
Prediction and Analysis of Binding Affinities for

Chemically Diverse HIV-1 PR Inhibitors

by the Modified SAFE_p Approach

MIGUEL ARENAS, M. CARMEN VILLAVERDE, FREDY SUSSMAN

Departamento de Quı́mica Orgánica, Universidad de Santiago de Compostela,
15782 Santiago de Compostela, Spain

Received 19 May 2008; Revised 8 August 2008; Accepted 8 September 2008
DOI 10.1002/jcc.21147

Published online 5 November 2008 in Wiley InterScience (www.interscience.wiley.com).

Abstract: One of the biggest challenges in the ‘‘in silico’’ screening of enzyme ligands is to have a protocol that

could predict the ligand binding free energies. In our group we have developed a very simple screening function

(referred to as solvent accessibility free energy of binding predictor, SAFE_p) which we have applied previously to

the study of peptidic HIV-1 protease (HIV-1 PR) inhibitors and later to cyclic urea type HIV-1 PR inhibitors. In this

work, we have extended the SAFE_p protocol to a chemically diverse set of HIV-1 PR inhibitors with binding con-

stants that differ by several orders of magnitude. The resulting function is able to reproduce the ranking and in

many cases the value of the inhibitor binding affinities for the HIV-1 PR, with accuracy comparable with that of

costlier protocols. We also demonstrate that the binding pocket SAFE_p analysis can contribute to the understanding

of the physical forces that participate in ligand binding. The analysis tools afforded by our protocol have allowed us

to identify an induced fit phenomena mediated by the inhibitor and have demonstrated that larger fragments do not

necessarily contribute the most to the binding free energy, an outcome partially brought about by the substantial role

the desolvation penalty plays in the energetics of binding. Finally, we have revisited the effect of the Asp dyad pro-

tonation state on the predicted binding affinities.
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Introduction

The single biggest challenge in the ‘‘in silico’’ screening of

ligands is the development of a binding free energy or scoring

function that could predict accurately the actual binding free

energies, or at least the binding ranking of a set of compounds

of very diverse chemical structure.1 In this regard, one of the

most frequently used testing grounds for ligand binding energy

scoring functions is the HIV-1 protease (HIV-1 PR), since it is

the most studied enzyme as measured by the number of inhibi-

tor–enzyme structures that have been determined by both X-ray

and NMR protocols.2–4

Many approaches have been applied for the prediction of the

binding affinity to the HIV-1 PR.5–16 The most basic kind of

function is a simple quantitative structure activity relationship

based solely on the chemical structure of the inhibitor, like the

one performed on cyclic urea (CU)-based HIV-1 PR inhibitors.5

The next level of complexity is provided by the evaluation of

the energy interaction between the ligand and the enzyme.7,8

Other groups (including us) have elaborated free energy func-

tions that include a solvation contribution, a very important

component of the inhibitor binding affinity, specially for the

screening of ligands of varying net charge and/or polarity.10–16

Some of the HIV-1 PR scoring functions have played an useful

role in the development of inhibitors that have become lead

compounds for antiviral drugs against AIDS.8,11

We have developed a very simple function, which we have

named solvent accessibility free energy of binding predictor

(SAFE_p). Initially we have applied this function to the study of

peptidic HIV-1 PR inhibitors12 and later we extended it to CU

HIV-1 PR inhibitors by the addition of an explicit electrostatic

interaction contribution.15 The basic assumption underlying the

SAFE_p approach is that the free energy of an inhibitor transfer

from water to the binding pockets of an enzyme is analogous to

the process of relocating the ligand from a medium of higher
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polarity to one of lower polarity, since many residues that line

the active site and specificity pockets of this enzyme are hydro-

phobic in nature.12,14,15 The resulting free energy function repro-

duced many of the observed characteristics of HIV-1 PR inhibi-

tor binding. For instance, the resulting free energy function fitted

closely the observed free energies of binding for a series of

known peptidic inhibitors.12 The additive nature of this approach

enabled us to partition the free energy of binding into the contri-

butions of single fragments. The resulting analysis allowed us to

rank the importance of the enzyme’s subsites for binding:

although all the enzyme’s pockets contribute to binding, the

ones that bind the P2-P20 span of the inhibitor are in general the

most critical for high inhibitor potency.12,14 Moreover, perusal

of the energy contributions of single side chains has shown a

broad specificity for some of the inhibitor fragments located in

the central portion of the HIV-1 PR inhibitors. These observa-

tions are in agreement with experimental data, providing a vali-

dation for the physical relevancy of our method.12,14,15 Recently,

in a separate paper we have shown the usefulness of this

approach by successfully applying it to the affinity ranking of

ligands whose complexes with the HIV-1 PR are not know

experimentally, one of most stringent tests of the quality of any

binding free energy scoring function.16

The main objective of this work was to develop and apply a

binding free energy predictor algorithm that could reproduce the

binding affinity of a set of HIV-1 PR inhibitors with a wide va-

riety of chemical motifs and with binding constants differing by

several orders of magnitude. We have established the robustness

of our free energy prediction results with respect to the size of

the training set. The resulting function is able to reproduce the

ranking of most inhibitors and in many cases the value of the in-

hibitor binding affinities for the HIV-1 PR. The analysis tools

afforded by our protocol have allowed us to identify (in the case

of the piperazine containing compounds) an induced fit phenom-

ena mediated by the inhibitor and have demonstrated that larger

fragments do not necessarily contribute the most to the binding

free energy, an outcome brought about partly by the substantial

role the desolvation penalty plays in the energetics of binding.

Finally, with the help of our scoring function, we studied the

effect of the HIV-1 PR Asp dyad protonation state on the bind-

ing affinities of a subset of peptidic inhibitors.

Methods

Free Energy Predictor’s Analytical Form

The original SAFE_p analytical function had two terms, which

were originally written as:

DG
RT

¼ K1RDgi þ K2R
absðQiÞ

ðRoi þ RwÞDgi (1)

Where Dgi is a function with a Gaussian analytical form that

determines the atom change in solvent accessibility upon bind-

ing, Qi is the partial charge for every atom, Roi is the van der

Waals radii, and Rw is radius of a test water molecule. K1 and

K2 are the weights for the two terms of this equation. The first

term in eq. (1) represents the inhibitor–protein hydrophobic

interactions, whereas the second takes into account the polar

desolvation penalty upon binding. The evaluation of the various

components of this equation has been described previously.12

In recent publications, we have generated an improved scor-

ing function by modifying the desolvation term and by introduc-

ing an explicit electrostatic interaction contribution. The new

desolvation penalty replaces the linear form of charge depend-

ence by a quadratic one, based on the idea by Novotny and Sharp

that the electrostatic potential field depends on the square of the

atomic charges rather than on the charge itself.17 The explicit

term for electrostatic interactions has its origin in a specific con-

tact term for hydrogen bonded interactions in the CHARMM

force field.18 This additional term was shown to be essential for

reproducing the binding free energies of CU based HIV-1 PR

inhibitors.15 The resulting expression can be written as:

DG
RT

¼ K1RDgi þ K2R
Q2

i

ðRoi þ RwÞDgi þ K3DGpolar þ K4 (2)

Where K3 is the weight of the polar contribution and K4 is a

constant that could be set to 0.

As was pointed out in our first SAFE_p work,12 our scoring

function takes into account implicitly some of the most impor-

tant entropically related contributions to the free energy of bind-

ing. Among them are the ones related to the release of waters

from the active site and binding pockets of the enzyme as well

as from the ligand surface. This corresponds to the hydrophobic

entropic contribution and can be approximated by a term that is

proportional to the loss of surface area accessibility and hence,

it is included in the first term of our scoring functions [see eqs.

(1) and (2)]. A second entropic term relates to the loss of the

conformational degrees of freedom associated with the con-

straints imposed by binding and hence it also should correlate

with the change in solvent accessibility. Additional entropic

changes include cratic, translational, and rotational entropy.

These terms could be considered constant when external factors

(e.g., temperature, pressure, etc.) do not change.12

Inhibitor Choice and General Procedures

The compounds studied in this article are listed in Tables 1–3.

They include a wide variety of ligands, like first generation pep-

tidic inhibitors (Table 1), CU inhibitors (Table 2), and other

inhibitors containing piperazine, macrocycle, and sulphonamide

moeities (Table 3).

The ligand–protein complexes were downloaded from the

PDB web site, all water molecules, but the one that bridges the

Ile50/Ile500 residues in the HIV-1 PR with some polar groups in

the inhibitor through a hydrogen bond network were stripped

away. Following the work by Fornabaio et al.,38 we refer to this

solvent molecule as water 301, although this water molecule has

a different numbering in some crystallographic structures.

Hydrogens were added using the Biopolymer module in the

InsightII suite of programs39 at pH 5 7.0. The pKa values of
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Table 1. Peptidic Inhibitors.

PDB code, inhibitor name Structure DG exp (kcal/mol)

1HVL, A-76889 212.419a

1HVK, A-76928 214.019

1HVJ, A-78791 214.419

1HVI, A-77003 213.619

9HVP, A-74704 211.520

1HXB, Ro31-8959 (Saquinavir) 213.721

1AAQ, SKB-Va 210.722

4PHV, L-700,417 212.723

5HVP, Acetylpepstatin 210.624

7HVP, JG-365 213.325

1GNO, U-89360E 210.626

8HVP, U-85548E \212.427

1HIV, U-75875 \212.428

aThe superscripted number is the reference for the corresponding binding constant.



Table 2. Cyclic Urea Inhibitors.

PDB code, inhibitor name Structure DG exp (kcal/mol)

1QBT, SD146 214.829a

1QBR, XV638 214.529

1QBU, Q8467 214.130

1HVR, XK263 213.129

1QBS, DMP323 213.129

1DMP, DMP450 213.129

(continued)



some of the inhibitors polar groups (i.e., piperazines) were esti-

mated by the pKa module of SciFinder.40 The resulting ioniza-

tion state used in these calculations is shown in Tables 1–3. The

N and C terminus of each monomer were kept charged. In ear-

lier studies, we kept the active site Asp dyad ionized. Following

experimental and theoretical studies we kept charged only one

of the Asp residues of the catalytic machinery.41–43 The iso-

stere’s hydroxyl hydrogen(s) were oriented as to make the best

hydrogen bonds with the Asp acid dyad. The hydrogen positions

were optimized by a 1000 steps steepest descent energy minimi-

zation that kept the heavy atoms fixed, using the CHARMM

force field.18 The final step in our protocol is the SAFE_p calcu-

lation, which takes a few seconds per compound in an OCTANE

SGI workstation.

Fitting the SAFE_p Equation to Experimental Data

To determine the effect of the training set on the quality of the

resulting scoring function, we have used two inhibitor arrays of

9 (set ‘‘A’’) and 16 inhibitors (set ‘‘B’’), respectively to calculate

the eq. (2) constants. The first one contains six peptidic inhibi-

tors (PDB entries 1HVL, 1HVK, 1AAQ, 4PHV, 5HVP, and

7HVP) and three CU inhibitors (PDB entries 1DMP, 1QBS, and

1QBR), whereas the second set holds seven additional inhibitors

(PDB entries 2BPX, 1QBT, 1B6J, 2BPZ, 1B6N, 1HPV, and

1B6L). We also have performed the ‘‘leave one out’’ protocol

by determining the constants and the fit of a series of training

sets that differ in one compound, starting from set ‘‘B’’.

Asp Dyad Protonation State

The issue of the active site Asp dyad charged state was revisited

with the help of the SAFE-p scoring function [eq. (2)]. We used

as a testing ground an inhibitor subset comprised of 11 peptidic

compounds (PDB entries 1HVL, 1HVK, 1HVJ, 1HVI, 9HVP,

1HXB, 1AAQ, 4PHV, 5HVP, 7HVP, and 1GNO). For this

study, we selected the two protonation states that have been

identified out in the literature as the most probable ones for the

HIV-1 PR when bound to a given inhibitor.41–43 These active

site ionization states will be referred to as the ‘‘monoprotonated’’

state in which one of the dyad Asp residues is protonated

whereas the other is left ionized, and the ‘‘diprotonated’’ state in

which both Asp residues are neutral. The starting structure for

both dyad protonation states was built by generating several

hydrogen bond network alternatives in which one or two of the

Asp residues are protonated on any of the oxygens of the Asp

residues in such a way as to produce the best hydrogen bond

network, whereas the inhibitor’s hydroxyl hydrogen is always

directed toward the charged Asp residue. For the case of the

diol-based isosteres, we also generated hydrogen bond networks

which optimize the number of hydrogen bond interactions. Both

Asp dyad ionization states afford several possible initial alterna-

tives, which are screened by an energy minimization that held

the heavy atoms fixed (see earlier). To estimate the effect of the

structural reorganization due to the change in Asp dyad ioniza-

tion state, we proceeded to perform an energy minimization on

the selected structures, for all atoms located at less than 6 Å

around the inhibitor. The first stage of this protocol is a 1500

steps steepest descent minimization with a gradient tolerance of

0.1 followed by a second segment where we perform a conju-

gate gradient minimization with a 0.05 gradient tolerance. All

optimizations were carried out with the CHARMM parameters

provided in InsightII. The inhibitor binding affinities in the

resulting structures were calculated by our SAFE_p protocol.

Results and Discussion

The inhibitors used in this work (collected in Tables 1–3) dis-

play very diverse chemical structure, the result of a continuous

interest into the development of new generations of HIV-1 PR

inhibitors. In many cases (see Table 3) the peptidic nature of

Table 2. (Continued)

PDB code, inhibitor name Structure DG exp (kcal/mol)

1HWR, XK216 211.529

1AJX, AH1 210.931

aThe superscripted number is the reference for the corresponding binding constant.
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Table 3. Other Inhibitors.

PDB code, inhibitor name Structure DG exp (kcal/mol)

2BPW, L-738,317 210.632a

2BPX, L-735,524 (Indinavir) 213.033

2BPZ, L-739,622 210.232

1C70, L-756,423 214.234

1B6N 211.635

1B6L 211.535

1B6K 212.135

(continued)



these compounds has disappeared almost completely, a welcome

trait for drug leads, since this feature favors bioavailability. In

some cases a macrocycle has been introduced into the inhibitor’s

structure. Ligands with this design feature would have the

advantage of being structurally constrained and hence will bind

with a smaller loss of entropy.35 Other inhibitors, like the ones

containing a piperazine moiety32–34 are already being used as

part of AIDS therapy (i.e., Indinavir). Finally, compounds like

the VX-478 (Amprenavir),36 contain a sulphonamide group that

provides a new interacting motif for the active site water mole-

cule.

Scoring Function Prediction and the Size of the

Training Set

As pointed out in our methods section we fitted our SAFE_p

scoring function [eq. (2)] to two training sets that differ in the

number of molecules. Table 4 lists the training sets R2 values,

the error and the standard deviation from the observed binding

free energies for the 30 inhibitors studied, as well as the eq. (2)

constants for both training sets. Perusal of this table indicates

that the quality of the fitting as given by the R2 parameter is

very close for both training sets, irrespective of their size. More-

over, as seen from this table the error and standard deviations

from the experimental affinities for the full set of inhibitors are

very similar for both training sets. For instance, the average

errors are 0.93 and 0.90 kcal/mol, values that are in the range of

those obtained with costlier protocols like free energy perturba-

tion or thermodynamic integration.1 The latter algorithms are

only able to calculate changes in the binding affinity for small

variations in the inhibitors chemical structure. In this regard our

protocol seems capable of predicting the ranking and in many

cases the absolute free energies of a chemically diverse set of

inhibitors. Furthermore, we have performed the ‘‘leave one out

protocol’’ for the set ‘‘B’’. The results of this test are presented

as a graph of the prediction of the residuals that leave one com-

pound out against the prediction residual for the whole set. Pe-

rusal of this figure indicates that almost all compounds fall close

to the 95% confidence region (see Supp. Info., Fig. S1). More-

over, as seen from Figure 1, the rankings predicted by both

Table 3. (Continued)

PDB code, inhibitor name Structure DG exp (kcal/mol)

1B6M 211.635

1B6J 210.935

1HPV, VX-478 (Amprenavir) 212.736

1HPO, U-103265 212.637

aThe superscripted number is the reference for the corresponding binding constant.
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training sets are the same, indicating the robustness of this

approach, regardless of the size of the training set. This result is

independent of the fact that the electrostatic term weight dis-

plays the largest variation between both training sets (see Table

4), and can be explained because the electrostatic contribution is

much smaller (usually a fraction of a kcal/mol with any training

set) than the other two, and hence, a large change does not have

much influence in the actual ranking of the inhibitors.

Some of the main outliers are those inhibitors found in PDB

entries 1AJX and 9HVP (see Figure 1). The former inhibitor31

has different fragments in P1 and P10 and it was obtained and

characterized in a different laboratory than the bulk of the CU

inhibitors, indicating once again that different experimental con-

ditions play a role in the discrepancy between the observed and

experimental ranking, a perennial problem in building a binding

affinity database for prediction.1 On the other hand, the latter

compound was already an outlier in our original SAFE_p predic-

tion performed for peptidic inhibitors.12

The presence of mutants in the active site of HIV-1 PR does

not seem to pose a hurdle for the SAFE_p-based calculations.

Many of the HIV-1 PR structurally known complexes have resi-

due modifications due to viral resistant strains or man-made

modifications. Previous SAFE_p-based studies have shown the

usefulness of this algorithm for the study of the effect of actual

resistance mutations on the binding affinity of some C2-centro-

symmetric inhibitors.14 In this study, we further demonstrate the

versatility of our method in the prediction of binding affinity for

multiple active site mutant strains of the HIV-1 PR, like in the

case of inhibitor U103265 (PDB entry 1HPO) and for macro-

cycle-based inhibitor complexes (PDB entries 1B6N, 1B6L,

1B6K, 1B6M, and 1B6J). The HIV-1 PR strains bound to these

ligands include the Q7K/L33I/L63I or Q7K/L33I variants as part

of a strategy to limit the naturally occurring autoproteolysis

observed in the HIV-1 PR.35,37

In regards to the macrocycle containing inhibitors, their lead

optimization have generated smaller compounds due to the

replacement of the C-terminal tripeptide (see PDB entry 1B6J in

Table 3) by a sulphonamide moiety and by a change in the iso-

stere’s OH group configuration similar to the one in VX-478

(Amprenavir),36 or by a piperidine modified by a terbutyl group

at P20. The resulting ligands (see PDB entries 1B6N and 1B6L

in Table 3) have an improved affinity for the protease, a trend

that our SAFE_p algorithm is able to predict.

Free Energy Inhibitor Fragment Contributions and

Implications for Drug Design

Even in the case where there are differences between the

observed and calculated binding free energies, the modified

SAFE_p function predicts reasonably well the ranking trends of

groups of congeneric compounds, as in the case of the pipera-

zine containing compounds (see Figure 2). In principle, our cal-

culations for these compounds indicate that enlarging the inhibi-

tor by replacement of the cyclopentanol group by an indanol

moiety, in the S’ pockets of the enzyme, (PDB entry 2BPX)

improves binding affinity, whereas the replacement of the pyri-

dine fragment by a larger moiety (in the S pockets) not always

increases binding affinity (e.g., PDB entry 2BPZ). To shed light

into these results and to understand their physical origins, we

have resorted to a very useful analytical tool afforded by our

method that enables us to partition the total binding free energy

Table 4. Results of the Least Square Fit with the Two Training Sets.

Statistical parameter Training set ‘‘A’’ Training set ‘‘B’’

K1 20.00634 20.00663

K2 0.138 0.148

K3 0.0006 0.0127

K4 24.239 23.768

R2a 0.752 0.712

Average errorb 0.929 0.903

Standard deviationb 1.16 1.04

aValue for the training set.
bValue for the set of 30 inhibitors.

Figure 1. Comparison of the experimental (squares)and predicted binding free energies with training

set ‘‘A’’ (triangles) and training set ‘‘B’’ (diamonds) for the whole set of inhibitors studied in this

work. The inhibitors marked by an (a) do not have a single well defined affinity (inhibitors in PDB

entries 1HIV and 8HVP). Their experimental binding free energies fall below 212.4 kcal/mol, in

agreement with our predictions.
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into the fragment contributions, which is made possible by the

atom additive nature of eq. (2). The partitioning scheme used in

our analysis is shown in Figure 3. The partition results for the

piperazine containing compounds are shown in Table 5. We also

list in this table the hydrophobic (DGHC), desolvation penalty

(DGDP) and polar contact (DGHB) contributions for every pocket,

as defined in eq. (2). The direct contribution of water 301 was

left out of the picture, as it has nearly the same value for all

compounds analyzed. As seen from Table 5, the contributions

that determine to the largest extent the ranking binding free

energy originate in the P3 fragment. Interestingly enough, some

of the largest P3 fragments are not the best binders. This out-

come is in agreement with the X-ray studies, which found out

that extending the fragments that fit into the S pockets leads to

an increase in binding affinity only when the resulting groups fit

into newly induced S1–S3 pockets comprised by residues from

the 80’s loop and the flaps.34 These residues provide a favorable

environment for the hydrophobic pyridine ring of indinavir

(PDB entry 2BPX) or the benzofuran moiety (inhibitor L-

756,423), a trend that is substantiated by our analysis. As seen

from Table 5, the best hydrophobic contacts are produced by the

P3 fragment in both 2BPX and 1C70. Moreover, larger P3 frag-

ments are severely penalized by the desolvation term (DGDP),

when they do not fit into the novel pocket. The largest desolva-

tion term comes from the N-methylpiperazinylpyrazine fragment

in 2BPZ (1.91 kcal/mol), possibly owing to its charged nature as

predicted by our pKa estimates.

As seen from Table 5, enlarging the inhibitor by replacement

of the cyclopentanol for an indanol group in the S20 pocket con-
tributes to a smaller extent to the binding free energy. The inda-

nol generates better hydrophobic contacts (DGHC), but those are

partially cancelled by a larger desolvation penalty (DGDP). Inter-

estingly enough, the results of our partitioning analysis also indi-

cate that there are free energy changes in inhibitor fragments

whose chemical structure has not changed from one inhibitor to

the other. For instance, the P10 fragment has a lower binding

free energy in 2BPX (22.41 kcal/mol) than the same fragment

in 2BPW (22.09 kcal/mol) or in 2BPZ (21.96 kcal/mol). As

seen from Table 5, this is the outcome of the better hydrophobic

contacts (DGHC) made by the indanol P10 fragment, that may be

the result of its interaction with fragments placed in adjacent

pockets. Perusal of the inhibitor structure (bound to the enzyme)

shows that the indanol moeity generates van der Waals contacts

with the Phenyl group in P10, indicating that the enlargement of

the P20 group improves the contribution of the P10 to binding by

placing it in a conformation with improved enzyme contacts. As

a whole, these results demonstrate the plasticity of the HIV-1

PR-binding site and shed some light in ways to improve inhibi-

tor binding affinity.

Figure 2. Comparison of the experimental (squares) and calculated

(triangles) binding free energies for the piperazine containing inhibitors.

Figure 3. Partitioning scheme for fragment energy contribution in piperazine containing inhibitors.
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Effect of Asp Dyad Charge on Ligand Binding

We have used the SAFE_p approach to calculate the binding

affinities of 11 peptidic inhibitors (see Table 1) for the HIV-1 PR

in two Asp dyad protonation states that appear to be the most

favored according to the literature.41–43 Table 6 lists the predicted

SAFE_p binding free energies for the two protonation states. As

seen from this table, the binding free predictions differences from

one protonation state to the other are rather small when only the

hydrogen placement has been optimized. The binding free ener-

gies for seven out of eleven inhibitors are better predicted for the

monoprotonated Asp dyad, but the differences are too small to

allow us to draw any statistically relevant conclusions. As a

whole the results indicate that the SAFE_p predicted binding

energies calculated from the X-ray structures are not sensitive to

the Asp dyad protonation state, and that any single of these two

protonation states could be used across the board of HIV-1 PR

inhibitors. On the other hand, a change in the protonation state

may induce a reorganization of the residues in the active site, a

process that is not taken into account in the calculations discussed

above. We attempted to obtain a first order estimate of the active

site structural changes brought about by a change in protonation

states through an energy minimization protocol that included all

atoms located at 6 Å around the inhibitor (see method section).

The calculated binding free energies (see Table 6) depart more

from the observed affinities than those calculated from the origi-

nal X-ray structures. This outcome may indicate that the energy

minimization protocol may produce spurious effects, probably due

to the resulting compaction of the complex upon optimization. Pe-

rusal of these results indicates that the average error is larger for

the diprotonated Asp dyad complexes than for the monoproto-

nated ones, indicating that the latter systems are more resilient to

this protocol than the former ones.

An important discriminating factor for the Asp dyad ioniza-

tion assignment in inhibitor-HIV-1 PR complexes is given by

the thermodynamics equilibrium for moving a proton from solu-

tion to the bound HIV-1 Asp dyad. For this sake, it may be use-

ful to have as a reference state the protonation state of the

unbound enzyme. There is a consensus that the unbound protein

has a singly protonated Asp dyad.44 To estimate the feasibility

of a diprotonated Asp dyad state it is necessary to determine if

the energetic cost of desolvating a proton from water is compen-

sated by the interactions this proton generate in the bound pro-

Table 5. Pocket Binding Analysis for Piperazine Containing Inhibitors.a

PDB id Fragment DGHC
b DGDP

c DGHB
d DGTotal

P3 21.655 1.231 20.004 20.427

P2 23.786 1.520 0.000 22.266

2BPW P1 24.330 2.073 20.013 22.270

P10 23.746 1.653 0.000 22.094

P20 24.239 1.974 20.061 22.326

P3 22.096 0.999 20.034 21.130

P2 23.727 1.588 20.001 22.140

2BPX P1 24.405 2.607 20.023 21.821

P10 24.071 1.662 20.003 22.412

P20 24.695 2.230 20.057 22.522

P3 21.778 1.910 20.001 0.130

P2 23.954 1.548 20.001 22.406

2BPZ P1 24.239 2.031 20.031 22.239

P10 23.593 1.634 20.001 21.960

P20 24.195 2.036 20.056 22.215

P3 23.667 1.060 0.000 22.607

P2 23.678 1.451 0.000 22.227

1C70 P1 24.078 2.348 20.036 21.766

P10 24.154 1.756 20.003 22.401

P20 24.858 2.237 20.055 22.676

aAll energy data are in kcal/mol.
bHydrophobic contribution, first term in eq. (2).
cDesolvation penalty, second term in eq. (2).
dHydrogen bond energy, third term in eq. (2).

Table 6. Predicted Affinities for Both Asp Dyad Ionization States.a

PDB id

Monoprotonated Diprotonated

DGCalc Errorb DGCalc Errorb

1HVL 213.17 (213.56) 0.77 (1.16) 213.12 (213.11) 0.72 (0.71)

1HVK 213.45 (213.67) 0.55 (0.33) 213.40 (213.14) 0.60 (0.86)

1HVJ 213.20 (213.36) 1.20 (1.04) 213.14 (212.80) 1.26 (1.60)

1HVI 213.00 (213.13) 0.60 (0.77) 212.90 (211.80) 0.70 (2.10)

9HVP 213.02 (212.77) 1.52 (1.27) 212.96 (212.93) 1.46 (1.43)

1HXB 212.47 (212.16) 1.53 (1.84) 212.37 (211.67) 1.63 (2.33)

1AAQ 210.19 (210.03) 0.51 (0.66) 210.12 (210.29) 0.58 (0.40)

4PHV 213.64 (213.68) 0.94 (0.98) 213.59 (214.07) 0.89 (1.37)

5HVP 211.08 (211.97) 0.48 (1.37) 210.99 (211.64) 0.39 (1.04)

7HVP 212.70 (212.07) 0.61 (1.23) 212.65 (212.75) 0.65 (0.55)

1GNO 210.54 (211.08) 0.06 (0.48) 210.45 (210.61) 0.15 (0.01)

Average error 0.79 (1.01) 0.82 (1.13)

aEnergy values are in kcal/mol. The results in parenthesis are from the structures that underwent energy minimiza-

tion of all atoms at 6 Å around the inhibitor (see ‘‘Methods’’ section).
bError with respect to the experimental binding free energies.
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tein. Recent calculations45 for the unbound HIV-1 PR indicate

that this process is very costly energy wise and hence that in

many cases the diprotonated state is unlikely, regardless of the

small differences in binding free energy between the monoproto-

nated and diprotonated HIV-1 PR observed in our SAFE_p cal-

culations.

Conclusion

Possibly the main hurdle in the ‘‘in silico’’ discovery of new

potent protein inhibitors resides in the development of a fast

free energy function predictor that could reproduce accurately

the binding free energies or at least the binding ranking of com-

pounds of diverse chemical structure and whose binding con-

stants are spread over several orders of magnitude.1 The aim of

this work has been the application of our ‘‘in-house’’ generated

SAFE_p protocol to a very heterogeneous set of HIV-1 PR

inhibitors that bind to the target enzyme with affinity constants

that differ by many orders of magnitude. The resulting scoring

function is able to predict the binding free energy ranking for

most inhibitors and in many cases the actual binding free ener-

gies with error bars that are usually obtained with protocols that

are several orders of magnitude more time consuming.

In the case of the piperazine containing inhibitors, we have

used the analysis tools afforded by SAFE_p to shed light into

the actual fragment contributions to binding and the physical ori-

gins behind them. The results indicate that larger fragments do

not contribute necessarily the most to the binding free energy,

an outcome partly brought about by the substantial role the des-

olvation penalty plays in the energetics of binding. Our analysis

has enabled us to identify an inhibitor induced fit phenomenon

between neighboring inhibitor fragments.

Finally, we have revisited the effect of the Asp dyad protona-

tion state on the binding affinities and found that the only factor

that could discriminate between the two putative protonation

states (in our approach) is the energetic balance of desolvating a

proton and placing it in the Asp dyad.

We are in the process of extending our SAFE_p protocol to

other members of the aspartic protease family, like the b-secre-
tase, a potential objective for drug leads against Alzheimer’s dis-

ease. Our main interest is to have a highly accurate inhibitor

binding free energy scoring function that could be applied to dif-

ferent enzymes.
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