
The Self-Organising Fuzzy Controller

Jan Jantzen 	jj@iau.dtu.dk:1

$EVWUDFW
A marginally stable test system, with a large dead time and an integrator, is stabilised by

a self-organising fuzzy controller in a simulation study. It acts as a case study, to explain the
self-organising controller to engineering students. The paper is one of a series of tutorial
papers for a course in fuzzy control.

&RQWHQWV

� ,QWURGXFWLRQ �

� 6HOI�2UJDQLVLQJ &RQWURO �
2.1 SOC Block Diagram 3
2.2 Training 4
2.3 A Simplification 6
2.4 Tuning Of The SOC Parameters 7
2.5 Time Lock 8

� 6LPXODWLRQ 5HVXOWV $QG 'LVFXVVLRQ �

� &RQFOXVLRQ ��

� Technical University of Denmark, Department of Automation, Bldg 326, DK-2800 Lyngby, DENMARK.
Tech. report no 98-H 869 (soc), 19 Aug 1998.

1

u ToWs3

u +
+

Sum2 Scope
y

ToWs

1
s(s+1)(s+1)
Zero-Pole

Band-Limited
White Noise

-
+

Sum1

Load

Setpoint
Transport

DelaySOC

Figure 1: Simulink model for testing the SOC.

�� ,QWURGXFWLRQ

Systems with a dominant time delay are notoriously difficult to control, and the fuzzy VHOI�
RUJDQLVLQJ FRQWUROOHU (Mamdani & Baaklini, 1975; Procyk and Mamdani, 1979; Yamazaki
& Mamdani, 1982), or 62& for short, was developed specifically to cope with processes
with dead time.

In those days, the distinction between the terms VHOI�RUJDQLVLQJ and DGDSWLYH was un-
clear, but today the SOC will be categorised under adaptive controllers; broadly defined, an
adaptive controller is a controller with adjustable parameters and a mechanism for adjusting
the parameters (Åström & Wittenmark, 1995). Actually, judging from the block diagram of
the SOC, it may even be sub-categorised as aPRGHO�UHIHUHQFH DGDSWLYH V\VWHP ; this is an
adaptive system in which the performance specifications are given by a model. The model
tells how the plant output ideally should respond to the control signal. The SOC uses a
desired response, rather than a model of the plant, and it adjusts its parameters according
to a heuristic rule. There are laboratory and real world applications of the SOC controller
(H�J�, Peng & Liu, 1988; Linkens & Abbod, 1991; Sutton & Jess, 1991; Dawson & Gao,
1994; Marques, Baptista & Costa, 1997; Nie & Lee, 1997).

The objective in the following is to explain, in a tutorial manner, the components and
properties of a SOC for control engineering students. We set out to control the plant

J+v, @ h�<v
4

v +v. 4,5
(1)

It is difficult, because the dead time of< seconds is large compared to the time constants
of the plant. The plant is inserted in the test bench in Fig. 1. At timew @ 3 the reference
changes abruptly from3 to 4 and after833 seconds, a load of3=3:8 units is forced on the
system. TheWUDQVSRUW GHOD\ block in Fig. 1 is the dead time of the plant (9 seconds), and the
EDQG�OLPLWHG ZKLWH QRLVH block is there in order to experiment with noise. The simulation
environment is Matlab (v. 4.2.c.1) for Windows together with Simulink (v. 1.3c). The

2

ce
GCE

GE
e E

GCUF

Array1

P

Array2

M

Modifier

CE

cu
1/s

Integrator

CU U

Figure 2: Self-organising controller.

strategy is

1. to design and tune a fuzzy controller with a linear control surface, and
2. to start self-organisation without changing the tuning, and
3. to see if self-organisation improved the response.

The experiment is supposed to show qualitatively, whether there is an improvement; it
is not meant to be an exhaustive scientific investigation.

�� 6HOI�2UJDQLVLQJ &RQWURO

To Mamdani the SOC was a further development of the original fuzzy controller (Assilian
& Mamdani, 1974a; 1974b). They called it self-organising, since it is able to adjust the
control strategy in a fuzzy controller without human intervention.

��� 62& %ORFN 'LDJUDP

The SOC has a hierarchical structure in which the lower level is a table based controller
and the higher level is the adjustment mechanism (Fig. 2).

/RZHU OHYHO At the lower level is an incremental controller, where the control signal
is added to the previous control signal, modelled as an integrator in the figure. The two
inputs to the controller are the error h and the change in error fh. These are multiplied by
two gains, JH and JFH respectively, before the rule base in). The SOC requires a table
in block), which could be generated from a linguistic rule base. The table lookup value,

3

CE
�9 �8 �7 �6 �5 �4 3 4 5 6 7 8 9

�9 �9 �9 �9 �9 �9 �9 �9 3 3 3 3 3 3
�8 �9 �9 �9 �9 �9 �9 �9 �6 �5 �5 3 3 3
�7 �9 �9 �9 �9 �9 �9 �9 �8 �7 �5 3 3 3
�6 �9 �8 �8 �7 �7 �7 �7 �6 �5 3 3 3 3
�5 �9 �8 �7 �6 �5 �5 �5 3 3 3 3 3 3
�4 �8 �7 �6 �5 �4 �4 �4 3 3 3 3 3 3

E 3 �7 �6 �5 �4 3 3 3 3 3 4 5 6 7
4 3 3 3 3 3 3 4 4 4 5 6 7 8
5 3 3 3 3 3 3 5 5 5 6 7 8 9
6 3 3 3 3 5 6 7 7 7 7 8 8 9
7 3 3 3 5 7 8 9 9 9 9 9 9 9
8 3 3 3 5 5 6 9 9 9 9 9 9 9
9 3 3 3 3 3 3 9 9 9 9 9 9 9

Figure 3: Example of a performance table; note the universes (adapted from Procyk and
Mamdani, 1979).

called FKDQJH LQ RXWSXW fx> is multiplied by the output gain JFX and integrated to become
the eventual control signal X . The integrator block can be left out, then the table value is
usually called x (instead of fx), scaled by a gain JX (instead of JFX), and used directly
as the control signal X .

+LJKHU OHYHO The idea behind the self-organisation is to let an adjustment mechanism
update the values in the table), based on the current performance of the controller. Basi-
cally, if the performance is poor, the responsible table value should be punished, such that
next time that cell of the table is visited, the control signal will be better.

The higher level monitors HUURU and FKDQJH LQ HUURU, and it modifies the table) through
a PRGLILHU algorithm 0 when necessary. It uses a SHUIRUPDQFH PHDVXUH to decide the
magnitude of each change to). The performance measures are numbers, organised in a
table 3 the size of), expressing what is desirable, or undesirable rather, in a transient
response. The table 3 can be built using linguistic rules, but is often built by hand. The
same performance table 3 may be used with a different process, without prior knowledge
of the process, since it only expresses the GHVLUHG transient response. The controller can
start from scratch with an)-table full of zeros; it will, however, converge faster towards a
stable table, if) is primed with sensible numbers to begin with.

��� 7UDLQLQJ

The SOC learns to control the system in accordance with the desired response; we will call
this WUDLQLQJ. At the sampling instant Q,

1. it records the deviation between the actual state and the desired state, and
2. it corrects table) accordingly.

4

CE
�9 �8 �7 �6 �5 �4 3 4 5 6 7 8 9

�9 �9 �9 �9 �9 �9 �9 �9 �8 �7 �6 �5 �4 3
�8 �9 �9 �9 �9 �8 �7 �7 �7 �6 �5 �4 3 3
�7 �9 �9 �9 �8 �7 �6 �6 �6 �5 �4 3 3 4
�6 �9 �9 �8 �7 �6 �5 �5 �5 �4 3 3 4 5
�5 �9 �8 �7 �6 �5 �4 �4 �4 3 3 4 5 6
�4 �8 �7 �6 �5 �4 �4 3 3 3 4 5 6 7

E 3 �8 �7 �6 �5 �4 3 3 3 4 5 6 7 8
4 �6 �5 �4 3 3 3 3 4 4 5 6 7 8
5 �5 �4 3 3 3 4 4 4 5 6 7 8 9
6 �4 3 3 3 4 5 5 5 6 7 8 9 9
7 3 3 3 4 5 6 6 6 7 8 9 9 9
8 3 3 4 5 6 7 7 7 8 9 9 9 9
9 3 4 5 6 7 8 9 9 9 9 9 9 9

Figure 4: Example of another performance table (adapted from Yamazaki, 1982).

The performance table 3 evaluates the current state and returns a performance measure
3+lq> mq,, where lq is the index corresponding to Hq, and mq is the index corresponding to
FHq.

Figures 3 and 4 are examples of early performance tables. If the performance measure
is zero, the state is satisfactory, otherwise unsatisfactory to some degree. In the latter case
the modifier 0 assumes that the control signal must be punished. It cannot be the current
control signal that is responsible, however, because it takes some time before a control
action shows up in the process output.

The simple strategy is to go back a number of samples in time to correct an earlier
control signal. The modifier must therefore know the time lag in the plant. It goes back
g samples comparable to the time lag; the integer g is called the GHOD\�LQ�SHQDOW\ (in the
literature it is called delay-in-UHZDUG� but that seems slightly misleading).

The modifier assumes that the plant output depends monotonously on the input. It
is thus a requirement, for the SOC to function correctly, that an increase in plant output
calls for an adjustment of the control signal DOZD\V in the same direction, whether it be an
increase or a decrease.

The precise adjustment rule is

xq�g @ xq�g . sq (2)

In terms of the tables) and 3, the adjustment rule is

) +l> m,q�g @) +l> m,q�g . 3 +l> m,q (3)

The time subscript q denotes the current sample. In words, it regards the performance
measure as an extra contribution to the control signal that should have been, in order to
push the plant output to a state with a zero penalty.

([DPSOH � �XSGDWH VFKHPH� $VVXPH g @ 5 DQG SURFHVV YDOXHV DFFRUGLQJ WR 7DEOH 1 DIWHU

5

7LPH W
9DULDEOH 1 2 3 4 5

E 9 6 4 3 �4
CE �6 �5 �4 �4
u 3 �4 �4 �5
p 3 3 3 �4

Table 1: Data for Example 1.

D VWHS LQ WKH VHWSRLQW�)URP w @ 4 WR w @ 7 WKH SHUIRUPDQFHPHDVXUH s LV 3� ZKLOH WKH SURFHVV
PRYHV XS WRZDUGV WKH VHWSRLQW� $W w @ 8> huuru FKDQJHV VLJQ LQGLFDWLQJ DQ RYHUVKRRW� DQG
WKH SHUIRUPDQFH WDEOH UHDFWV E\ GLFWDWLQJ s8 @ �4� 6LQFH g LV 5� WKH QHZ HQWU\ LQ)ZLOO EH DW
WKH SRVLWLRQ FRUUHVSRQGLQJ WR w @ 8� g @ 6� 7KH VWDWH ZDV +H6> FH6, @ +4>�5,> DQG WKH
HOHPHQW LQ) ZDV x6 @ �4� 7KH PRGLILHG HQWU\ ZLOO WKHQ EH x6 @ x6.s8 @ �4�4 @ �5>
ZKLFK LV LQVHUWHG LQWR)�

��� $ 6LPSOLILFDWLRQ

The original performance tables in Figs. 3 and 4 were built by hand, based on trial and error.
Presumably, if the numbers in the table 3 are small, it will be necessary with many updates
to reach a useful); if the numbers in 3 are large, the convergence will be faster, but maybe
also unstable. The following analysis leads to a deeper understanding of the mechanism.

Observing the two original performance tables, it seems that the Procyk & Mamdani
table (Fig. 3) holds the zeros in a more or less diagonal band, while the Yamazaki table
(Fig. 4) keeps them in a z-shaped patch. Because the zeros indicate no penalty, those states
must be admissible. Assuming that the system stays within the zero patch, what does this
mean?

Focusing on the zero diagonal, it expresses the relation

JH � h.JFH � gh

gw
@ 3 (4)

This is an ordinary differential equation, and we can solve it,

h+w, @ h+3, h{s+� w

JFH@JH
, (5)

In other words, a first order exponential decay with a time constant JFH@JH> assum-
ing h+3, @ 4 the error h will gradually die out, and after w @ JFH@JH seconds it has
dropped 3=96 units. To interpret, the modifier 0 tries to push the system towards a first
order transient response.

The z-shaped table is more generous, because it allows a zero slope to begin with, take
for instance 3+433> 3, @ 3> and perhaps a little overshoot in the end of the transient, near
the centre of the table. This behaviour is similar to a second order transient response.

Apparently, a simple way to build a linear performance table is to use (4), but with a S
on the right hand side of the equation, instead of the zero. The time constant of the desired

6

response would then be JFH@JH> which seems like an unnecessary constraint, because
we would like to tune JFH and JH freely, without affecting the desired response.

Instead we introduce the WDUJHW WLPH FRQVWDQW � . A simple penalty equation, which may
replace the table 3, is,

�S @ Js +hq . � � fhq, � Wv (6)
The OHDUQLQJ JDLQ Js affects the convergence rate, and Ts is the sample period. In fact (6)
is an incremental controller itself � it is incremental because the output is a change to an
existing value, emphasised by the � in front of the S � therefore the multiplication by the
sample period Wv. The longer the sample period, the fewer the updates, and the larger the
penalty in order to keep the update rate independent of the choice of sample period.

��� 7XQLQJ 2I 7KH 62& 3DUDPHWHUV

Even though SOC is self-organising, there are gains and parameters to be set.

� JH>JFH> and J+F,X= The controller gains must be set near some sensible settings;
the exact setting is less important. Imagine for example that the output gain is low-
ered between two training sessions. The controller will then adapt to the new gain by
producing a different) table with higher numbers. Even if the input gains change it
will still manage to learn. It is therefore a good idea to start with a linear)-table, and
set the gains according to any PID tuning rule. That is a good starting point for the
self-organisation.

� 7DUJHW WLPH FRQVWDQW �= The smaller � is, the faster the desired response. If it is too
small, however, the closed loop system cannot possibly follow the desired trajectory,
but the modifier will try anyway. As a result the)-table winds up, and the consequence
is a large overshoot. The lower bound for � is when this overshoot starts to occur. A
process with a time constant �s and a dead time Ws requires

Ws � � � Ws . �s (7)

A value somewhat smaller than the right hand side of the inequality is often achievable,
because the closed loop system is usually faster than the open loop system.

� 'HOD\�LQ�SHQDOW\ g= The g should be chosen with due respect to the sample period. The
delay should in principle be the target time constant divided by the sample period and
rounded to the nearest integer,

g @ urxqg+�@Wv, (8)

The results are usually better, however, with a value somewhat smaller than this.
� /HDUQLQJ JDLQ Js= The larger Js is, the faster the)-table builds up, but if it is too large

the training becomes unstable. It is reasonable to choose it such that the magnitude of a
large �S is less than, say, 4@8 of the maximum value in the output universe. This rule
results in the upper bound:

Js � 3=5 � m) +l> m,m
pd{

m+hq . � � fhq,mpd{ � Wv
(9)

7

The tuning task is now shifted from having to tune accurately JH>JFH> and J+F,X>
over to tuning �> g> and Js=

��� 7LPH /RFN

The delay-in-penalty g causes a problem, however, with abrupt changes.
Consider this case. If the error and the change in error, for a time period longer than g

samples, have been near zero, then the controller is in an allowed state (the steady state).
Suddenly there is a disturbance from the outside, the performance measure �S becomes
nonzero, and the modifier will modify the)-table g samples back in time. It should not do
that, however, because the state was acceptable there. The next time the controller visits
that state, the control signal will fluctuate. The problem is more general, because it occurs
also after step changes in either the reference or the load on the plant.

A solution is to activate a WLPH�ORFN (Jespersen, 1981). The time lock stops the self-
organisation for the next g samples; if it is activated at the sampling instant Wq, then self-
organisation stops until sampling instant Wq . g . 4. In order to trigger the time-lock it
is necessary to detect disturbances, abrupt changes in the load, and abrupt changes in the
reference. If these events cannot be measured directly and fed forward into the SOC, it is
necessary to try and detect it in the process output. If it changes more than a predefined
threshold, or if the combination of HUURU and FKDQJH LQ HUURU indicates an abrupt change,
then activate the time-lock.

If the delay-in-penalty is implemented as a delay line (a queue) g. 4 samples long, it
is easy to implement the time-lock. The delay line consists of a queue of index pairs into
the matrix),

t @ +l> m,q +l> m,q�4 = = = +l> m,q�g (10)
The element to update in) is indicated by the last element in t. At the next sampling
instant, the current index pair is attached to the front of the queue, while the last index
pair is dropped. If an event triggers the time-lock, the queue is flushed, i.e., all cells are
emptied. New updates to) will only be possible when the queue is full again, that is, when
the last element in the queue is non-empty, g. 4 samples after the flush.

An extra precaution is to seal the origin in 3, corresponding to the situation +h> fh, @
+3> 3, > from updates; this is the steady state in which the control action must always be
zero.

If necessary the time-lock can be activated each time the modifier makes a change in
). In other words, the modifier waits to see the influence of the change before doing a new
modification.

8

0 200 400 600 800 1000
-2

0

2

4

Time [secs]

P
ro

ce
ss

 o
ut

p u
t

0 200 400 600 800 1000
-0.1

0

0.1

0.2

Time [secs]

C
on

tr
o l

 s
ig

na
l

Figure 5: SOC on test plant. Dotted line is before self-organisation, dashed line is after five
training runs.

�� 6LPXODWLRQ 5HVXOWV $QG 'LVFXVVLRQ

Since test setup includes a load on the system, it is necessary to maintain a nonzero control
signal in the steady state; thus an incremental controller, with an integrator, is necessary.
The rule base was initially a linear 54 � 54 lookup table with interpolation. The system
was hand-tuned to respond reasonably; the resulting gains were

JH @ 433

JFH @ 6333

JFX @ 7 � 43�8
The dead time of the plant was actually increased DIWHUZDUGV to < seconds to reach marginal
stability (a standing oscillation). The simulation time step was fixed at Wv @ 8 seconds.

The SOC is able to dampen the oscillation after five training runs (Fig. 5). After train-
ing, the control surface has several jagged peaks, see Fig. 6, where the last trajectory is
shown also. During each run the controller visited a number of cells in the look-up table,
sometimes the same cell is visited several times, and the accumulated changes resulted in
the sharp peaks. One might expect jumps in the control signal as a result, but in fact it is
rather smooth thanks to the integrator in the output end of the incremental controller.

The design choices for the SOC tuning parameters were as follows. The initial run
without self-organisation showed that the period between consecutive peaks in the standing
oscillation was approximately 83 seconds. To be conservative, the target time constant was

9

-100
-50

0
50

100

-100

0

100
-200

-100

0

100

200

1

324

Figure 6: Deformation of the initial control plane after five learning runs.

set at
� @ 93>

but 73 seconds would probably be possible too. The table)was updated at every simulation
step, and with a delay-in-penalty g @ 7 the length in time of the delay-in-penalty is

Wgls @ Wv � g @ 8 � 7 @ 53 vhf

Thus Wgls is considerably less, one third in fact, of the target time constant. With a learning
gain

Js @ 5
the updates �S to the)-table are never larger than 20, which means that it would take ten
updates to reach the limit of the table entry universe ^�533> 533`, when starting from zero.

To illustrate the training, the first, second, and fifth runs are plotted in Fig. 7. By visual
inspection the second run is already much better than the first, and the fifth is rather good,
although it has difficulties with the steady state after the load change.

Obviously, good performance means the response is close to the desired response, and
there will be only few corrections to). One measure of how the training is progressing
is therefore the number of changes per training run. During a successful suite of runs this
number will decrease to some steady level� rarely zero � and then the training can stop. If
the number of changes starts to increase again, the controller is over-learning. The average
number of changes per training run could also be used.

It is perhaps even easier to implement the LQWHJUDWHG DEVROXWH SHQDOW\�

LDS @
[

l

mslm (11)

It is related to the magnitude of the error between the actual response and the desired re-

10

0 200 400 600 800 1000
-0.5

0

0.5

1

1.5

2

2.5

Time [secs]

P
ro

ce
ss

 o
ut

pu
t

Figure 7: Three training runs: first (dotted), second (dash-dot), and fifth (solid).

1 2 3 4 5
0

500

1000

1500

2000

2500

Run

IA
P

Figure 8: Performance measure for each of five training runs.

11

0 200 400 600 800 1000
-0.5

0

0.5

1

1.5

Time [secs]

P
ro

ce
ss

 o
ut

pu
t

0 200 400 600 800 1000
-20

-10

0

10

20

Time [secs]

P
en

al
ty

 P

Figure 9: Process output during fifth training run (top) and corresponding penalties (bot-
tom).

sponse, and it is of course similar to the LQWHJUDWHG DEVROXWH HUURU, LDH. The LDS accu-
mulates the magnitude of both negative and positive penalties, and the smaller LDS the
better.

The LDS was collected after each run and plotted in Fig. 8, which hints that the training
converges towards a constant level, which is often the case. If the training becomes unstable
after a while, for example if delay-in-penalty is too long or too short, the curve will start to
increase again. This is an indication that the training should stop.

It is also interesting to watch how the penalties progress. Figure 9 shows the process
output from the fifth training run together with the penalty. The modifier tries hard to
improve the responses to the reference change and the load change, whereas it is more
content around the steady state.

Experiments on laboratory models have shown that other processes can be stabilised
also, but the rule modifier is sensitive to noise on the process output � it cannot tell if a
bad performance measure is due to noise or a bad state. A poor signal to noise ratio will
actually spoil the self-organisation.

�� &RQFOXVLRQ

The simulation shows that the SOC is able to stabilise the marginally stable test system.
The general experience with the SOC is that it performs surprisingly well.

The adjustment mechanism is simple, but in practice the design is complicated by the

12

time lock and noise precautions. Although the tuning of the traditional input and output
gains (JH, JFH, J+F,X) is made less cumbersome by the adjustment mechanism, it
introduces other parameters to tune (delay-in-penalty, learning gain, target time constant).
The tuning task should nevertheless be easier.

The SOC was developed for single-loop control, but it has been applied to multi-loop
problems also. Compared to neural network control, it seems to learn faster; a drawback is
that it is not a natural multivariable controller.

5HIHUHQFHV

Assilian, S. and Mamdani, E. (1974a). Learning control algorithms in real dynamic systems,
3URF�)RXUWK ,QW� &RQI� 2Q 'LJLWDO &RPSXWHU $SSOLFDWLRQV WR 3URFHVV &RQWURO� =�ULFK,
IFAC/IFIP, Springer, Berlin, pp. 13–20.

Assilian, S. and Mamdani, E. H. (1974b). An experiment in linguistic synthesis with a fuzzy
logic controller.,,QW� -� 0DQ 0DFKLQH 6WXGLHV �(1): 1–13.

Åström, K. J. and Wittenmark, B. (1995).$GDSWLYH &RQWURO, Addison Wesley Series in Electrical
Engineering: Control Engineering, second edn, Addison Wesley.

Dawson, J. G. and Gao, Z. (1994). Fuzzy logic control of linear systems with variable time delay,
LQ IEEE (ed.),3URF� ���� ,(((,QWHUQDWLRQDO 6\PSRVLXP RQ ,QWHOOLJHQW &RQWURO� &ROXPELD�
2KLR, IEEE Control Systems Society, pp. 5–10.

IEE (1991).3URF� ,QW� &RQI� 2Q &RQWURO, number 332, London.
Jespersen, T. (1981). Self-organizing fuzzy logic control of a pH-neutralisation process,7HFKQL�

FDO 5HSRUW ����, Electric Power Eng. Dept., Technical University of Denmark.
Linkens, D. and Abbod, M. (1991). Self-organizing fuzzy logic control for real-time processes,

LQ IEE (1991), pp. 971–976.
Mamdani, E. and Baaklini, N. (1975). Prescriptive method for deriving control policy in a

fuzzy-logic controller,(OHFWURQLFV /HWWHUV ��(25/26): 625–626.
Marques, S. J. C., Baptista, L. F. and Costa, J. S. D. (1997). Force/position control of robot ma-

nipulators: A fuzzy adaptive control approach,3URFHHGLQJV)RXUWK (XURSHDQ &RQWURO &RQ�
IHUHQFH� (&&��, EUCA/IFAC/IEEE, BELWARE Information Technology, Brussels, Bel-
gium, p. paper 227.

Nie, J. and Lee, T. H. (1997). Self-organizing rule-based control of multivariable nonlinear
servomechanisms,)X]]\ 6HWV DQG 6\VWHPV ��: 285–304.

Peng, X.-T. and Liu, S.-M. (1988). Self-regulating PID controllers and its application to temper-
ature controlling process,LQ M. Gupta and T. Yamakawa (eds),)X]]\ &RPSXWLQJ� 7KHRU\�
+DUGZDUH� DQG $SSOLFDWLRQV, North-Holland, Amsterdam, etc., pp. 355–364.

Procyk, T. J. and Mamdani, E. H. (1979). A linguistic self-organizing process controller,$XWR�
PDWLFD ��: 15–30.

Sutton, R. and Jess, I. (1991). Real-time application of a self-organising autopilot to warship
yaw control,LQ IEE (1991), pp. 827–832.

Yamazaki, T. (1982).$Q LPSURYHG DOJRULWKP IRU D VHOI�RUJDQLVLQJ FRQWUROOHU DQG LWV H[SHULPHQWDO
DQDO\VLV, PhD thesis, Queen Mary College, London, Dept. of Electrical and Electronic
Engineering.

13

Yamazaki, T. and Mamdani, E. H. (1982). On the performance of a rule-based self-organizing
controller, 3URF� ,(((&RQI RQ $SSOLFDWLRQV RI $GDSWLYH DQG 0XOWLYDULDEOH &RQWURO, Hull.

14

