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Abstract

A marginally stabletest system, with alarge dead time and an integrator, is stabilised by
aself-organising fuzzy controller in asimulation study. It acts asacase study, to explain the
self-organising controller to engineering students. The paper is one of a series of tutorial
papers for a coursein fuzzy control.
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Figure 1: Simulink model for testing the SOC.

1. Introduction

Systems with a dominant time delay are notorioudly difficult to control, and the fuzzy self-
organising controller (Mamdani & Baaklini, 1975; Procyk and Mamdani, 1979; Yamazaki
& Mamdani, 1982), or SOC for short, was developed specifically to cope with processes
with dead time.

In those days, the distinction between the terms self-organising and adaptive was un-
clear, but today the SOC will be categorised under adaptive controllers; broadly defined, an
adaptive controller isacontroller with adjustable parameters and amechanism for adjusting
the parameters (Astrém & Wittenmark, 1995). Actually, judging from the block diagram of
the SOC, it may even be sub-categorised agacl-reference adaptive system; this is an
adaptive system in which the performance specifications are given by a model. The model
tells how the plant output ideally should respond to the control signal. The SOC uses a
desired response, rather than a model of the plant, and it adjusts its parameters according
to a heuristic rule. There are laboratory and real world applications of the SOC controller
(e.g., Peng & Liu, 1988; Linkens & Abbod, 1991; Sutton & Jess, 1991; Dawson & Gao,
1994; Marques, Baptista & Costa, 1997; Nie & Lee, 1997).

The objective in the following is to explain, in a tutorial manner, the components and
properties of a SOC for control engineering students. We set out to control the plant
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It is difficult, because the dead time ffseconds is large compared to the time constants
of the plant. The plant is inserted in the test bench in Fig. 1. At time0 the reference
changes abruptly frort to 1 and after500 seconds, a load @f£.075 units is forced on the
system. Theransport delay blockin Fig. 1 is the dead time of the plant (9 seconds), and the
band-limited white noise block is there in order to experiment with noise. The simulation
environment is Matlab (v. 4.2.c.1) for Windows together with Simulink (v. 1.3c). The
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Figure 2: Self-organising controller.

strategy is

1. todesign and tune afuzzy controller with alinear control surface, and
2. to start self-organisation without changing the tuning, and
3. to seeif self-organisation improved the response.

The experiment is supposed to show qualitatively, whether there is an improvement; it
is not meant to be an exhaustive scientific investigation.

2. Self-Organising Control

To Mamdani the SOC was afurther devel opment of the original fuzzy controller (Assilian
& Mamdani, 1974a; 1974b). They called it self-organising, since it is able to adjust the
control strategy in afuzzy controller without human intervention.

2.1 SOC Block Diagram

The SOC has a hierarchical structure in which the lower level is atable based controller
and the higher level is the adjustment mechanism (Fig. 2).

Lower level At the lower level is an incrementa controller, where the control signal
is added to the previous control signal, modelled as an integrator in the figure. The two
inputs to the controller are the error e and the change in error ce. These are multiplied by
two gains, GE and GC E respectively, before the rule base in F. The SOC requires atable
in block F, which could be generated from alinguistic rule base. The table lookup value,



-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-6|-6|-6|-6|-6|-6|—-6|-6 0 0 0[0)0|0
-5|-6|-6|-6|-6|]-6|-6|-6|-3|-2-2/0[0|0
4| -6|-6|-6|-6|]-6|-6|-6|-5|-4-2]0[]0|0
3| 6|-5|-5|—-4|—-4|-4|-4]-3]|-2 0/0]010
2| —-6|-5|-4|-3|-2|-2]|-2 0 0 0/0]010
1| -5|—-4|-3|-2|]-1|-1]-1 0 0 0/0]01]0

E 0] 4| -3|-2]| -1 0 0 0 0 0 112134
1 0 0 0 0 0 0 1 1 1 21345
2 0 0 0 0 0 0 2 2 2 314156
3 0 0 0 0 2 3 4 4 4 41556
4 0 0 0 2 4 3 6 6 6 66|66
5 0 0 0 2 2 3 6 6 6 66|66
6 0 0 0 0 0 0 6 6 6 66|66

Figure 3: Example of a performance table; note the universes (adapted from Procyk and
Mamdani, 1979).

called change in output cu,ismultiplied by the output gain GCU and integrated to become
the eventual control signal U. The integrator block can be |eft out, then the table value is
usually called u (instead of cu), scaled by again GU (instead of GCU), and used directly
as the control signal U.

Higher level  The idea behind the self-organisation is to let an adjustment mechanism
update the values in the table F, based on the current performance of the controller. Basi-
cally, if the performance is poor, the responsible table value should be punished, such that
next time that cell of the table is visited, the control signal will be better.

The higher level monitorserror and change in error, and it modifiesthetable F through
a modifier adgorithm M when necessary. It uses a performance measure to decide the
magnitude of each change to F. The performance measures are humbers, organised in a
table P the size of F, expressing what is desirable, or undesirable rather, in a transient
response. The table P can be built using linguistic rules, but is often built by hand. The
same performance table P may be used with a different process, without prior knowledge
of the process, since it only expresses the desired transient response. The controller can
start from scratch with an F-table full of zeros; it will, however, converge faster towards a
stable table, if F is primed with sensible numbersto begin with.

2.2  Training

The SOC learnsto control the system in accordance with the desired response; we will call
this training. At the sampling instant #,

1. it records the deviation between the actual state and the desired state, and
2. it correctstable F accordingly.



-6 -5 4 -3 -2 -1 0 1 2 3 4 5 6
-6|-6|-6|-6|-6|-6|-6|-6|-5|-4-3|]-2|-1|0
5| -6|—-6|-6|-6|-5|-4|-4|-4]-3|-2]-1 0]0
—4|-6|-6|-6|-5|-4|-3|-3|-3|-2]|-1 0 0]1
3| -6|-6|-5|—-4|-3|-2|-2|-2|-1 0 0 112
-2 -6|-5|-4|-3|-2|-1]-1]-1 0 0 1 213
1| -5|—-4]|-3|-2|-1]|-1 0 0 0 1 2 314

E 0| 5| —-4]-3|-2]-1 0 0 0 1 2 3 415
11 -3|-2]| -1 0 0 0 0 1 1 2 3 415
2| -2 -1 0 0 0 1 1 1 2 3 4 5|6
3| —1 0 0 0 1 2 2 2 3 4 5 6|6
4 0 0 0 1 2 3 3 3 4 3 6 6|6
5 0 0 1 2 3 4 4 4 ) 6 6 6|6
6 0 1 2 3 4 ) 6 6 6 6 6 6|6

Figure 4: Example of another performance table (adapted from Yamazaki, 1982).

The performance table P eval uates the current state and returns a performance measure
P(in, jn), Wherei,, istheindex corresponding to E,,, and j,, isthe index corresponding to
CE,.

Figures 3 and 4 are examples of early performance tables. If the performance measure
is zero, the state is satisfactory, otherwise unsatisfactory to some degree. In the latter case
the modifier M assumes that the control signa must be punished. It cannot be the current
control signa that is responsible, however, because it takes some time before a control
action shows up in the process output.

The simple strategy is to go back a number of samples in time to correct an earlier
control signal. The modifier must therefore know the time lag in the plant. 1t goes back
d samples comparable to the time lag; the integer d is called the delay-in-penalty (in the
literature it is called delay-in-reward, but that seems slightly misleading).

The modifier assumes that the plant output depends monotonously on the input. It
is thus a requirement, for the SOC to function correctly, that an increase in plant output
callsfor an adjustment of the control signal always in the same direction, whether it be an
increase or a decrease.

The precise adjustment ruleis

Up—d = Up—d + Pn (2)
In terms of the tables F and P, the adjustment rule is
F(Zm])nfd :F(l7.])n7d+P(Z7])n (3)

The time subscript n denotes the current sample. In words, it regards the performance
measure as an extra contribution to the control signal that should have been, in order to
push the plant output to a state with a zero penalty.

Example 1 (update scheme) Assume d = 2 and process values according to Table 1 after



Time t
Variable | 1 2 3 4 5
E 6 3 1 0 -1

CE -3 -2 -1 -1
u 0 -1 -1 -2
p 0 0 0 -1

Table 1: Datafor Example 1.

astep inthe setpoint. Fromt = 1tot = 4 the performance measure p is 0, while the process
moves up towards the setpoint. Att = 5, error changes sign indicating an overshoot, and
the performance table reacts by dictating ps = —1. Since d is 2, the new entry in F will be at
the position corresponding tot = 5 — d = 3. The state was (Es, CE3) = (1,—2), and the
element in Fwas ug = —1. The modified entry will then be uz = uz+ps = —1—1= -2,
which is inserted into F.

2.3 A Simplification

Theoriginal performancetablesin Figs. 3 and 4 werebuilt by hand, based ontrial and error.
Presumably, if the numbersin thetable P are small, it will be necessary with many updates
toreach auseful F; if the numbersin P arelarge, the convergence will be faster, but maybe
also unstable. The following analysis leads to a deeper understanding of the mechanism.

Observing the two origina performance tables, it seems that the Procyk & Mamdani
table (Fig. 3) holds the zeros in a more or less diagona band, while the Yamazaki table
(Fig. 4) keepsthem in a z-shaped patch. Because the zerosindicate no penalty, those states
must be admissible. Assuming that the system stays within the zero patch, what does this
mean?

Focusing on the zero diagonal, it expresses the relation

GE*e—&—GC’E*%:O (4)

Thisisan ordinary differential equation, and we can solveit,

t
e(t) = e(0) exp(~ G ar) ®)
In other words, a first order exponential decay with atime constant GCE /G E; assum-
ing e(0) = 1 the error e will gradualy die out, and after t = GCE/GE seconds it has
dropped 0.63 units. To interpret, the modifier M tries to push the system towards a first
order transient response.

The z-shaped table is more generous, becauseit allows a zero slope to begin with, take
for instance P(100,0) = 0, and perhaps a little overshoot in the end of the transient, near
the centre of the table. This behaviour is similar to a second order transient response.

Apparently, asimple way to build alinear performance table isto use (4), but witha P
on theright hand side of the equation, instead of the zero. The time constant of the desired



response would then be GCE/GE, which seems like an unnecessary constraint, because
we would liketo tune GC'E and G E freely, without affecting the desired response.

Instead we introduce the target time constant . A simple penalty equation, which may
replacethetable P, is,

AP =G (e, +Txcey) *Ts (6)
The learning gain G, affects the convergence rate, and Tsis the sample period. In fact (6)
isan incremental controller itself — it isincrementa because the output is a change to an
existing value, emphasised by the A in front of the P — therefore the multiplication by the
sample period T. The longer the sample period, the fewer the updates, and the larger the
penalty in order to keep the update rate independent of the choice of sample period.

2.4  Tuning Of The SOC Parameters

Even though SOC is self-organising, there are gains and parameters to be set.

e GE,GCE, and G(C)U. The controller gains must be set near some sensible settings;
the exact setting is less important. Imagine for example that the output gain is low-
ered between two training sessions. The controller will then adapt to the new gain by
producing a different F table with higher numbers. Even if the input gains change it
will still manageto learn. It is therefore a good ideato start with alinear F-table, and
set the gains according to any PID tuning rule. That is a good starting point for the
self-organisation.

o Target time constant T. The smaler 7 is, the faster the desired response. If it is too
small, however, the closed loop system cannot possibly follow the desired trajectory;,
but the modifier will try anyway. Asaresult the F-table winds up, and the consequence
is alarge overshoot. The lower bound for 7 is when this overshoot starts to occur. A
process with a time constant 7, and a dead time 7}, requires

T,<7<Tp+1p (7)
A value somewhat smaller than the right hand side of the inequality is often achievable,
because the closed |oop system is usually faster than the open loop system.
e Delay-in-penalty d. The d should be chosen with due respect to the sample period. The
delay should in principle be the target time constant divided by the sample period and
rounded to the nearest integer,

d = round(t/T5) 8
Theresults are usually better, however, with a value somewhat smaller than this.

o Learning gain G). Thelarger G, is, the faster the F-table builds up, but if it istoo large
the training becomes unstable. It is reasonable to choose it such that the magnitude of a
large AP islessthan, say, 1/5 of the maximum value in the output universe. Thisrule
results in the upper bound:

0.2 [F (i, J) | max
P [(en + T * cen)|pax * Ts ®)




Thetuning task is now shifted from having to tune accurately GE, GCE, and G(C)U,
over totuning 7, d, and G,.

2.5 Time Lock

The delay-in-penalty d causes a problem, however, with abrupt changes.

Consider this case. If the error and the changein error, for atime period longer than d
samples, have been near zero, then the controller isin an allowed state (the steady state).
Suddenly there is a disturbance from the outside, the performance measure A P becomes
nonzero, and the modifier will modify the F-table d samples back in time. It should not do
that, however, because the state was acceptable there. The next time the controller visits
that state, the control signal will fluctuate. The problem is more general, because it occurs
also after step changes in either the reference or the load on the plant.

A solution is to activate a time-lock (Jespersen, 1981). The time lock stops the self-
organisation for the next d samples; if it is activated at the sampling instant 7, then self-
organisation stops until sampling instant 7,, + d + 1. In order to trigger the time-lock it
is necessary to detect disturbances, abrupt changes in the load, and abrupt changes in the
reference. If these events cannot be measured directly and fed forward into the SOC, it is
necessary to try and detect it in the process output. If it changes more than a predefined
threshold, or if the combination of error and change in error indicates an abrupt change,
then activate the time-lock.

If the delay-in-penalty is implemented as a delay line (a queue) d + 1 sampleslong, it
is easy to implement the time-lock. The delay line consists of a queue of index pairsinto
the matrix F,

The element to update in F is indicated by the last element in ¢g. At the next sampling
instant, the current index pair is attached to the front of the queue, while the last index
pair is dropped. If an event triggers the time-lock, the queue is flushed, i.e, al cells are
emptied. New updatesto F will only be possible when the queue isfull again, that is, when
the last element in the queue is non-empty, d + 1 samples after the flush.

An extra precaution is to seal the origin in P, corresponding to the situation (e, ce) =
(0,0), from updates; this is the steady state in which the control action must always be
zero.

If necessary the time-lock can be activated each time the modifier makes a change in
F. In other words, the modifier waits to see the influence of the change before doing a new
modification.
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Figure5: SOC ontest plant. Dotted lineis before self-organisation, dashed lineis after five
training runs.

3. Simulation Results And Discussion

Since test setup includes aload on the system, it is necessary to maintain a nonzero control
signal in the steady state; thus an incremental controller, with an integrator, is necessary.
The rule base was initially alinear 21 x 21 lookup table with interpolation. The system
was hand-tuned to respond reasonably; the resulting gains were

GE = 100
GCE = 3000
GCU = 4x107°

The dead time of the plant was actually increased afterwards to 9 secondsto reach marginal
stability (a standing oscillation). The simulation time step wasfixed at 7; = 5 seconds.

The SOC is able to dampen the oscillation after five training runs (Fig. 5). After train-
ing, the control surface has several jagged pesks, see Fig. 6, where the last trgjectory is
shown also. During each run the controller visited a number of cellsin the look-up table,
sometimes the same cell is visited several times, and the accumulated changes resulted in
the sharp peaks. One might expect jumps in the control signa as aresult, but in fact it is
rather smooth thanks to the integrator in the output end of the incremental controller.

The design choices for the SOC tuning parameters were as follows. The initia run
without self-organisation showed that the period between consecutive peaksin the standing
oscillation was approximately 50 seconds. To be conservative, the target time constant was
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Figure 6: Deformation of theinitial control plane after five learning runs.

set at

T = 60,
but 40 secondswould probably bepossibletoo. Thetable F wasupdated at every simulation
step, and with adelay-in-penalty d = 4 the length in time of the delay-in-penalty is

Tyip =Ts +d =5%4 =20sec

Thus T, isconsiderably less, onethirdin fact, of thetarget time constant. With alearning
gain

Gp=2
the updates A P to the F-table are never larger than 20, which meansthat it would take ten
updates to reach the limit of the table entry universe [—200, 200], when starting from zero.

Toillustrate the training, the first, second, and fifth runs are plotted in Fig. 7. By visua
inspection the second run is aready much better than the first, and the fifth is rather good,
although it has difficulties with the steady state after the load change.

Obviously, good performance means the response is close to the desired response, and
there will be only few corrections to F. One measure of how the training is progressing
is therefore the number of changes per training run. During a successful suite of runs this
number will decreaseto some steady level — rarely zero — and then the training can stop. If
the number of changes startsto increase again, the controller is over-learning. The average
number of changes per training run could also be used.

It is perhaps even easier to implement the integrated absolute penalty,

TAP = Z |pi] (1)

It isrelated to the magnitude of the error between the actual response and the desired re-
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Figure 9: Process output during fifth training run (top) and corresponding penalties (bot-
tom).

sponse, and it is of course similar to the integrated absolute error, IAE. The I AP accu-
mulates the magnitude of both negative and positive penalties, and the smaller AP the
better.

The I AP wascollected after each run and plotted in Fig. 8, which hintsthat thetraining
convergestowardsaconstant level, whichisoften the case. If thetraining becomesunstable
after awhile, for example if delay-in-penalty istoo long or too short, the curve will start to
increase again. Thisisan indication that the training should stop.

It is also interesting to watch how the penalties progress. Figure 9 shows the process
output from the fifth training run together with the penalty. The modifier tries hard to
improve the responses to the reference change and the load change, whereas it is more
content around the steady state.

Experiments on laboratory models have shown that other processes can be stabilised
also, but the rule modifier is sensitive to noise on the process output — it cannot tell if a
bad performance measure is due to noise or a bad state. A poor signa to noise ratio will
actually spoil the self-organisation.

4. Conclusion

The simulation shows that the SOC is able to stabilise the marginally stable test system.
The general experience with the SOC isthat it performs surprisingly well.
The adjustment mechanism is simple, but in practice the design is complicated by the

12



time lock and noise precautions. Although the tuning of the traditional input and output
gains (GE, GCE, G(C)U) is made less cumbersome by the adjustment mechanism, it
introduces other parameters to tune (delay-in-penalty, learning gain, target time constant).
The tuning task should nevertheless be easier.

The SOC was developed for single-loop control, but it has been applied to multi-loop
problems also. Compared to neural network control, it seemsto learn faster; adrawback is
that it is not a natural multivariable controller.
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