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Abstract
Cisplatin (cis-diamminedichloroplatinum(II)) is an effective chemotherapeutic agent,

and is successfully used in the treatment of a wide range of tumors. Despite its effectiveness
as an anti-tumor drug, nephrotoxic side effects have significantly restricted its clinical use.
Tubular epithelial cell deletion following cisplatin treatment is a major cause of renal injury.
Oxidative stress significantly contributes to cisplatin-associated cytotoxicity, and use of
antioxidants could counteract such cytotoxic effects of cisplatin. The renal microenviron-
mental changes following cisplatin treatment is a complex process and could be broadly cat-
egorized into three main pathological events, which at times might overlap: initial cytotoxic
events, inflammatory events and fibroproliferative events. Stress responses and heat shock
proteins generated following cisplatin treatment are actively involved in the initiation and
progression of these events. In this article, we will briefly summarize factors involved in var-
ious phases of cisplatin-induced renal injuries.

Copyright © 2005 S. Karger AG, Basel

Introduction

Cis-dichlorodiaminoplatinum (II), cisplatin, is one of the most widely used
antineoplastic drugs. Cisplatin is an inorganic complex formed by an atom of
platinum surrounded by chlorine and ammonia atoms in the cis position of a hor-
izontal plane. One of the possible mechanisms by which cisplatin accumulates in
the cells is by a carrier-mediated processes, through probenecid-sensitive organic
anion transporters; the chloride ions are displaced by hydrolysis, resulting in
the formation of highly reactive, charged platinum complexes. Probenecid
restricts renal secretion of anionic drugs through inhibition of the organic
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anion transport system(s). Coadministration of probenecid has shown to
decrease renal excretion of various drugs including cidofovir, ciprofloxacin and
cisplatin [1]. Probenecid could interfere with tubular secretion of cisplatin, and
thereby could increase cisplatin toxicity. On entry into the cell, the platinum
compounds cross-link with DNA; this binding of platinum to complexes of DNA
apparently disrupts and unwinds the double helix, especially in the case of
intrastrand cross-links to G-rich sequences such as GG and AG [2, 3]. Cisplatin
also inflicts mitochondrial damage, induces cell cycle arrest in the G2 phase,
reduces ATPase activity, alters cellular transport system, eventually leading to
apoptotic and/or necrotic cell death.

Cisplatin is the single most active antitumor agent against testicular, blad-
der, ovarian, lung, head and neck tumors (table 1). The use of cisplatin in com-
bination with drugs such as bleomycin, vinblastine, cyclophosphamide,
fluorouracil and doxorubicin has resulted not only in higher effectiveness in
treating various tumors, but has also increased the risk of secondary morbidity.
Although cisplatin was first synthesized in 1845, the side effects associated
with cisplatin treatment was not adequately described until 1965. Cisplatin
entered into clinical trials in and around 1971. Despite its effectiveness as an
antitumor drug, various side effects (table 2), especially nephrotoxicity, has
restricted its clinical use. The nephrotoxic effect of cisplatin is dose limiting
[4, 5], and is manifested by a decrease in creatinine clearance and electrolyte
imbalances, particularly hypomagnesemia, mainly due to the acute cytotoxic

Adrenocortical tumor
Bladder tumor
Brain tumor
Breast tumor
Cervical tumor
Endometrial cancer
Gastrointestinal tumor
Germ cell tumor
Gynecological sarcoma
Head and neck tumor
Hepatoblastoma
Lung cancer, small cell
Malignant melanoma
Neuroblastoma
Non-Hodgkin’s lymphoma
Osteosarcoma
Ovarian tumor
Testicular tumor
Thyroid tumor

Table 1. Partial list of tumors where
cisplatin has been used as an antitumor drug
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effect of cisplatin on proximal and distal tubules, and on loop of Henle [6].
Severe magnesium deficiency following cisplatin treatment could result in
seizures [7]. Cisplatin-induced excessive urinary loss of magnesium and potas-
sium [8] could be partly restored by supplementation [9, 10]. In addition, both
human and experimental studies have shown that the use of diuretics and hydra-
tion can substantially reduce cisplatin-associated nephrotoxicity [11, 12].

A detailed and comprehensive review of all aspects of cisplatin-associated
toxicity is beyond the scope of this article, which will thus be restricted to var-
ious pathological events of cisplatin-associated nephrotoxicity.

Cisplatin and Nephrotoxicity

Cisplatin-induced nephrotoxicity is a complex process that comprises of
acute cytotoxic effects on tubular epithelial cells, resulting in loss of tubular
epithelial cells by necrosis and apoptosis, followed by inflammatory cell infil-
tration and fibroproliferative changes [13]. From in vivo experimental studies,
the progression of cisplatin-induced renal damages can be tentatively divided
into three main events, which at times may overlap: initial cytotoxic, inflam-
matory and fibroproliferative events.

Initial Cytotoxic Events
It has been convincingly demonstrated that renal tubular dysfunction is

the immediate effect of cisplatin treatment. Higher doses of cisplatin induce

Acute encephalopathy
Anaphylactic reactions
Elevated liver function tests
Hair loss
Hearing loss
Hemolytic anemia
Infertility
Mucositis
Myelosuppression
Nausea and vomiting
Optic neuropathy
Peripheral neuropathy
Raynaud’s syndrome
Retinopathy
Tinnitus
Nephrotoxicity

Table 2. Partial list of side effects of
cisplatin
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necrosis of tubular epithelial cells, while lower doses remove tubular epithelial
cells via apoptosis [14–16]. Cisplatin exerts its cytotoxic effects partly by
inhibiting protein synthesis of tubular epithelial cells. Besides, cisplatin dis-
rupts the cellular oxidant defense system (i.e., glutathione, GSH), leading to
lipid peroxidation and DNA damage. Cisplatin-associated cytotoxicity and
generation of reactive oxygen species (ROS) could be counteracted by using
antioxidants such as -to copherol, vitamin C and N-acetylcysteine [17, 18].
Nephrotoxicity induced by high-doses of cisplatin therapy could be altered by
GSH administration [19–22]. GSH treatment could also protect nerve injury
following cisplatin therapy, without reducing its antitumor activities [23–25].
A protective role of metallothionein, a scavenger of hydroxyl radicals, against
a number of oxidative stress-associated xenobiotics, including cisplatin, has
been reported by Bauman et al. [26]. Renal proximal tubular epithelial cells
(LLC-PK1), stably transfected with human HSP72 gene, have shown to be
resistant to both hydrogen peroxide and cisplatin-induced cellular damage,
implicating a protective role of heat shock protein 72 (HSP72) against oxida-
tive injury and cisplatin toxicity [27].

Cisplatin could also activate various proapoptotic molecules including
caspase-3 and -9, Bax and Fas system [14, 28, 29]. In vitro studies have shown
that cisplatin-induced apoptosis in LLC-PK1 is mediated through activation of
mitochondrial signaling pathways, possibly by activating Bax-induced mito-
chondrial permeability, with release of cytochrome c and activation of caspase-9.
A role of caspase-3 has also been reported in cisplatin-induced apoptosis in
LLC-PK1 cells, and shown to be prevented by bcl-2 [30]. Moreover, a relation-
ship between loss of cytoskeletal F-actin stress fibers and cisplatin-induced
apoptosis has been shown in renal epithelial cells (within 4–6 h), and prevention
of F-actin damage by phalloidin has shown to prevent nuclear fragmentation of
these cells [31]. van de Water et al. [32] reported that decreased phosphorylation
of focal adhesion kinase was related to loss of focal adhesions and F-actin stress
fibers, leading to the onset of apoptosis in renal tubular epithelial cells caused by
nephrotoxicants. In addition, involvement of Fas/Fas ligand system has been
demonstrated in cisplatin-induced apoptosis in various cells lines [33–37].
Cisplatin- induced apoptosis in human proximal tubular epithelial cells was
associated with an increased expression of Fas and its ligand [37]. Similar Fas-
mediated cisplatin-induced apoptosis has been reported in neuroblastoma [36],
leukemia  [35] and hepatoma cells [34] and thymocytes [33]; in contrast a Fas-
independent cisplatin-induced apoptosis has also been reported in various tumors
cell lines [38, 39] including lung cancer cells. It appears likely that cisplatin-
induced apoptosis does not always take a uniform pathway, and there might be a
cell-specific mode of apoptosis. Early cytotoxic events following cisplatin treat-
ment are usually associated with inflammatory changes in the kidneys.
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Inflammatory Events
Detailed inflammatory phenotypes of infiltrating cells in kidney of cisplatin-

treated patients are not well studied, but data from animal experiments have
shown that by day 7, a single dose of cisplatin injection (6 mg/kg body weight)
to rats lead to the accumulation of a maximum number of ED-1-positive
macrophages in the cortico-medullary junction of the kidneys (fig. 1). The
number of accumulated macrophages declined on day 14 and 28 [40–42].
Macrophages, through generation of ROS, could intensify cytotoxic effects
encountered following cisplatin treatment.

It is well accepted that cytokines and chemokines play a major role in the
inflammatory events of various human and experimental diseases. Cisplatin
has been reported to induce the expression of inflammatory cytokines, such as
interleukin (IL)-1 and IL-6 by endothelial cells isolated from a human umbili-
cal vein [43]. Increased renal expression of tumor necrosis factor-�, transform-
ing growth factor (TGF)-�, RANTES, macrophage inflammatory protein-2,
macrophage chemoattractant protein-1, thymus-derived chemotactic agent 3,
IL-1� and intercellular adhesion molecule-1 has been detected in kidneys of
cisplatin-treated animals [44]. Recently, salicylate has been shown to reduce
experimental cisplatin nephrotoxicity, by inhibition of tumor necrosis factor-�
production through stabilization of I � B [45]. Moreover, increased interstitial
expression of osteopontin has been detected in the kidneys of cisplatin-treated
rats [46]. It is likely that tubular epithelial cell-derived chemokines and ROS
following cisplatin treatment serve to recruit inflammatory cells, which can
contribute to the development of subsequent fibroproliferative lesions by
releasing mitogenic and fibrogenic factors, which then act on matrix-producing
cells to regulate abnormal matrix remodeling.

Fibroproliferative Events
Development of irreversible tubulointerstitial fibrosis is a relatively late

change found in the kidneys of cisplatin-treated experimental animals.
Excessive production of matrix proteins by the activated and phenotypically
altered resident cells gradually help in the development of tubulointerstitial
fibrosis. An increased expression and deposition of collagens (types I, III and
IV) were detected in cisplatin-induced tubulointerstitial fibrosis in rats [47], a
pattern that is similar to other experimental models of tubulointerstitial fibrosis
[48–51].

Fibrogenic factors, released by the activated and phenotypically altered
resident cells (fig. 2) and infiltrating inflammatory cells, such as TGF-�1 and
HSP47, have the potential to mediate both human and experimental fibrotic
diseases by regulating increased production of collagens, and thereby matrix
remodeling [51–54]. TGF-�1 affects formation of connective tissue by
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stimulating the transcription of genes encoding extra cellular matrix proteins.
Studies have convincingly demonstrated that blocking TGF-�1 results in the
suppression of collagen production and subsequent modulation of fibrotic
processes [55, 56]. A fibrogenic role for TGF-�1 has been reported in kidneys
of patients with various renal diseases [54, 55, 57]. In the kidneys of cisplatin-
treated rats, an increased expression of TGF-�1 has been detected in tubular

a

b

Fig. 1. Infiltration of ED-1-positive macrophages (arrows) in control (a) and cisplatin-
treated rat kidneys (b). Note a significantly increased accumulation of macrophages (arrows)
in cisplatin-treated rat kidney (b).
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epithelial cells and interstitial cells, by in situ hybridization [58]. Further stud-
ies are needed to determine the effects of increased expression of TGF-�1 in
cisplatin nephritis, and the role of TGF-�1-induced molecules, including
connective tissue growth factor, in such fibroproliferative lesions [59–61]. In
addition, c-myc, ets-1, platelet-derived growth factor, ILs, interferon-�, tumor
necrosis factor, epidermal growth factor, insulin-like growth factor and its
binding proteins, angiotensin II and tissue transglutaminase, have shown to
play roles in the development of fibroproliferative lesions in various human
and experimental renal diseases. Interestingly, by microarray analysis, a num-
ber of these above-mentioned molecules were detected in the kidneys of
cisplatin-treated rats [62].

a

c

b

d
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G

Fig. 2. Immunostaining of �-smooth muscle actin in a control rat kidney (a), showing
positive staining mainly in the vessel walls (arrows); increased interstitial expression of
�-smooth muscle actin (arrowheads) is noted in cisplatin-treated rat kidney (b), suggesting
phenotypically altered myofibroblast proliferation following cisplatin treatment. No signifi-
cant expression of �-smooth muscle actin was detected in the glomeruli (denoted as G) in
both control and kidneys of cisplatin-treated rat. For vimentin, only intraglomerular staining
(arrows) is noted in the control rat kidney (c). Note no staining for vimentin in the tubular
epithelial cells in the control rat kidney. Strong positive staining for vimentin is noted in the
tubular epithelial cells (arrowheads) and interstitial cells in cisplatin-treated rat kidney (d),
suggesting phenotypically altered tubular epithelial cells following cisplatin treatment.
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HSP47, a collagen-specific molecular chaperone, is involved in the biosyn-
thesis and secretion of procollagens [63]. HSP47 has shown to play important
role in the development of fibroproliferative changes by post-transcriptionally
regulating increased production of collagens. For instance, upregulation in the
expression of HSP47 with increased interstitial accumulation of collagens
(types I and III) has been reported in various human and experimental fibrotic
renal diseases [53, 64, 65]. Similar upregulation of HSP47, in association with
increased accumulation of type I and III collagens, was also detected in kidneys
of cisplatin-treated rats [47]. Phenotypically altered tubular epithelial cells,
interstitial fibroblasts and myofibroblasts were HSP47-expressing cells in kid-
neys of cisplatin-treated rats [47]. Although further studies are warranted, at this
stage, HSP47 appears to play a role in the development of fibroproliferative
lesions in the kidneys following cisplatin treatment. In addition to HSP47,
induction of several other HSPs (HSP-70, -90) has been reported during early
stages of cisplatin nephropathy [66].

Production of extracellular matrix is mainly achieved through the synthe-
sis of collagens, whereas resorption of the extracellular matrix is mediated pre-
dominantly by the matrix metalloproteinases (MMPs). A delicate balance
between matrix synthesis and its degrading enzymes (MMPs) is essential for
maintaining normal structural stability and integrity of tissues and organs. An
imbalance in the production and utilization of matrix proteins lead to patholog-
ical matrix remodeling. In the kidneys of cisplatin-treated rats, the expression of
MMP-1 has shown to increase in early stages (on day 3) of cisplatin nephropa-
thy, while the expression decreased in later stages (on day 14). Decreased renal
expression of MMP-1 has been shown to be associated with increased intersti-
tial accumulation of type III collagen in kidneys of cisplatin-treated rats [67],
suggesting a pathological role of MMPs in cisplatin-nephropathy.

Modulation of Cisplatin-Induced Nephrotoxicity

The beneficial antineoplastic use of cisplatin is often limited because of
its significant side effects, including nephrotoxicity. Following standard-dose
regimens, one third of patients usually develop varying degrees of cisplatin-
related side effects. Numerous human and experimental studies have been per-
formed to understand the mechanism of cisplatin-associated nephrotoxicity,
and thereby to minimize its side effects. Several strategies have been explored
to reduce the side effects of cisplatin therapy, including the use of less inten-
sive treatment, replacement of the nephro- and neurotoxic cisplatin by its less
toxic analog carboplatin. Carboplatin generates a reactive species much more
slowly than with cisplatin. Therefore its pharmacokinetic and toxicological
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characteristics are different. Moreover, plasma half-life of carboplatin is
several-fold longer than that of cisplatin. Needless to mention that carboplatin
also exerts unwarranted side effects that include fatigue, bone marrow dys-
function and loss of fertility. Aggressive hydration with saline, often with the
addition of mannitol, has been used to reduce cisplatin-induced nephrotoxicity.
Two liters of 5% dextrose in 0.5 N saline over 12–24 h before treatment and at
least 24 h of intravenous fluid afterward is helpful in minimizing the kidney
damage after cisplatin treatment.

Amifostine (Ethyol) is an organic thiophosphate compound with a cyto-
protective potential. The active free thiol metabolite can reduce the toxic effects
of cisplatin on the kidney, possibly by binding to free radicals generated in the
tissues. Patients treated with amifostine prior to cisplatin therapy were reported
to have less renal damage compared with patients treated with cisplatin alone
[68–70]. In experimental models, preadministration of a zinc-histidine com-
plex has been reported to reduce cisplatin-induced renal damage, possibly by
preventing peroxidative damage [71]. Recently heme oxygenase-1 (HO-1), a
32-kDa microsomal enzyme, has been shown to attenuate cisplatin-induced
apoptosis and necrosis. It has been shown that compared to wild-type mice
(HO-1�/�), cisplatin-treatment intensified renal injury in homozygous mice
with a targeted deletion of the HO-1 gene (HO-1�/�) [72]. Studies have also
shown that the upregulation of p21, a cyclin-dependent kinase inhibitor, atten-
uated cisplatin-induced renal dysfunction, apoptotic cell death and tubular
damage [73]. A protective role of p21 has also been shown in p21 knockout
mice treated with cisplatin [74].

In vitro treatment of renal epithelial cells (mIMCD-3) with cisplatin could
induce apoptosis, while constitutive expression of hepatocyte growth factor by
transfection in mIMCD-3 cells developed resistance to cisplatin-induced apo-
ptotic death, implicating that hepatocyte growth factor may ameliorate cis-
platin-associated renal injury, by protecting renal epithelial cells from
undergoing apoptosis [75]. Cisplatin-associated nephrotoxicity has been
reported to be modified by taurine treatment in rats. Compared to cisplatin-
treated rats, taurine-treated rats showed relatively less renal damage, as deter-
mined by histo-morphometric analysis. Taurine-treatment resulted in less
macrophage accumulation and delayed interstitial fibrotic changes in cisplatin-
treated rat kidneys [76, 77]. Recently, ebselen has shown to be nephroprotective
in cisplatin-treated rats, possibly exerting its beneficial effects by modulating
the antioxidant system [78, 79]. Similarly, treatment of myeloma cells with
N-acetylcysteine completely blocked cisplatin-associated intracellular GSH
oxidation, ROS generation, poly(ADP-ribose) polymerase cleavage and apop-
tosis [80]. Use of a novel free radical scavenger, 3-methyl-1-phenyl-pyrazolin-
5-one (MCI-186; edarabone) has also been shown to protect the kidneys from
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developing acute renal failure following cisplatin treatment [81]; edarabone, a
lipophilic compound, has been shown to trap both hydroxyl radicals and pre-
vent iron-induced peroxidative injuries [82]. These studies suggest a beneficial
role in the use of a free radical scavenger in modulating cisplatin-associated
nephrotoxicity.

Conclusion

Despite prophylactic intensive hydration and forced diuresis, irreversible
renal damage occurs in about one third of cisplatin-treated patients. Cisplatin-
induced renal damage is usually associated with acute stress-related injuries,
focal necrosis and apoptosis of the tubular epithelial cells and dilatation of
tubules with cast formation. Inflammatory events initiated due to cytotoxic

Oxidative injury

Apoptosis

Cisplatin

Phenotypic alteration 
of tubulointerstitial 

cells

Tubulointerstitial 
injury

Cytotoxicity

PDGF

Chemokines

Macrophages

Matrix 
remodeling

TGF-�1HSP47

Cytochrome c
caspase-3, -9 

Fas/FasL

Fig. 3. Schematic diagram showing involvement of various molecules involved in ini-
tiation and progression of cisplatin-induced nephrotoxicity. TGF-�1 � Transforming growth
factor; PDGF � platelet-derived growth factor; HSP47 � heat shock protein 47.
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stress responses of cisplatin facilitate activation of resident cells to release of
profibrogenic factors, which induces excessive production of matrix proteins,
resulting in irreversible tubulointerstitial injuries (fig. 3). Further studies char-
actering the molecules involved in acute stress responses following cisplatin
treatment, and determining their molecular interactions in various stages of
nephrotoxicity, would help in developing strategies to make a focused approach
to minimize cisplatin-associated nephrotoxicity, without reducing or interfering
with its antitumor effects. At this stage, modulating oxidative stress following
cisplatin treatment appears to be a promising option to reduce its side effects,
including nephrotoxicity.
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