily slows the program, which may affect the functionality of the program under test.
After execution, the log file is analysed and coverage statistics generated. Most tools
provide statistics on the most common coverage measures such as statement or branch
coverage.

• Hyperlink testing tools are used to check that no broken hyperlinks are present on a web
site.

• Monitoring tools are typically used for testing e-commerce and e-business applications as
well as web sites. The main function of this tools is to monitor web sites to ensure they are
available to customers and to produce a warning if the service begins to degrade or has
failed.

• Security testing tools are typically used for testing e-commerce and e-business applications
as well as web sites. A security testing tool will check for any aspects of a web based system
that are vulnerable to abuse by unauthorised access.

• Test oracles are generally used automatically to generate expected results. As such they
perform the same function as the software under test and so are rarely available. They may
be used, however, in situations where an old system is being replaced by a new system with
the same functionality, and so the old system can be used as an oracle. Oracles may also be
used where performance is an issue for the delivered system. A low performance oracle
may be build/used to generate expected results for the functional testing of the high
performance software to be delivered.

9.2 Tool Selection
Explain the importance of a formal tools evaluation and selection process to avoid buying an
inappropriate or unnecessary tool, so that purchased tools are less likely to end up as shelfware (unused).

This is an entire project.
CN/D-04/3

Describe how the tool evaluation and selection process ideally comprises the following activities:

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

70

• Identify and quantify the problem;
• Consider alternative solutions;
• Prepare a business case;
• Identify constraints;
• Identify required tool features and characteristics;
• Prepare a short-list of candidate tools;
• Undertake a more detailed evaluation;
• Perform a competitive trial, if necessary.

Also consider supplier presentation. Then select tool and perform implementation (pilot project).
CN/D-04/4

Explain that the evaluation and selection team typically comprises a full time team leader with part time
team members representing different areas of the organisation where the tool may be used.

9.3 Tool Implementation
Explain the importance of a formal tool implementation process as a means of avoiding failure of test
automation in the long term.

People issues (holds for tool implementation but also for (S|T)PI):
f(a,b,c) > z, where:
a: dissatisfaction with current state
b: shared vision of the future
c: concrete knowledge about the steps to get from a to b
z: the psychological or emotional cost to the individual of changing the way they work“
CN/TPI-Reader/12

Describe how the implementation process starts with a small-scale pilot project to verify the business case
and establish a standard approach to using the tool within the organisation. This approach should include
identification of a testware architecture, scripting techniques, naming conventions and configuration
management of testware, as appropriate. The implementation team should ideally work full time on the
pilot project that would typically be between 3 and 6 months duration. Team members may undertake
specific roles including the following:

• Champion – the driving force behind the day to day implementation of tool support,
understands the issues involved and is enthusiastic about the potential benefits, is able to
work well with people;

• Change Agent – plans and manages the implementation of the tool (including the pilot
project). This person may also be the Champion;

• Tool Custodian – responsible for technical tool support, providing internal help or
consultancy in the use of the tool.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

71

Explain that in addition to these roles and the work of other team members there is ideally a Management
Sponsor, a senior manager who visibly supports the implementation of a testing tool.

Describe how, at the end of the pilot project, the results are assessed against the business case and if
successful the use of the tool is progressively rolled out to other projects and teams using the approach
developed during the pilot project.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

72

10 People Skills

10.1 Individual Skills
Explain that an individual’s testing capability can be derived from experience and/or training in one or
more of the following areas: users, development and testing. Users are familiar with the application from
the user’s perspective and this provides insight into how the system will be used and where failures would
have the greatest impact. In some cases, in depth knowledge of the application domain may not reside with
(naïve) users, but still provides a useful insight for the testing of a system. Knowledge of development
skills (requirements analysis, design and coding) gives insight into how possible errors are made and the
possible faults that could be introduced. More specific testing skills include the ability to analyse a
specification, design test cases and the diligence for running and checking tests.

Explain that interpersonal skills, such as giving and receiving criticism, influencing and negotiation are all
important in the role of testing.

Balance: technical skills, soft skills, attitude
CN/A-14/3

Testing skills:
- Test knowledge
- Domain knowledge
- IT knowledge
- Social skills
MARIO

Soft skills and attitude:
- communication (oral, reporting)
- diplomacy
- giving and receiving constructive criticism / positive feedback
- influencing people
- negotiation
- selling/promoting testing
- stress resistant
- be accurate
- sense of humour
CN/A-14/2

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

73

Test knowledge
- test principles
- techniques
- tools

IT knowledge
- software
- requirements
- CASE tooling

Domain knowledge
- business process
- user characteristics

Social skills
- communication
- presentation
- accurate
- reporting
- diplomacy

CN/A-14/1

10.2 Test Team Dynamics
Present the issues of staff selection, such as ensuring that a new recruit complements the skills and
personality types that already exist within the test team. Present the advantages of having a variety of
personality types within the test team.

Based on the work of Dr Meredith Belbin, introduce the concept of a team role as the way someone
behaves, contributes and inter-relates when working in a team.

Explain that there are a finite number of team roles which comprise certain patterns of behaviour which
can be adopted naturally by the various personality types found among people at work. Describe these
roles and explain how they apply to test teams.

Belbin Team Roles:

Role Advantage Disadvantage
Coordinator Organiser Manipulative
Shaper Driver Temperamental
Resource Investigator Bridge Builder Over Run
Monitor Evaluator Methodical Negative
Implementer Disciplined Inflexible
Completer Finisher Focused Obsessive
Specialist Expert Closed
Team-worker Popular Indecisive
Plant Innovative Sensitive

CN/A-14/4

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

74

10.3 Fitting Testing within an Organisation
Explain that organisations may have different organisational structures for testing:

• Testing may be the developer’s responsibility,
• Or may be the development team’s responsibility,
• Or one person in the development team is the tester,
• Or there is a dedicated test team (who do no development),
• Or there are internal test consultants providing advice to projects,
• Or a separate organisation performs the testing.

Describe the different forms of communication, to include that between:

• Testers and Developers. Testers find faults in the developer’s product, but this needs to be
conveyed diplomatically as a means of improving the quality of the product. Developers
should inform the testers which areas of the software may need particular focus, such as
highly-complex or new software.

• Testers and Project Management. Testers report on the progress of the testing and on the
quality of the software to project management.

• Testers and Users. Testers receive information on areas that are most important to users,
allowing them to prioritise testing. Testers receive background information on the
application area. Users will often receive or see test results, but those with little knowledge
of testing may need help in the interpretation of these results.

10.4 Motivation
Cover motivating factors, such as recognition and respect. Cover demotivating factors, such as the lack of
career paths.

Recognition and respect are gained by the testers noticeably providing added value to the project. On a
single project testers may achieve this most quickly by participating in the early reviews. Over a period of
time testers will gain recognition and respect from their record of adding value on previous projects.

Job satisfaction:

- adding value
- receiving recognition
- gaining respect
- feeling valued

Career paths

- job description, what’s my role?
- training (learn & progress)
- promotion (chosen career)
- agreed targets ind./team performance

CN/A-14/9

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

75

Appendix A: V-Model Table

 Component Test Integration In The Small System Test Integration In The Large Acceptance Test
Objective To show that each component

functions as intended
(according to the component
specification) and to provide
visibility into the quality of
the component

To confirm functionality of
modules when components are
combined together. Verification
against the global design, with
focus on interaction and
interfacing between modules.

To show that the system meets
the functional specification and
all the non-functional
requirements.

To confirm system and network
functionality when the system is
integrated into an existing
network of systems.

To show the delivered system
meets the business needs
(validation), formal acceptance of
the product

Scope Test Input Fields, GUIs, code,
calculations, etc

Test all interfaces, data exchange,
and variable passing between
components.

Functionality, non-functional
attributes such as performance,
security, installation, error
handling, recovery etc

System interfaces, files, data,
operational profiles, usually end
to end testing based on business
processes.

Requirements based testing. The
whole system, test cases based on
requirements document, covers
functionality, usability, help, user
guides etc.

Responsibility Development Integration team Test team (within development) Test team / Integrators. User / Customer or representative
Who does it Developer typically,

development owned
Integration tester, integrator /
development responsibility

Independent Test team,
technical experts / development
responsibility

Independent test team Users, business representatives,
live support, or test
(user/customer responsibility)

Entry Criteria Component is complete and
ready to test (compiles, has
been reviewed, software
design has been approved,
complies to static criteria).

Components passed component
test phase (complies to exit
criteria), integration test spec
reviewed and approved, global
design reviewed and approved,
passed confidence test.

Integration test phase passed,
development sign off, test team
acceptance (intake/ confidence),
release notes available

System test sign off for each
system being integrated

Sign off from System Test/
Integration test phase (system test
report available), user
requirements reviewed and
approved, test plan reviewed and
approved.

Exit Criteria Component passes all tests
and is signed off, level of
coverage is reached, test
report written, cyclomatic
complexity within criteria

All integration test cases
executed, all critical tests passed,
number of defects within set
limits, test results documented,
test report written

All system test cases run and
complete, no high priority
defects outstanding, Mean Time
Between Failure (MTBF), #
defects per test hour under
threshold, requirements
coverage

All integration test cases
complete, no category A or B
bugs outstanding, system meets
reliability requirements

All acceptance test cases
completed, no category A or B
business priority defects
outstanding, list with known
defects, business sign off for live
implementation, MTBF,
acceptance test report approved

Test Deliverables Component test report/results,
test log, test code & test data,
component sign off of
developer/ stubs and drivers.

Integration test report/result,
problem reports, sign off,
integration test specification

System test plan, test report, test
results, test specifications and –
procedures, test evaluation
report (recommendations for
product and project)

Integration test report, test
results, configuration guide,
integrated test model

Acceptance test report, results,
test logs, problem reports, change
requests, test specifications and
test procedures.

Typical Test
Techniques

White box coverage
techniques, syntax testing,
Boundary Value Analysis, Ad
hoc

White box test techniques,
equivalence partitioning, state
transition testing, syntax, cause
effect graphing.

Black Box (e.g. Equivalence
Partitioning, state transition,
cause/effect graphing),
specialist non-functional test
techniques (e.g. error-guessing)

Black Box Equivalence partitioning,
exploratory testing, use case
testing, error guessing, process
cycle test

Metrics Number of defects
found/fixed, priority,
statistical analysis

Number of faults found, priority,
statistical analysis

Tests passed/failed/run, number
of faults and priority,
environment log, test logs,

Test passed/failed/run, number
of faults and priority test
coverage, test effectiveness

Number of faults, business
priority, tests passed/failed/run

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

76

 Component Test Integration In The Small System Test Integration In The Large Acceptance Test
progress reports time & effort
planned v spent, requirements
coverage, test effectiveness

Test Tools Static analysis tools,
debuggers, harnesses,
dynamic analysis, coverage,
comparator

Test harnesses (stubs, drivers),
simulators, record/playback for
regression testing, defect
management, test management

Performance monitoring, data
generators, capture/replay, test
management tools

Harnesses, stubs, drivers, data
generators, simulators,
capture/replay, comparators

Capture replay, comparators,
performance, defect management,
test management

Applicable Testing
Standard

BS7925-2 (component testing
standard, TMap, MISRA
coding standards

BS7925-2 (component testing
standard, TMap, IEEE 829 for
documentation

BS7925-2 (component testing
standard, TMap, IEEE 829 for
documentation, ISO 9126 for
non-functional exit criteria

See useful standards for
software testing

BS7925-2 (component testing
standard, TMap, IEEE 829 for
documentation, ISO 9126 for
non-functional exit criteria

Typical non
functional test types

Resource usage (e.g. memory,
semaphores, …), time
behaviour, portability,
maintainability

Resource usage (e.g. memory),
performance

Reliability, performance,
usability, portability

 Usability, performance, security

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

77

Appendix B: Exam Tips

B.1 Tips From ISEB For The Practitioner Exam
The following tips come from ISEB themselves. They can be found at this site:
http://www.bcs.org/BCS/Products/Qualifications/ISEB/Areas/SoftTest/practitionerexamguidance.htm

Guidance to Practitioner Examination Candidates
With the experience of 3 examinations behind us it is clear that not all candidates for the Software Testing
Practitioner Certificate examination have been well prepared. The purpose of this note is to assist course
providers in briefing their delegates on what to expect in the examination and to help candidates to avoid
some common pitfalls.

• The Examination
• Common Problems
• Planned Revision
• Advice to Course Providers

The Examination
The Software Testing Practitioner Certificate examination is a 3 hour written paper consisting of a single
compulsory question (worth 40% of the marks) and 5 optional questions (each worth 20% of the marks)
from which 3 questions must be attempted.
The examination attempts to mirror the syllabus in that questions are set from syllabus topics. A balance
across the syllabus topics is sought in each individual examination paper and also between papers.
Questions attempt to reflect the requirement that a significant component of taught courses should be
practical in nature.
In short, the examination sets out to identify whether a candidate has acquired the knowledge defined in
the syllabus and whether the candidate can apply that knowledge in a practical setting.

Common Problems:
Candidates taking the examination have tended to make similar mistakes, many of which are easily
remedied with a little application. The most common problems are listed here for your guidance:

• Not answering the question set. Examination questions usually incorporate a simple scenario that
sets the context for the question. Candidates who do not pay enough attention to this information
tend to answer the question ‘write down all you know about…..’ rather than addressing the specific
issue(s) raised by the question. While some of the candidate’s answer may be relevant, there is a
serious risk that much of it will not be and will earn no marks.

• Answers not thought through. Candidates need to structure their response to a question to ensure
that they impart the required information with minimum effort. Long and rambling answers run the
risk of overlooking key information and the relative importance of these ideas may be undermine by
the lack of structure. Long answers also take longer to write down than a well structured but
shorter response.

• Answers are too superficial. Questions are worded to indicate the level of response required.
Sometimes a word count is included. If a question asks for a description of something this will

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

78

require more than simply identifying the something by name. Similarly ‘justify’ means provide some
kind of evidence that your response is correct or appropriate. All information in an answer must be
relevant; any irrelevant information will not earn marks. The candidate therefore wastes valuable
time in writing down irrelevant information.

• Addressing the scenario. Where a scenario is provided (especially in double length questions)
there is an expectation that candidates will refer to the scenario in their answer, using it to identify
specific examples of points raised or to illustrate issues. In a Practitioner exam it is important to
demonstrate practical validity of answers wherever possible.

• Running out of time. The problems mentioned all contribute to wasted time. There is time to
construct and write down good answers to the questions on the paper if time is not wasted. A good
time plan is essential and we recommend that every candidate takes 15 minutes to read and
understand all the questions before selecting the most promising ones to answer. A further 5
minutes should be allowed for checking the question carefully before setting out a response. It is a
good idea to set out the key points of an answer in ‘bullet point’ form before starting to draft the
text of the answer. At the end of the paper further time should be allowed for checking through the
answer paper to ensure that no major mistakes have been left uncorrected.

• Illegible answers. It is difficult to write both quickly and neatly. However, an illegible scrawl makes
it very difficult for a script marker to read a candidate’s response and important information may
be unintelligible from the script. Time planning should reduce the need to rush. Practice in writing
at more than the usual speed would be sensible preparation for the examination, especially for
candidates who do not normally communicate with pen and ink. You may find it helpful to highlight
key points in your answer by underlining or writing in block capitals.

Planned Revision
Candidates preparing for the examination should revise the syllabus topics carefully. An ideal revision
programme would be structured around the syllabus with revision time allocated in proportion to the time
allocation for a topic in the syllabus.
A sample examination paper is available from ISEB to provide guidance on the form of the examination
and the nature of the questions set.

Advice to Course Providers
Course providers can maximise their candidates’ chances of passing the exam by paying attention to some
basic principles:

• Exams are set from the syllabus and are, as far as possible, balanced by topic and level. The level
of coverage identified in the syllabus is a guide to the level of understanding that could be expected
in an exam question.

• Exam technique is a major factor and course providers should ensure that candidates are at least
briefed on the guidelines offered elsewhere in this document.

• An element of ‘testing common sense’ is expected in candidates in answering questions. A
candidate with 18 months’ experience is the model, so course providers need to ensure that less
experienced candidates are given enough practical training to enable them to answer exam
questions from a practical perspective.

• Candidates should be able to answer a ‘compare and contrast’ question by setting out the relevant
aspects of the items to be compared and then writing a succinct conclusion based on the
comparative information presented.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

79

• In white box questions it is expected that candidates will be able to read and analyse pseudo code;
this may be written to look like ‘real’ code i.e. with declarations and punctuation. Candidates
should be capable of doing simple code analysis and generating test cases from pseudo code.
Statement and branch testing should be understood well enough to create test cases.

• In black box questions candidates will be expected to extract information from a scenario and
generate test cases. Equivalence partitioning, boundary value analysis, state transition testing and
classification tree method should be well enough understood to be able to write test cases.

• Some aspects of the syllabus have not, so far, appeared frequently (or at all) in exam papers. This is
not a reliable guide to exam content, and all areas of the syllabus are regarded as examinable.

Course providers are asked to make the content of this guidance note available to their delegates at some
point during course presentation, together with some advice on exam preparation

B.2 Further Tips
The following tips are gleaned from other sources, including my own experience of the exam.

• Study the syllabus and memorise points / lists if possible (hence this document and the
abbreviations).

• Assume that you will run out of time and focus on getting the most marks in the minimum
time (so leave a question unfinished if you have spent too long on it and come back to it
later if possible).

• Consider points per minute. Take into account that you have 3 hours, minus 15 minutes for
reading and selecting your questions and another 15 minutes for a final review. That makes
1.5 minutes per point to gain. So, for a 6 point question you have 9 minutes. It might feel
hard to stick to, but it is worth it. It is better to go to a new question and try to get half the
points of that (e.g. 3 on 6), than continuing your current question for that last point you
might get.

• Have a few topics learnt well and skim the others if time is short for preparation, rather than
trying to learn, "a little bit of everything". This should ensure that you can perform well on
at least two (or hopefully three) of the optional questions.

• Do practice questions.
• Practice writing by hand: you will be writing almost continuously for three hours!
• Use a highlighter pen to highlight the important parts of a question on the paper itself (e.g.

details of the scenario, like “new company” or “experienced test team”). Alternatively, take
two pens: an extra one for instructions to you (e.g. “list” or “describe”).

• Neat handwriting may help put examiner in a better mood.
• Use a ruler to improve neatness when drawing diagrams (note – this can be time

consuming).
• Do not start writing immediately. First read the question entirely (using highlighters) and

then make a few notes / bullet points first, identifying for which part of the question you will
write which answer. This can be done on the question paper.

• Food can be taken to the exam, as long as it is not noisy (so no crisps or apples!). Be
warned: food can send you into a dip. I took a fruit salad (strawberries and oranges) hoping
that it would stimulate my brain!

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

80

• You are allowed to leave and go to the toilet, one at a time. I found that just a few minutes
out, with a bit of movement walking outside, helped to re-energise me.

B.3 Exam Essentials
The following points are not hints but essentials:

• You must use a black pen in the examination. (Nobody seems to know why, and it is not
mentioned in any of the documentation that I have seen.) If you do not take one, the
examiner will provide one (but it is a good idea to take one with which you are familiar – for
the three hours of writing!).

• You must have your candidate number with you. This is not the same as the one for the
Foundation Exam. Your course provider will give you your candidate number, but make
sure you take it to the exam.

• On each sheet of paper you use, you will need to write three things:
 Your candidate number.
 The question number.
 The page number. Note that this is per question, so write 1, 2, 3, … for the first

question and begin again at 1 for the next question.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

81

Appendix C: Useful Websites

Site Description
http://www.geocities.com/robinson_weijman Latest version of this document.
http://groups.yahoo.com/group/IsebCertification This group is intended for everyone who is

interested in ISEB Software Testing Certification.
http://www30.brinkster.com/wvole/#hum_error A long list of useful testing links.
http://www.bcs.org/BCS/Products/Qualifications/IS
EB/Areas/SoftTest

The ISEB Software Testing page.

http://www.sogeti.nl/tpi Page devoted to TPI with tool downloads.
http://www5.in.tum.de/~huckle/bugse.html
http://www.cs.tau.ac.il/~nachumd/verify/horror.html

These sites contain annecdotes of when software
was not well tested. Useful for spicing up articles /
speeches on software testing.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

82

Appendix D: Summary Of Test Techniques

D.1 Introduction
This chapter gives a brief introduction to various test techniques and explains when they may be used. The purpose here is not
to enable testers to use these techniques, but simply to be made aware of them and when they might be used. When a tester
encounters a situation in which one of these techniques could be used, then the technique can be learnt.

Further information can be found in this document: Standard for Software Component Testing, Working Draft 3.4, 27 April 2001
produced by the British Computer Society Specialist Interest Group in Software Testing (BCS SIGIST). It can be found at
http://www.testingstandards.co.uk/

Some test techniques are similar but are different “strengths”. E.g. for a high-risk component, exploratory testing could be used,
for medium-risk error guessing could be used and for low-risk ad hoc testing could be used.

Test techniques that have not been included here are: document reviews (Walkthrough, Inspection, Peer (aka Technical) and
Informal), Complexity Analysis, Condition Testing (Branch Condition, Modified Condition Decision and Branch Condition
Combination) and LCSAJ Testing.

D.2 Equivalence Partitioning
What is it?
Equivalence Partitioning is a test technique in which inputs and outputs that display similar behaviour are grouped together.
Thus, by testing one input or output from a group, it is assumed that the whole group is tested. The groups are called,
“Equivalence Classes”.

Example
If an exam has a 60% pass rate, then the scores 60 – 100% are assumed to be equivalent: testing any one of
them tests the whole group. E.g. it is not necessary to test 70%, 80% and 90%.

When is it used?
Whenever there are inputs or outputs in a range. It enables test cases to be objectively created. Ideally
used in combination with Boundary Value Analysis.

D.3 Random Testing
What is it?
Random testing is when certain inputs are possible but Equivalence Partitioning is not practised. Rather, inputs are chosen at
random.

Example
Same as Equivalence Partitioning example, but inputs can be anything, e.g. 25%, 56%, 91%.

When is it used?
Whenever Equivalence Partitioning is used but no time is available to analyse the scenario to create Equivalence Classes. Can
be used in conjunction with a tool that generates random inputs.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

83

D.4 Boundary Value Analysis
What is it?
Having partitioned inputs and outputs (see “Equivalence Partitioning”), this test technique tests the boundaries. This is because
defects are more likely to occur at the boundaries of equivalence classes than at any other point.

Example
If an exam has a 60% pass rate, then it is best to test the following values: 59% (fail), 60% (pass) and 61%
(pass). However, the equivalence classes also contain other boundaries, so it is also useful to test: -1%
(invalid), 0% (fail), 1% (fail), 99% (pass), 100% (pass) and 101% (invalid).

When is it used?
Whenever there are inputs or outputs in a range. It enables test cases to be objectively created. Requires
an understanding of Equivalence Partitioning.

D.5 State Transition Testing
What is it?
This test technique involves testing a system as it changes from one state to another. The initial state, input, output and final
states are defined. Note that this technique is easily scalable, so that for a high-risk component more thorough testing can be
achieved by testing the transition from the initial state to the final state via an intermediate state (or more than one intermediate
state).

Example
A digital watch, which can exist in four possible states: display time, change time, display date and change
date. Changing from display time to change time, the input would be “press reset” and the output would be
“alter time”.

When is it used?
Whenever a component can exist in certain states.

D.6 Cause Effect Graphing
What is it?
This technique involves analysing the causes and effects on a component. The word “Graphing” is misleading: graphs can be
created but are rarely done so because the test cases can more easily be created via a table, called a decision table.

Example
A company decides to mailshot everyone in its database. The type of mail sent depends on the following “causes”: age of
customer and gender of customer. The “effects” are different types of mailshots.

When is it used?
Useful whenever a scenario involves combinations of causes and effects.

D.7 Syntax Testing
What is it?
Testing input via syntax.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

84

Example
If a field requires the age of a customer, valid entries would be an integer (possibly within a range). Invalid entries would be:
letters, decimals, special characters (€, @, or TAB) or nothing (leave field blank).

When is it used?
Whenever an input requires a certain syntax. Can also be used to test interfaces between components (integration testing).

D.8 Statement Testing
What is it?
Statement testing involves running a program and comparing the outcome with the code.

Example
For code “if a then b”, a should be true to test all the code (i.e. also test b).

When is it used?
This technique can be used for any program. It is best used in conjunction with a tool that can measure the coverage and
highlight code that has not been tested. Compare with Branch / Decision Testing.

D.9 Branch / Decision Testing
What is it?
Branch Testing and Decision Testing are very similar. Here they will be treated as identical. Branch / Decision Testing involves
checking paths through the code.

Example
For code “if a then b”, two tests should be run for 100% coverage: one with a true and one with a false.

When is it used?
As with Statement Testing, it can be used for any program but is best used in conjunction with a tool to measure coverage.

D.10 Data Flow Testing
What is it?
This technique focuses on how variables are used within code. A path is traced from where a variable is initialised to where it is
used.

Example
Can be used with any code. Simply select one variable and watch how it changes as the code is executed.

When is it used?
This is a useful technique for developers to perform their own tests since they can observe this easily using debugging tools.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

85

D.11 Ad Hoc Testing
What is it?
The tester simply tries things at random. The minimum knowledge is to have an understanding of the requirements in order to
compare expected and actual outcome.

Example
For an online program in which users need to log in and enter personal information, a tester will simply try that a few times with
different information entered into different fields.

When is it used?
All too frequently! More seriously, this technique will find the most serious defect in the least amount of time. The overhead of
writing test cases is gone. This is useful for “Friday afternoon” testing.

D.12 Error Guessing
What is it?
An experienced tester has an intuitive idea of where bugs can be found. Error Guessing is similar to Ad Hoc Testing except that
the tester first tries to consider where defects might lie. They may also attempt to test the most error prone or most visible
components first.

Example
For the online program described under, “Ad Hoc Testing”, a tester might begin with standard input and then try non-standard
input, e.g. informal syntax testing, entering a non-valid postcode or credit card details, etc.

When is it used?
Error Guessing is used when one experienced tester is given a product and simply asked to, “test it”. Often the project will be
under time pressure and so speed has a higher priority than test quality. (Any measure of quality of the component will be
subjective.)

D.13 Exploratory Testing
What is it?
This is similar to Ad Hoc Testing and Error Guessing, but is more in-depth than either. Exploratory Testing begins with a
meeting between two experienced testers and a manager. The group focuses on identifying risk prone areas and then considers
what type of testing would be appropriate. The testers then test the product and report back. This procedure is repeated once a
day or so, with one meeting per day. In a meeting the manager will typically ask, “What is the most interesting or important
defect you have found today?”

Example
For the online program described under, “Ad Hoc Testing”, the team might decide that particularly risky items include: leap year
dates, international address formats, unusual credit cards and foreign characters (like “ô”).

When is it used?
Used in similar conditions to Error Guessing but on more risky components.

ISEB Practitioner Course Notes Based On Certificate Syllabus
Mark Robinson – 11 June 2005 - Version 0.18

86

Appendix E: List Of Standards

• BS7925-1 : Software Testing Vocabulary

• BS7925-2 : Software Component Testing

• CMM-SW : Capability Maturity Model for Software

• CMMI-SE/SW: Capability Maturity Model Integration

• IEEE 610 : Standard Computer Dictionary

• IEEE 610.12 : Software Engineering Terminology

• IEEE 730 : Standard for Software Quality Assurance Plans

• IEEE 829 : Standard for Software Test Documentation

• IEEE 1008 : Standard for Software Unit Testing

• IEEE 1012 : Standard for Software Verification and Validation

• IEEE 1028 : Standard for Software Reviews

• IEEE 1044 : Standard for Classification for Software Anomalies

• IEEE 1044.1 : Guide to Classification for Software Anomalies

• TMM : Testing Maturity Model

