
Adaptive Load Balancing Architecture
for SNORT

M. Shoaib Alam, Qasim Javed, Dr M. Akbar, M. Raza Ur Rehman, M. Bilal Anwer

Military College of Signals, National University of Sciences and Technology, Rawalpindi, 46000. Pakistan.
Email: {mail_shoaib, qasim_nust, makbar_mcs, netwizio, mbanwer82} @yahoo.com

Abstract - Nowadays the importance of intrusion

detection is amplified due to incredible increase in number of
attacks on the networks. The ubiquity of the Internet and the
easy perpetration of the attacks will lead to more hostile traffic
on the Internet. With the advent of high-speed Internet
connections, the organizations today find it difficult to detect
intrusions. So multi sensor Intrusion Detection Systems are
inevitable. The optimum distribution of traffic to the sensors is
a challenging task. In this paper we present a mechanism to
split traffic to different intrusion detection sensors to make the
task manageable. This splitting of traffic to each sensor is
managed by policies enforced on the splitter by the
management console. The system is adaptive in the sense that
it can adjust the splitting policies for keeping load disparity
among sensors reduced. This mechanism of policy- reloading
also take into the account the similarity between all possible
pairs of policies and tries to minimize the packet duplication
rate during the operation of the system. Our mechanism is
based on the observation that minimizing the percentage of
traffic being duplicated can enhance system performance. We
have also discussed the effects of reloading of splitting policies
on packet duplication rate and load on sensors.

Index Terms – intrusion detection, traffic splitting, snort,
sensor cluster, misuse detection.

I. INTRODUCTION
Network security is a growing concern as new

vulnerabilities are found in the systems resulting in
increased number of intrusions and attacks. Different
intrusion detection systems have been developed to secure
the networks from these intrusive activities. With the
advent of high-speed networks the scalability of intrusion
detection system has become a vital issue. This problem
can be addressed by dividing the load so that the task
becomes manageable. In this paper, we present the
mechanism of traffic splitting while balancing the load
among sensors. Different traffic splitting techniques have
been presented earlier. In our proposed solution the traffic
splitting is governed by policies defined at the splitter for
each sensor. The user defined traffic-forwarding policies
may not be mutually exclusive resulting in duplicate
packets being forwarded to more than one sensor. Our
solution employs the mechanism to reload policies in order
to avoid packet duplication. This reloading of policies
ensures that similar policies are shifted onto a single sensor
thus minimizing packet duplication. Our system also tries to
minimize the disparity of load among while splitting the
traffic. We keep track of system statistics such as memory

occupied, CPU load, CPU usage etc at each sensor. The
load balancing process is triggered when the disparity of the
above mentioned statistics exceeds the defined threshold.

The major constraint on the design of an efficient load
balancing technique is the requirement of forwarding
packets belonging to the same flow to a single sensor. This
problem of flow preservation is solved by the mechanism of
reloading policies. The policy reloading, results in the
forwarding of the whole flow to another sensor. Our
mechanism also ensures that the disparity of load does not
increase due to the decision of reloading policies in order to
minimize packet duplication. This is done by keeping in
view the policy load factor while reloading policies. The
policy load factor is the percentage of the sensor load due to
that policy. The experiments done by us shows that traffic
load is effectively being distributed among sensors as the
traffic load for a particular policy changes.

II. BACKGROUND
A. Network Intrusion Detection

An intrusion is defined as an attempt to break into or
misuse your system [1]. With the increase in number of
attacks on computer networks, the organizations are paying
more attention towards the technologies like intrusion
detection systems. Intrusion detection systems can be
categorized in to two classes – misuse detection and
anomaly detection [1]. The word "misuse" is broad, and can
reflect something severe as stealing confidential data to
something minor such as misusing your email system for
Spam. In misuse detection the network traffic is compared
with signatures of known attacks. Anomaly detection, on
the other hand tries to identify deviations from the normal
traffic patterns [1]. Today’s intrusion detection systems
employing misuse detection technique cannot keep up with
the increasing network traffic. A conventional misuse
detection system operates by matching the packets against a
rule-set. The rule-set is a two-dimensional data structure,
the first dimension comprising of the rule header and the
second the packet payload. After a packet matches the rule
header its payload is compared with the string patterns
stored in the rule-set. This pattern matching is carried out
by using string-matching algorithms such as Boyer Moore,
which match the packet payload with the stored patterns
[2]. The string matching a computationally intensive task
forms a big part of the total processing done by the IDS [3].

B. Problem of Scalability

The inability of misuse detection systems to handle heavy
traffic loads is making them infeasible for deployment in
high-speed networks. This problem can be addressed by
using a distributed architecture employing multiple sensors.
As each sensor handles a portion of the traffic so the task
becomes manageable. Very few approaches have come up
for splitting the traffic to multiple sensors for intrusion
detection. One of the recent works is of I. Charitakis et al
[5] in which they have proposed a traffic splitting
mechanism based on early filtering and locality buffering
mechanisms. In their approach they are reordering the
packets to improve the memory access locality on sensors.

C. Packet Duplication Problem

The problem of packet duplication arises, as the user-
defined policies may not be mutually exclusive. As the rule-
set on each sensor is same, there is no need to enforce same
policies on more than one sensor. Moreover, the packet
duplication due to overlapping policies adds to the
computational load of the system. The avoidance of
duplication of packets while forwarding the traffic to
intrusion detection sensors is not been investigated. This
problem is solved by using the mechanism of reloading
overlapping policies enforced for different sensors to one
sensor. This is done by determining the similarity measure
for all pairings of policies enforced for different sensors.

D. Distribution of single attack’s traffic to multiple
sensors

While splitting the traffic to each of the sensors
preservation of traffic stream comprising of attack should
be done, as it would ensure that packets belonging to a
single attack are forwarded to the same sensor. On the other
hand, if such packets are split among different sensors the
attack detection rate will be lowered. Different Hashing
based schemes are implemented for web clusters to solve
this problem [4], [6]. This technique is also used by I.
Charitakis et al in their work on splitter for intrusion
detection system. In our work, we have investigated the
mechanism of policy reloading for this purpose. The
mechanism of dynamically reloading policies ensure that
the whole traffic of the attack is shifted from one sensor to
another rather than distributing it to more than one sensor.

III. DESIGN
Some of the major requirements while designing the

traffic splitting mechanisms are listed below:
1- Packets belonging to the same attack should be

forwarded to the same sensor otherwise the attack
cannot be detected.

2- While splitting traffic according to the user-
defined policies, the packet duplication should be
kept at minimum.

3- The load balancing should be done so that the
disparity of load among sensors remains at
minimum.

We have designed our solution while keeping in view the
above issues. Figure 1 shows the designed architecture.

Figure 1 – Load Balancing Architecture

A. Traffic Splitting

The above architecture is highly scalable. The splitter
distributes the traffic to each of the sensors. More than one
policy can be enforced for a single sensor on splitter. The
manager keeps track of the system parameters such as
memory occupied, load etc on each of the sensors and does
policy reloading on the splitter to keep the load disparity
among sensors low while keeping the similar policies on
single sensor to avoid packet duplication.

In our system the splitter loaded with policies for
each sensor does the traffic splitting. The user can define
any number of policies according to the requirement. These
policy definitions enable the splitter to send the respective
traffic flows to the corresponding sensor. There can be
multiple policies loaded for a single sensor. All the sensors
have a common rule-set. The policies define rules against
which the packet header is matched and the packet is then
forwarded to the sensor for which that policy is defined. In
this way policies are used as a pre-processing mechanism to
reduce the amount of traffic to be analysed by the sensor.
The policy definition mechanism is very flexible as the user
can define any Boolean combination of traffic parameters
such as source IP, destination IP, source port, destination
port, and protocol type. A policy can comprise of multiple
above-mentioned parameters. One example of the policy
could be

 [{src-ip(202.125.153.45),(212.69.134.45)},
 {src-port(11337)},{dest-port(1863)]

TRAFFIC
 SPLITTER

SNORT 3

SNORT 2

SNORT 1

MANAGER

NETWORK TRAFFIC
MANAGEMENT

Policy
Definitions

Translated
policies

The policy definition mechanism is very flexible. The user
can define a very specific policy or a very general one.
Generally a more general policy will load the system more.

Figure 2 – Difference between specific and general policies

As all the user-defined policies may not be mutually
exclusive so two or more policies might result in the
forwarding of same packets to more than one sensors thus
degrading system performance. This is termed as the
problem of packet duplication. In order to deal with this
problem, a similarity measure is determined for each
possible pairing of policies by monitoring the number of
similar packets forwarded by each policy in the pair. It is
determined by calculating the number of packets forwarded
by each policy. Each policy has its own domain, which
comprises of the packets forwarded due to that policy. The
similarity measure is indicative of the amount of overlap in
two policies. Figure 3 shows two policies A and B having
overlapping policy domains.

The policies are reloaded for multiple sensors to a single
sensor when the similarity measure for the pair exceeds a
certain threshold defined by the user.
B. Load Balancing
Balancing the load among different sensors is one of the
major requirements of good traffic splitter. Traffic should
be distributed among sensors so that their performance is
maximized, by keeping the load disparity at minimum.
Assuming the cluster of N identical sensors, the ideal
situation is to distribute 1/N of the total load to a single
sensor. In our approach when a disparity in sensors’ load
crosses a defined threshold and a need arises for shifting
some traffic load from more loaded sensor to less loaded
one, a reloading of policies is done. This mechanism of
policy reloading to shift traffic load works well to evenly
balance the load among sensors. When packets of a single
attack are distributed among different sensors, the attack
would go undetected.

Figure 3 – Overlapping of Policies’ Domain

This problem is handled as our approach of reloading
policies for shifting the traffic load ensures that packets of a
single attack are not distributed among different sensors.
Hence the attack detection rate is not lowered due to
shifting of flow.

We can divide the problem of load balancing into three
steps; load evaluation, policy selection, and policy
reloading. Our system keeps track of system-load
parameters such as memory occupied, CPU usage etc. for
all sensors. These parameters are sent to system manager
from each sensor for evaluating the need for balancing the
load. We also approximate the load due to a policy on a
sensor. This is called the Policy Load Factor (PLF) of the
policy. It is approximated by determining the factor of
traffic forwarded by that policy to the sensor. So when the
disparity is observed among sensors, the suitable policy to
be reloaded is selected by comparing PLF of each policy.

C. Trade-off between Packet Duplication and Load
Disparity

Ideally load disparity and packet duplication both should
be kept at minimum. While reloading policies for shifting
the load from a one sensor to another it might be a case that
the reloaded policies increase packet duplication rate. This
implies that we should also consider packet duplication rate
while reloading policies on the basis of the load disparity
among sensors. In our approach we make sure that while
reloading the policies for balancing out the traffic load, the
policies comprising a pair having the greater similarity
measure are not reloaded to different sensors. The system
performance is enhanced as the policy reloading decision is
based on both factors.

In order to have consistent system performance,
previously calculated measures of similarity measure are
considered while taking the decision to reload policies.
Moreover, multiple values of load disparity are concerned

over a time interval in order to avoid abrupt reloading of
policies due to instantaneous heavy system load.

IV. TESTING ENVIRONMENT
The systems used for testing are 900 MHz Pentium III

machines with 256 MB RAM. The operating system
installed on each machine was Linux Red Hat 9. Using
TCPDump, we made a traffic trace of one day. The traffic
was known to be free of any attacks. We embedded
different attacks in the traffic for the testing purposes. This
traffic was replayed using the TCPReplay tool. Each of the
sensors had snort 2.0.2 [7] installed for intrusion detection
purposes.

V. EXPERIMENTAL DETAILS

First of all, we carried out the tests to compare the
performance of system when it is loaded with splitting
policies statically and when the mechanism of
dynamically reloading of policies is enabled. The Table I
depicts the results when the tests were carried without
using the mechanism of dynamic reloading of policies.
We define and enforce the policies for sensors statically.
For judging the performance of the system, we recorded
values for system load and memory occupied at each
sensor, and percentage of total attacks detected by that
sensor (ADP: Attack Detection Percentage). After this we
ran the system with dynamic policy reloading mechanism
and recorded values for system load, memory occupied
and percentage of attack detected at each sensor updated
every 90 seconds. Table 2 shows the result of it.

TABLE I – RELOADING MECHANISM NOT ACTIVATED

 Sensor-1 Sensor-2 Sensor-3
System Load 24% 88% 37%
Mem Occupied 58% 85% 65%

ADP 27% 51% 22%

TABLE II – RELOADING MECHANISM ENABLED

 Sensor-1 Sensor-2 Sensor-3
System Load 31% 65% 49%
Mem Occupied 58% 83% 65%

ADP 28% 43% 29%

TABLE III

 Sensor-1 Sensor-2 Sensor-3
System Load 39% 54% 51%
Mem Occupied 61% 81% 70%

ADP 45% 31% 24%

TABLE IV

 Sensor-1 Sensor-2 Sensor-3
System Load 41% 48% 61%
Mem Occupied 67% 62% 74%

ADP 42% 39% 19%

TABLE V

 Sensor 1 Sensor 2 Sensor 3
System Load 53% 49% 55%
Mem Occupied 74% 64% 68%

ADP 43% 38% 19%

All the result parameters shown here have been
calculated by averaging the last three values of the
particular parameter. All the system decisions are also
based on these averaged values in order to avoid sudden
changes and to maintain performance while keeping the
cost of reloading policies low.

Table I shows the recorded results when the policy
reloading mechanism is disabled. The readings show that
sensor-2 is heavily loaded as compared to the other two
sensors, which means that there is load disparity. However,
no reloading of policies would occur, because, the policy
reloading mechanism is yet to be activated.

Table II shows the results when the policy reloading
mechanism has been activated. The load on sensor-2 is
balanced off to two other sensors. This occurred because
the disparity of load exceeded the defined threshold and
resulted in reloading of policies from sensor-2 to other
sensors. Some of the policies on sensor-2 were shifted onto
sensor-3 and others were shifted on to sensor-1 as depicted
by the results. The result shows that the percentage of total
detected attacks detected by sensor-3 has increased
significantly. This is due to the fact that reloaded policy
from sensor-2 is bringing in more attack traffic to it.

The results from Table III show that the system further
levels off the load from sensor-2 to other sensors. We note
that the percentage of attacks detected by sensor-3 has
come down as the policies loaded for sensor-3 is no more
forwarding much attack traffic. Moreover, it is noted that
the reloading of policies causes the percentage of attacks
detected by sensor-2 to decrease whereas the percentage of
attacks detected by sensor-1 has increased. The significant
increase in percentage of attacks detected by sensor-1 can
be explained by the fact that the reloaded policies from the
sensor-2 are now forwarding more attack traffic.

 The readings in Table IV are showing that the load on
sensor-3 has increased significantly as the policies loaded
for it, are now forwarding more traffic. No reloading of
policies has occurred. Here load on sensor-2 has decreased
as it is now getting less traffic. The percentage of attacks
detection by sensor-3 is very low because the policies
reloaded for this sensor is forwarding attack free traffic. But
on the other hand the percentage of attacks detected by
sensor-2 has increased as the traffic forwarded to it now
contains more attacks.

In Table V the load on sensor-3 is balanced off to sensor-
1 by reloading a policy from sensor-3 to sensor-1. The
percentage of attacks detected by sensor-1 remains
unchanged because the new reloaded policy from sensor-3
is forwarding attack free traffic. As the sensor has the same

policies loaded for it, there is no change in the load on the
system or percentage of attacks detected by it.

Now we present another scenario in order to show the
effect of the policy load factor (PLF) on policy reloading.
There are three sensors A, B and C. Two policies are loaded
on sensor-A, three on sensor-B and two on sensor-C.

Considering the cumulative load on each sensor due to
the policies loaded on them, policy-7 is reloaded on to
sensor-B and policy-3 is shifted to sensor-C to balance off
the load. The resulting loads on each sensor are 6.3%, 6.6%
and 5.9%. Table 7 shows this situation.

TABLE VI

Policy Sensor PLF
1 A 6.3%
2 B 2.1%
3 A 3.2%
4 B 1.0%
5 B 1.6%
6 C 2.7%
7 C 1.9%

TABLE VII

Policy Sensor PLF
1 A 6.3%
2 B 2.1%
3 C 3.2%
4 B 1.0%
5 B 1.6%
6 C 2.7%
7 B 1.9%

TABLE VIII

Policy Sensor PLF
1 A 2.9%
2 B 2.3%
3 C 4.1%
4 B 1.3%
5 B 3.4%
6 C 2.4%
7 B 1.5%

TABLE IV

Policy Sensor PLF
1 A 2.9%
2 A 2.3%
3 C 4.1%
4 B 1.3%
5 B 3.4%
6 C 2.4%
7 B 1.5%

Now the policy reloading mechanism is deactivated for

some time. Table XIII shows the readings of the policy load

factor when the policy reloading mechanism is activated
again after some time. Here policy-2 is reloaded on to
sensor-A, which results in loads of 5.2%, 6.2% and 6.5% on
the corresponding sensors as shown in Table IX.

VI. CONCLUDING REMARKS

In this paper, we have investigated the possibility of
splitting the traffic among the snort sensors using the
policy-based splitting mechanism. To dynamically adapt
the system with incoming traffic and doing the load
balancing among sensors, the mechanism of policy
reloading to shift the traffic load from one sensor to the
other one was presented. The results show that the
disparity of load among sensors is well catered by using our
technique. By taking into account the similarity measure
among the policies’ pairs, while reloading the policies
keeps the packet duplication rate low. More testing is being
done currently to observe other characteristics of the system
as well and bring maturity in results. In the near future, we
will test the system to record the effect of number of
policies loaded for a sensor and the system performance.

REFERENCES

[1] The NIDS FAQ Available: http://www.robertgraham.com

[2] S. Antonatos, K. G. Anagnostakis, E. P. Markatos, M.
Polychronakis. Performance Analysis of Content Matching
Intrusion Detection Systems

[3] Nathan Tuck, Timothy Sherwood, Brad Calder and
George Varghese- Deterministic Memory-Efficient String
Matching Algorithms for Intrusion Detection

[4] Z. Cao, Z. Wang, and E. W. Zegura. Performance of
hashing-based schemes for Internet load balancing. In
Proceedings of IEEE Infocom, pages 323.s341, 2000.

[5] I. Charitakis, K. Anagnostakis, E. Markatos An Active
Traffic Splitter Architecture for Intrusion Detection

[6] Network Processor Load Balancing for High-Speed
Links Gero Dittmann and Andreas Herkersdorf
IBMResearch, Zurich Research Laboratory

[7] M. Roesch. Snort: Lightweight intrusion detection for
networks.
In Proceedings of the 1999 USENIX LISA Systems
Administration Conference, November 1999. (software
available from http://www.snort.org/).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

