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SPARE PARTS STOCK LEVEL CALCULATION 

 

1.0   Objective 

 

The purpose of this paper is to describe a simple technique to calculate the 

aircraft spare parts quantity (for fleet size and inventory) taking into 

account item reliability that is modeled by Poisson process. 

 

2.0   Calculation Factors 

 

The factors considered in this technique are: 

 

1. The reliability of item to be spared (expressed as fail, removal, 

replacement or inversely as mean time between failures, removals 

MTBR in flight hours, replacements). 

2. The number of items installed per aircraft (indicated as A). 

3. Required probability that a spare will available when needed, that is 

the chance of having a spare part in inventory when required (90% 

=< P =< 95%), also called Fill Rate or confidence level. 

4. Number of aircraft (fleet size) to be supported N. 

5. Period to be supported as operational time or between initial and 

subsequent order (time T in months). 

6. Average aircraft utilization (M in flight hour per month or day per 

aircraft). It may be in %, 7.5FH/day =7.5FH/24h=31.25%. 

 

 

Spares are divided, for application of this method, in repairable and non-

repairable. For repairable parts, a stock level of spares is calculated to 

compensate items undergoing the process of repair. 

 

7. For repairable items the average period that it takes to repair 

(indicated as time between repairs RT) is considered instead of time 

of support T of point 5 above.  

 

It is necessary an additional stock level of spares to compensate for the 

condemnation or scrapage of repairable items. 

 

8. The condemnation for repairable is expressed as scrap rate (e.g R ≅ 
0.02 or 2%). 
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3.0   Poisson Distribution 

 

This distribution is used quite frequently in spares quantity determination 

as a forecasting technique with use of reliability analysis. 

The demand for spares covering replacement or failed items occurring as a 

result of maintenance action are events described as Poisson distributed 

when they occur at a constant average rate and the number of events 

occurring in any interval are independent of the number of events occurring 

in any other time interval. 

For the purpose of reliability analysis 

 

( )
!

),;(
x

text
txf

λλ
λ

−
=  

 

where λ = failure rate 

            t = time considered (or total operation period of all flight item) 

           x = number of failure (or number of spares required) 

          λt = mean value (number of  failures in time t) 

 

For the case in terms of the probability of n or fewer failures in time t 
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4.0 Calculation Method 

 

4.1 Non-reparable items 

 

For these items the number of failures is equal to number of  spares. 

The quantity of spares is the minimum value of n that satisfies the 

following condition 
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where t = total operating time of all flight items or 
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Note: the above equation can also directly be used as a deterministic 

method for computing spares quantity. 

T may be mean resupply time, order or production lead time. 

 

 

 
 

4.2 Example 

 

Calculate the spare quantity of a non-repairable item which is 

installed 4 units per a/c (A=4EA) and having a mean time between 

removal of 7.500 flight hours (MTBR=7.500FH) for a fleet of 2 

aircraft (N=2a/c) operating each one 225 flight hours per month 

(M=225FH/month/ac) and an initial period of 2 years (T=24months) 

to achieve a confidence level of 90% (P=0.90)? 

 
( )

EA
FH

monthxmonthacFHxacxEA

MTBR

AxNxMxT
76.5

500.7

)24()//225()2(4
==  

 
So recursively 

for 0 spare,  P = exp(-5.76) = 0.003 = 0.3% < 90% 

for 1 spare,  P = 0.003(1+5.76) = 0.02 = 2% < 90% 

for 2 spares, P = 0.003(6.76+16.6) = 0.07 = 7% < 90% 

for 3 spares, P = 0.003(23.36+31.85) = 0.17 = 17% < 90% 

for 4 spares, P = 0.003(55.21+45.9) = 0.303 = 30.3% < 90% 

for 5 spares, P = 0.003(101.1+52.8) = 0.462 = 46.2% < 90% 

for 6 spares, P = 0.003(153.91+50.7) = 0.614 = 61.4% < 90% 

for 7 spares, P = 0.003(204.6+41.7) = 0.74 = 74% < 90% 

for 8 spares, P = 0.003(246.3+30.1) = 0.83 = 83% < 90% 

for 9 spares, P = 0.003(276.4+34.2) = 0.932 = 93.2% > 90% 

 

and the recommended quantity is 9 spares. 

 

4.3 Repairable Items 

 

For these items the number of failure is different from number of 

spares. It is a direct application of Palm’s theorem.  

The stock level of spare is to compensate repairable items 

undergoing the process of repair and expressed by 
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To replace first failed item it is necessary an initial single spare. 

Substituting n by (n-1) in previous equation the probability method 

becomes 
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4.4Example 

 

Considering previous example, calculate spares for a repairable item 

with time to repair of 3 months (RT = 3 months ). 

 
( )

EA
FH

monthxmonthacFHxacxEA

MTBR

AxNxMxRT
72.0

500.7

)3()//225()2(4
==  

 

For 0 spare,  P = exp(-0.72) = 0.487 = 48.7% < 90% 

for 1 spare,  P = 0.487(1+0.72) = 0.837 = 83.7% < 90% 

for 2 spares, P = 0.487(1.72+0.259) = 0.963 = 96.3% > 90% 

 

The recommended quantity is (n-1) = 2 or n = 3 spares. 

 

4.5Repairable Items with Scrap Rate 

 

Repairable items returned to shop are sometimes condemned, i.e., 

not repaired because through inspection, it is decided that some items 

were not economically feasible to repair. The condemnation 

generally results in an increase of spare parts requirement. For this 

case, the probability method is result of a combination of repairable 

and non-repairable calculation. 

The description of process is as below and figures are from above 

examples. 
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4.6 Example 

 

If it is considered a repairable, item with scrap rate of 10% (R=0.10) 

in the above problem how many spares are necessary? 

 

1
st
 approach 

 

9 failures (from 4.2) in the period requiring maintenance and 0.1 x 9 

≅ 1 EA becomes scrap. The total number to support the operation is 3 

EA (from 4.4) plus 1 EA discarded summing 4 spares. 

 

2
nd
 approach (neglecting scrap during repair) 

 

The total mean is given by 

  

λ1 + λ2 = 0.72 + 0.1 * 5.76 = 1.296 

 

For 0 spare,  P = exp(-1.296) = 0.2736 = 27.36% < 90% 

for 1 spare,  P = 0.2736(1+1.296) = 0.6282 = 62.82% < 90% 

for 2 spares, P = 0.2736(2.296+0.840) = 0.8580 = 85.80% < 90% 

for 3 spares, P = 0.2736(3.136+0.363) = 0.9573 = 95.73% > 90% 

for 4 spares, P = 0.2736(3.499+0.118) = 0.9895 = 98.95% > 90% 

for 5 spares, P = 0.2736(3.617+0.030) = 0.9978 = 99.78% > 90% 

The recommended quantity is (n-1) = 3 or n = 4 spares. 

 

 

 

Operation 
REP? 

Scrap 

Unserviceable 

BER? 

Repair 

BER = Beyond Economical Repair 

REP = Repairable 

λλλλ2 = 0.72 

λλλλ1  = 0.1 * 5.76 

n - m 

m 

m=0,1,2,....,n 

n 

Yes 

No

Yes 

No 
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3
rd
 approach (neglecting scrap during repair) 

 

The probability for number of spares to cover items scrapped plus in 

repair are given seeing following table. 

Numbers of items to scrap m and in repair (n-m) may have any 

distribution called P1 and P2. 

 

Number of spares P To scrap P1 In repair P2 

n m; mean=λ1 (n – m); mean=λ2 

0 0 0 

1 0 0; 1 

 1 0 

2 0 0; 1; 2 

 1 0; 1 

 2 0 

…. …. …. 

n 0 0; 1; 2; ….; n 

 1 0; 1; 2; ….; (n-1) 

 2 0; 1; 2; ….; (n-2) 

 ….  

 m 0; 1; 2; ….; (n-m) 

 …. …. 

 n-1 0; 1 

 n 0 

 

P(n=0)=P(m=0;λ1)* P((m-n)=0;λ2)                     if P1, P2 are Poisson. 

P(n=1)=P(m=0;λ1)*(P((m-n)=0;λ2)+P((m-n)=1;λ2))+ 

                +P(m=1;λ1)*P((m-n)=0;λ2) 

P(n=2)=P(m=0;λ1)*(P((m-n)=0;λ2)+P((m-n)=1;λ2)+P((m-n)=2;λ2)+ 

                +P(m=1;λ1)* (P((m-n)=0;λ2)+ P((m-n)=1;λ2))+ 

                +P(m=2;λ1)* P((m-n)=0;λ2) 

 

P(n) = P(n;λ1)* P(0;λ2)+ 

           +P(n-1;λ1)*(P(0;λ2)+P(1;λ2))+ 

           +P(n-2;λ1)*(P(0;λ2)+P(1;λ2))+P(2;λ2))+ 

           + ...........+ 

  +P(m;λ1)*(P(0;λ2)+P(1;λ2))+...+P(n-m;λ2))+ 

  +………..+ 

           +P(2;λ1)*(P(0;λ2)+P(1;λ2))+...+P(n-2;λ2))+ 

           +P(1;λ1)*(P(0;λ2)+P(1;λ2))+...+ P(n-1;λ2))+ 

           +P(0; λ1)*(P(0;λ2)+P(1;λ2))+...+ P(n;λ2)) 
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Or recursively 

 

P(n) = P(n-1) + P(n; λ1)* P(0; λ2)+ P(n-1; λ1)* P(1; λ2)+....+ P(1; 

λ1)* P(n-1; λ2) + P(0; λ1)* P(n; λ2) 

 

P(n)=P(n-1)+Conv(P1(n); P2(n)) n=1, 2, 3, ….  and P(0)=P1(0)*P2(0) 

 

where Conv(P1(n); P2(n)) means convolution of P1(n) and P2(n) for 

any distribution P1(n) and P2(n) 

 

For the numerical example: 

 

i P(i; λ1=0.576) P(i; λ2=0.720) 

0 0.5621 0.4868 

1 0.3238 0.3505 

2 0.0933 0.1262 

3 0.0179 0.0303 

…. …. …. 

 

 

If n = 0 then 

P(0) = P(0; 0.576) * P(0; 0.72)  

P = exp(-0.576) * exp(-0.72) = 0.5621*0.4868 = 0.2736 < 90% 

 

If n = 1 then 

P(1) = P(0; 0.576) *( P(0; 0.72)+ P(1; 0.72)) + 

+ P(1; 0.576) * P(0; 0.72)= 

   = 0.5621 (0.4868+0.3505) +0.3238*0.4866= 0.6282 < 90% 

 

If n = 2 then 

P(2)=P(0; 0.576)*(P(0; 0.72)+P(1; 0.72)+P(2; 0.72))+ 

+P(1; 0.576)*( P(0; 0.72)+P(1; 0.72))+P(2; 0.576)*P(0; 0.72)= 

=0.5621(0.4868+0.3505+0.1262)+0.3238(0.4868+0.3505)+ 

0.0933*0.4868=0.5416+0.2711+0.0454=0.8581 < 90% 

 

If n = 3 and using recursive formula then 

P(3)=P(2)+P(3;0.576)*P(0;0.72)+P(2;0.576)*P(1;0.72)+P(1;0.576)*

P(2;0.72)+P(0;0.576)*P(3;0.72)= 

=0.8581+0.5621*0.0303+0.3238*0.1262+0.09333*0.3505+ 

+0.0179*0.4868=0.8581+0.0170+0.0409+0.0327+0.009= 

=0.8581+0.0996=0.9577 >90% 

 

The recommended quantity is (n-1) = 3 or n = 4 spares 
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Note 1 - It is observed that 2
st
 and 3

rd
 approaches lead to same 

results. 

 

By 3
rd
 approach and P(1) the equation gives for Poisson proccess: 

 

P(1)= P(0;λ1)*(P(0;λ2)+P(1;λ2))+P(1;λ1)*P(0;λ2)= 
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= P(0; λ1+λ2) + P(1; λ1+λ2)     and so on. 

  

Note 2 -  If one wants to consider scrap during repair process then 

the scrap rate is applied to λ2 and added to mean of Poisson 

expression per 2
nd
 approach. 


