EFECTO DEL PESO Y DE LA SUPERFICIE DE PLANEO EN EL VUELO DE LOS AVIONES DEPAPEL

SEPARATA

EFECTO DEL PESO Y DE LA SUPERFICIE DE PLANEO EN EL VUELO DE LOS AVIONES DE PAPEL

Lo que pretendemos en esta investigación es responder a las siguientes preguntas acerca de los aviones de papel: ¿cómo afecta el peso y la superficie de planeo de los aviones a la longitud de vuelo? y ¿existen modelos que vuelan mejor que otros? :

Siguiendo los pasos del modelo científico comenzamos formulando las hipótesis concretas que dirigieron nuestra investigación y que son las siguientes:

- 1. El aumento del **peso de los aviones de papel** (manteniendo constante la superficie de planeo) disminuye la **distancia lineal de vuelo**.
- 2. El aumento de **la superficie de planeo** (manteniendo constante el peso por unidad de superficie del avión) aumenta la **distancia lineal de vuelo.**
- 3. Los aviones del modelo longitudinal realizan mayores distancias de vuelo que los del modelo transversal.

El peso de los aviones de papel se varió fabricando aviones con 1, 2 ó 3 láminas de papel pegadas. La superficie de planeo se varió fabricando los aviones con láminas tamaño DIN A3, 1/2 DIN A3 y 1/4 DIN A3. El modelo longitudinal y transversal se refiere a que su fabricación se realiza con las láminas de papel a lo largo o a lo ancho.

El diseño del experimento exigía que la distancia de vuelo no debía depender del procedimiento de lanzamiento (sólo de las variables peso, tamaño o modelo), siendo este al mayor problema que tuvimos que resolver. Después de ensayar varios procedimientos nos decidimos por un lanzamiento manual restringido pero realizado 10 veces en cada una de las 18 situaciones experimentales.

Se realizaron un total de 180 lanzamientos (90 en cada modelo) correspondientes a 18 situaciones experimentales obteniéndose los siguientes resultados:

					M	ODE	LO L	ONG	ITU	DINA	L				
			VAR	IACI	ÓN S	SUPE	UPERFICIE (PESO/SUPERFICIE = CTE)								
CIE)	1 LÁMINA DIN A3				MINA I	OIN A3			1/4 LÁ	MINA I	OIN A3				
- 11	2,87	3,05	3,13	3,25	3,29	2,52	2,66	2,76	2,83	3,05	2,52	2,61	2,73	2,76	2,87
(SUPERFICE	4,03 4,26 4,33 4,72 6,33					3,18	3,34	3,89	4,15	5,51	2,93	2,95	2,97	3,33	3,92
PER	2 LÁMINAS DIN A3 PEGADAS				2			/2 DINA	.3	2 LÁMINAS DE 1/4 DIN A3				A 3	
8						PEGADAS						P	EGADA	S	
SO (3,2	3,24	3,28	3,37	3,38	2,38	2,5	2,56	2,61	2,82	1,74	1,83	2,46	2,55	2,67
VARIACIÓN PESO	3,45	4,01	4,19	4,27	4,41	2,82	2,83	3,08	3,2	3,34	2,78	2,96	3	3,15	4,76
χį	3 LÁMINAS DIN A3 PEGADAS				OAS	3 LÁMINAS DE 1/2 DINA3					3 LÁMINAS DE 1/4 DIN A3				A 3
IA(P	EGADA	.S			P	EGADA	S		
VAR	2,54	2,69	2,8	2,86	2,9	2,16	2,21	2,29	2,41	2,56	1,78	1,97	2,01	2,16	2,24
	3,06	3,35	3,48	4,5	4,93	2,57	2,61	2,64	2,71	3,48	2,34	2,48	2,86	3,07	3,09

		MODELO TRANSVERSAL													
			VAR	IACI	ÓN S	SUPE	UPERFICIE (PESO/SUPERFICIE = CTE)								
CIE)	1 LÁMINA DIN A3			1/2 LÁMINA DIN A3						1/4 LÁ	MINA D	OIN A3			
ll l	1,55	2,28	2,57	2,85	3,04	2	2,46	2,54	2,7	2,81	1,32	1,74	2,05	2,25	2,34
VARIACIÓN PESO (SUPERFICIE	3,09 3,21 3,42 3,6 4,01				2,84	3,12	3,5	3,63	3,85	2,67	2,91	3,04	3,25	3,33	
PER	2 LÁMINAS DIN A3 PEGADAS					2 LÁMINAS DE 1/2 DINA3						2 LÁMINAS DE 1/4 DIN A3			
\mathbb{R}						PEGADAS					PEGADAS				
80	2,01	2,35	2,54	2,55	2,59	1,69	2,13	2,15	2,32	2,44	1,57	1,79	1,91	1,99	2,43
N PE	2,68	2,8	2,93	2,97	3,16	2,46	2,56	2,74	2,98	3	2,57	2,69	2,71	2,78	2,84
χį	3 LA	ÁMINAS	DIN A	B PEGAI	DAS	3	LÁMIN.	AS DE 1	/2 DINA	.3	3	LÁMIN	AS DE 1	/4 DIN <i>A</i>	A3
IAC					PEGADAS						P	EGADA	S		
VAR	1,65	1,7	1,78	1,83	1,96	1,69	1,92	2,07	2,1	2,15	1,56	1,59	1,86	1,87	2,11
	2,06	2,63	2,86	2,87	2,93	2,15	2,16	2,22	2,63	2,65	2,2	2,22	2,27	2,31	2,22

Se realizaron los cálculos y valoraciones necesarias llegando a las siguientes conclusiones:

CONCLUSIÓN FINAL SOBRE LA VALORACIÓN DE LA HIPÓTESIS 1:

Recogidas las valoraciones finales de los resultados obtenidos en los experimentos de lanzamiento con aviones del modelo longitudinal y transversal, podemos decir que **se confirma la hipótesis** de que " el aumento del peso de los aviones de papel (manteniendo constante la superficie de planeo) hace disminuir la distancia lineal de vuelo", aunque **con reservas** porque el grado de certeza no es muy elevado.

El aumento del peso del avión que supone su fabricación con una lámina más, hace disminuir, en todas las situaciones experimentales, la distancia lineal de vuelo, estando esta disminución en un intervalo cercano a una longitud media de 31,97 cm por cada lámina añadida (27,625 cm, 36,625 cm y 25,125 cm en el modelo longitudinal y 39,8125 cm, 38,75 cm y 23,875 cm en el modelo transversal).

CONCLUSIÓN FINAL SOBRE LA VALORACIÓN DE LA HIPÓTESIS 2:

Recogidas las valoraciones finales de los resultados obtenidos en los experimentos de lanzamiento con aviones del modelo longitudinal y transversal, podemos decir que se confirma la hipótesis de que " el aumento de la superficie de planeo (manteniendo constante el peso por unidad de superficie del avión) aumenta la distancia lineal de vuelo ", aunque con reservas porque el grado de certeza no es muy elevado.

El aumento de la superficie de planeo en la fabricación de los aviones, hace aumentar, en todas las situaciones experimentales, la distancia lineal de vuelo, estando este aumento alrededor de un intervalo que corresponde a una longitud media de 0,79922619 m por cada unidad de superficie añadida (1,13714286 m, 1,35464286 m y 1,13142857 m en el modelo longitudinal y 0,56071429 m, 0,42107143 m y 0,19035714 m en el modelo transversal).

También puede apreciarse que el efecto de la variación de la superficie de planeo es mayor en el modelo longitudinal (media de 1,2077381 m/unidad) que en transversal (media de 0,39071429 m/unidad).

CONCLUSIÓN FINAL SOBRE LA VALORACIÓN DE LA HIPÓTESIS 3:

Resultando que la diferencia en la longitud media de vuelo de los aviones del modelo longitudinal (3,011805556 m) y del modelo transversal (2,492916667) es estadísticamente significativa a favor del primer modelo y, además, en todas las situaciones experimentales el promedio de la longitud alcanzada en el vuelo es mayor, podemos concluir que los aviones del modelo longitudinal realizan mayores distancias de vuelo que los del modelo transversal.

EFECTO DEL PESO Y DE LA SUPERFICIE DE PLANEO EN EL VUELO DE LOS AVIONES DE PAPEL

INFORME EXPERIMENTAL COMPLETO

INDICE

	Página
INTRODUCCIÓN	2
FORMULACIÓN DE HIPÓTESIS Y DEFINICIÓN DE	
VARIABLES	4
DISEÑO Y REALIZACIÓN DEL EXPERIMENTO	8
DATOS EXPERIMENTALES	10
VERIFICACIÓN DE LA HIPÓTESIS 1	12
VERIFICACIÓN DE LA HIPÓTESIS 2	25
VERIFICACIÓN DE LA HIPÓTESIS 3.	38

EFECTO DEL PESO Y DE LA SUPERFICIE DE PLANEO EN EL VUELO DE LOS AVIONES DE PAPEL

INTRODUCCIÓN

Voy a contar como comienza esta aventura investigadora. Estaba en clase un poco despistado haciendo un avión de papel cuando el profesor, que estaba explicando el Método Científico, me sorprendió y algo enfadado dijo: ¡Hombre! Si tenemos en clase a un ingeniero aeronáutico interesado en hacer investigación con aviones de papel. Y concluyó: tendrás que realizar una investigación, siguiendo el Método Científico, con aviones de papel.

Al día siguiente otro compañero y amigo mío le dijo al profesor que también quería "ser castigado", que también quería hacer investigación con aviones de papel.

El profe aceptó y comentó: cada uno hará un avión con distinta forma y competiréis como si fuerais 2 empresas de ingeniería aeronáutica que fabrican cada una un modelo distinto de avión y lo hacen con distintos tamaños y para llevar distintos pesos. Se tratará de comprobar la distancia de vuelo alcanzada por cada uno de los prototipos en distintas condiciones, variando el peso del avión (manteniendo fija la superfície de planeo) y variando la superfície de planeo (manteniendo fijo el peso por unidad de superfície de planeo del avión). Es decir, vamos a comprobar el efecto sobre la distancia que planea los aviones de dos factores: la carga (peso) del avión y su superfície y esto para 2 modelos de avión distintos. Los 2 prototipos, que llamamos modelo longitudinal y transversal, serán, el primero fabricando el avión con láminas de papel a lo largo (el avión saldrá más largo que ancho) y el segundo fabricando el avión con láminas a lo ancho (el avión saldrá más ancho que largo).

¡Vaya sorpresa! Vamos a ser científicos haciendo volar aviones de papel y es que, como dice el profesor, se puede hacer Ciencia de todo, bueno, de todo aquello que se pueda medir o comprobar porque así lo exige el Método Científico, método riguroso que debe seguir los pasos siguientes:

1. Tener una idea: aunque parezca mentira nuestro profesor dice que es lo más importante porque es lo único que nadie nos podrá enseñar, es la labor creativa del científico. Nosotros ya tenemos la idea que hemos expuesto en los párrafos anteriores. Los demás pasos, dice el profesor, que se pueden aprender y es lo que haremos con esta investigación.

- 2. Formular hipótesis: se trata de concretar las ideas mediante una declaración o predicción que contenga variables medibles y comprobables con datos reales.
- 3. Diseño y realización de los experimentos: se trata de realizar las acciones necesarias para poder medir las variables y poder comprobar si se verifican las hipótesis o no de manera rigurosa. Es nuestro caso está claro que tendremos que poner a volar los aviones que fabriquemos y medir, para cada condición, la distancia de vuelo.
- 4. Valoración de los datos obtenidos en la investigación: de los experimentos obtendremos unos datos que nos permitirán valorar, realizando los cálculos adecuados, hasta que punto se verifican las hipótesis o no.

Allá vamos, ¿qué prototipo será el mejor? ¿cómo afecta el peso del avión y la superficie de planeo al vuelo de los aviones?. Tranquilos, mantengamos controlada la emoción, que intentaremos responder científicamente en las siguientes páginas.

FORMULACIÓN Y DEFINICIÓN DE VARIABLES

Las hipótesis que van a dirigir nuestra investigación son las siguientes:

- 1. El aumento del **peso de los aviones de papel** (manteniendo constante la superficie de planeo) disminuye la **distancia lineal de vuelo**.
- 2. El aumento de **la superficie de planeo** (manteniendo constante el peso por unidad de superficie del avión) aumenta la **distancia lineal de vuelo.**
- 3. **Los aviones del modelo** longitudinal realiza mayores **distancias de vuelo** que los del modelo transversal.

Las variables a medir y el procedimiento para medirlas es el siguiente:

Distancia lineal de vuelo: con una cinta métrica se medirá la distancia lineal, medida sobre el suelo, desde el punto de lanzamiento hasta el punto donde para el avión en el suelo.

Peso de los aviones: esta variable tomará 3 valores en cada modelo utilizando para su fabricación 1 lámina de papel, 2 láminas de papel (doble peso) y 3 láminas de papel (triple peso). El peso de los aviones se combinará con la otra variable, la superfície de planeo, es decir, que para cada uno de los 3 valores de peso de los aviones habrá 3 valores de tamaño de la superfície de planeo.

Superficie de planeo: esta variable también tomará 3 valores para cada modelo, utilizando para la fabricación de los aviones el tamaño de una lámina DIN A3, la mitad del tamaño de una lámina DIN A3 (mitad de superficie) y la cuarta parte del tamaño de una lámina DIN A3 (un cuarto de peso). Cada uno de los 3 tamaños de superficie tendrá los 3 pesos distintos de la variable anterior.

Modelo de avión: se compararán 2 modelos de avión, el longitudinal (fabricando el avión con las láminas a lo largo) y el transversal (fabricando el avión a lo ancho).

Combinando las 3 últimas variables nos salen 18 situaciones experimentales (3 de peso x 3 de superficie = 9 para cada uno de los 2 modelos) que se pueden ver en las tablas que se elaboraron para la recogida de datos.

		MODELO LONGITUDINAL														
			VAR	IACI	ÓN S	SUPE	UPERFICIE (PESO/SUPERFICIE = CTE)									
6	1 LÁMINA DIN A3				1/2 LÁ	MINA I	OIN A3			1/4 LÁ	MINA E	DIN A3				
=CIE)																
(SUPERFICIE=																
(SUPE	2 LÁMINAS DIN A3 PEGADAS		2 LÁMINAS DE 1/2 DINA3 PEGADAS					2 LÁMINAS DE 1/4 DIN A3 PEGADAS			Λ3					
ESO																
VARIACIÓN PESO		<u> </u>														
RIAC	3 L.	ÁMINAS	S DIN A	3 PEGAI	DAS	3	LÁMIN P	AS DE 1 EGADA		.3	3		AS DE 1 EGADA		13	
VA																

					M	ODE	LO 7	TRAN	SVE	RSA	L				
	VARIACIÓN SUPERFICIE (PESO/SUP										ERFICIE = CTE)				
<u> </u>		1 LÁMINA DIN A3					1/2 LÁ	MINA I	OIN A3	1		1/4 LÁ	MINA D	OIN A3	
:CIE)															
Œ															
RFIC		,					, ,					- /			
(SUPERFICIE	2 LÁMINAS DIN A3 PEGADAS				2	2 LÁMINAS DE 1/2 DINA3 PEGADAS					2 LÁMINAS DE 1/4 DIN A3 PEGADAS				
							1	LG/ID/I	5				LG/ID/I		
PES															
Ž															
VARIACIÓN PESO	3 L	ÁMINAS	S DIN A	3 PEGAI	DAS	3	LÁMIN	AS DE 1	/2 DINA	13	3	LÁMIN	AS DE 1	/4 DIN A	۸3
RIZ			1	1	ı		P	EGADA	S	1		P	EGADA	S	
VA															

Como puede apreciarse en las tablas:

- En vertical cambia el peso de los aviones pero no el tamaño de la superficie de planeo.
- En horizontal cambia el tamaño de la superficie del avión pero no el peso por unidad de superficie del avión.

También puede adivinarse por las tablas que se tomarán 10 medidas de la distancia lineal de vuelo para cada uno de los 18 tipos de avión, es decir, un total de 180 medidas de distancia de vuelo de los aviones.

DISEÑO Y REALIZACIÓN DEL EXPERIMENTO

En los experimentos las variables del peso, la superficie y el modelo están perfectamente definidas. No existe ninguna dificultad en su control para poder comprobar sus efectos sobre la distancia de vuelo de los aviones, que tampoco tiene ninguna dificultad en su medida.

El mayor problema que tuvimos que resolver es el lanzamiento de los aviones. El diseño experimental exigía que el **impulso de lanzamiento de los aviones sea siempre el mismo** en todas las situaciones experimentales para que no influya en los efectos de las otras variables. Hicimos varias pruebas con distintos procedimientos de lanzamiento:

- Pensamos en lanzar los aviones desde un 1º piso desde una ventana a través de una rampa que siempre tenía la misma inclinación, pero pudimos comprobar que los aviones no planeaban, sino que caían en picado, además de que, aunque la rampa fuera de la misma inclinación, como los aviones cambiaban de peso, tampoco se garantizaba el mismo impulso de lanzamiento. También el posible viento era un elemento perturbador
- Construimos un lanzador casero de aviones como el de la figura consistente en un cartón doblado y una goma que al estirarla podía lanzar el avión colocado en el cartón. Tampoco resultó, aunque se estirara lo mismo la goma en cada lanzamiento, los aviones más grandes tenían más dificultades al salir del cartón que los más pequeños, por lo que no se garantizaba la igualdad en el impulso de lanzamiento.

- Compramos, incluso, un aparato que vimos en Internet, para lanzar aviones de papel, el electric plane launcher, que tampoco resultó, porque también presentó dificultades semejantes a las anteriores, además de que al funcionar con pilas, conforme se gastaban el impulso de lanzamiento también disminuía.

- Al final nos decidimos por un lanzamiento manual restringido. Todos los lanzamiento serían lanzados por la misma persona desde una posición fija pegado a la pared y procurando hacer la misma fuerza y movimiento en el lanzamiento. Se tomarían 10 medidas en cada situación experimental, descartando la medida mayor y la menor y tomando como válida de la distancia de vuelo del avión la media aritmética de las 8 medidas intermedias. Pensamos que así se controlaba en buena medida esta variable que podía distorsionar la validez de nuestros resultados experimentales.

Las pruebas experimentales se llevaron a cabo en un recinto cerrado (ausencia de viento) y suficientemente grande para que los aviones pudieran volar libremente en ausencia de perturbaciones externas.

DATOS EXPERIMENTALES

Los datos obtenidos de distancia lineal de vuelo en los 10 lanzamientos de cada situación experimental en el modelo longitudinal son los siguientes:

					M	O D E l	ONG	SITU	DINA	l L					
			VAR	IACI	ÓN S	SUPE	RFIC	CIE (PESO	/ SUPI	ERFIC	IE =	CTE)		
		1 LÁN	MINA D	IN A3		1/2 LÁMINA DIN A3					1/4 LÁMINA DIN A3				
	2,87	3,05	3,13	3,25	3,29	2,52	2,66	2,76	2,83	3,05	2,52	2,61	2,73	2,76	2,87
=CIE)	4,03	4,26	4,33	4,72	6,33	3,18	3,34	3,89	4,15	5,51	2,93	2,95	2,97	3,33	3,92
RFICE	2 LÁMINAS DIN A3 PEGADAS				2		AS DE 1 EGADA	/2 DINA S	.3	2		AS DE 1 EGADA		A3	
ESO (SUPI	3,2	3,24	3,28	3,37	3,38	2,38	2,5	2,56	2,61	2,82	1,74	1,83	2,46	2,55	2,67
VARIACIÓN PESO (SUPERFICIE=	3,45	4,01	4,19	4,27	4,41	2,82	2,83	3,08	3,2	3,34	2,78	2,96	3	3,15	4,76
VARL	3 LÁMINAS DIN A3 PEGADAS			DAS	3		AS DE 1 EGADA	/2 DINA S	.3	3		AS DE 1 EGADA		λ3	
	2,54	2,69	2,8	2,86	2,9	2,16	2,21	2,29	2,41	2,56	1,78	1,97	2,01	2,16	2,24
	3,06	3,35	3,48	4,5	4,93	2,57	2,61	2,64	2,71	3,48	2,34	2,48	2,86	3,07	3,09

Y los promedios de distancia lineal de vuelo de cada situación experimental son:

	PROMEDIOS MODELO LONGITUDINAL									
	VARIACIÓN SUPERFICIE (PESO/SUPERFICIE = CTE)									
CIE)	1 LÁMINA DIN A3	1/2 LÁMINA DIN A3	1/4 LÁMINA DIN A3							
(SUPERFICIE = CT	3,7575	3,2325	2,89375							
	2 LÁMINAS DIN A3 PEGADAS	2 LÁMINAS DE 1/2 DINA3 PEGADAS	2 LÁMINAS DE 1/4 DIN A3 PEGADAS							
VARIACIÓN PESO	3,64875	2,8025	2,675							
RIACIĆ	3 LÁMINAS DIN A3 PEGADAS	3 LÁMINAS DE 1/2 DINA3 PEGADAS	3 LÁMINAS DE 1/4 DIN A3 PEGADAS							
VAJ	3,205	2,5	2,39125							

Los datos obtenidos de distancia lineal de vuelo en los 10 lanzamientos de cada situación experimental en el modelo transversal son los siguientes:

					M	MODELO TRANSVERSAL										
			VAR	IACI	ÓN S	SUPE	UPERFICIE (PESO/SUPERFICIE = CTE)									
		1 LÁN	MINA D	IN A3			1/2 LÁ	MINA I	DIN A3		1/4 LÁMINA DIN A3					
	1,55	2,28	2,57	2,85	3,04	2	2,46	2,54	2,7	2,81	1,32	1,74	2,05	2,25	2,34	
=CIE)	3,09	3,21	3,42	3,6	4,01	2,84	3,12	3,5	3,63	3,85	2,67	2,91	3,04	3,25	3,33	
ERHCIE	2 LÁMINAS DIN A3 PEGADAS				2		AS DE 1 EGADA	/2 DINA S	.3	2		AS DE 1 EGADA		λ3		
ESO (SUP	2,01	2,35	2,54	2,55	2,59	1,69	2,13	2,15	2,32	2,44	1,57	1,79	1,91	1,99	2,43	
VARIACIÓN PESO (SUPERHCIE =:	2,68	2,8	2,93	2,97	3,16	2,46	2,56	2,74	2,98	3	2,57	2,69	2,71	2,78	2,84	
VARI	3 L/	ÁMINAS	MINAS DIN A3 PEGADAS					AS DE 1 EGADA	/2 DINA S	.3	3 LÁMINAS DE 1/4 DIN A3 PEGADAS				13	
	1,65	1,7	1,78	1,83	1,96	1,69	1,92	2,07	2,1	2,15	1,56	1,59	1,86	1,87	2,11	
	2,06	2,63	2,86	2,87	2,93	2,15	2,16	2,22	2,63	2,65	2,2	2,22	2,27	2,31	2,22	

Y los promedios de distancia lineal de vuelo de cada situación experimental son:

	PROMEDIOS MODELO TRANSVERSAL								
	VARIACIÓN S	SUPERFICIE (PESO/SUPE	ERFICIE = CTE)						
CIE)	1 LÁMINA DIN A3	1/2 LÁMINA DIN A3	1/4 LÁMINA DIN A3						
(SUPERFICIE = CI	3,0075	2,95	2,53125						
_	2 LÁMINAS DIN A3 PEGADAS	2 LÁMINAS DE 1/2 DINA3 PEGADAS	2 LÁMINAS DE 1/4 DIN A3 PEGADAS						
N PESO	2,67625	2,4725	2,35875						
VARIACIÓN	3 LÁMINAS DIN A3 PEGADAS	3 LÁMINAS DE 1/2 DINA3 PEGADAS	3 LÁMINAS DE 1/4 DIN A3 PEGADAS						
VAF	2,21125	2,175	2,05375						

VERIFICACIÓN DE LA HIPÓTESIS 1

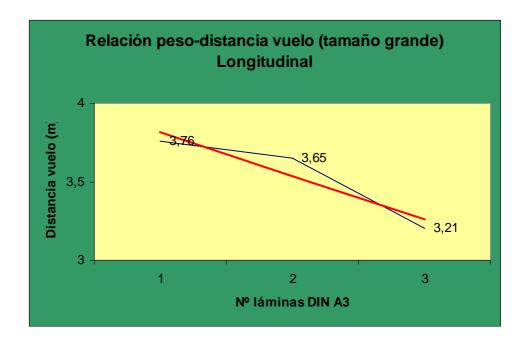
HIPÓTESIS 1. El aumento del **peso de los aviones de papel** (manteniendo constante la superficie de planeo) disminuye la **distancia lineal de vuelo**.

A) EN EL MODELO LONGITUDINAL

A.1) Aviones fabricados con tamaño de lámina DIN A3

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con el tamaño de superficie de planeo más grande (lámina DIN A3) para los distintos pesos (1, 2 ó 3 láminas), en el modelo longitudinal:

SUPERFICIE PLANEO GRANDE							
Distancia vuelo (m)	Nº Láminas DIN A3						
3,7575	1						
3,64875	2						
3,205	3						


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

	TAMAÑO GRANDE									
Estadísticas de la regresión										
Coeficiente de	Coeficiente de correlación múltiple -0,9438384									
Coeficiente de	e determinaciór	n R^2				0,89083105				
R^2 ajustado						0,7816621				
Error típico						0,13676318				
Observacione	S					3				
ANÁLISIS DE	ANÁLISIS DE VARIANZA									
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crí	tico de F				
Regresión	1	0,15262813	0,15262813	8,16011361	0,214	37218				
Residuos	1	0,01870417	0,01870417							
Total	2	0,17133229								
ANÁLISIS DE	REGRESIÓN									
Coeficientes Error típico Estadístico t Probabilidad Inferior 95% Superior 95%										
Intercepción	4,08958333	0,2089092	19,5758887	0,03249236	1,43515159	6,74401508				
Nº Láminas DIN A3	-0,27625	0,09670617	-2,85659126	0,21437218	-1,50501313	0,95251313				

Puede apreciarse que al aumentar el peso disminuye la distancia lineal de vuelo, pudiendo establecer una relación aproximada:

Distancia vuelo = -0.27625 (nº láminas) + 4.08958

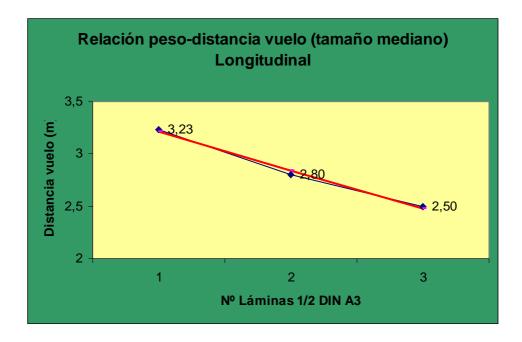
Es decir, que por cada lámina que se aumenta, la distancia de vuelo tiende a disminuir en 27,625 cm, por término medio (aunque el grado de certeza no es alto, 21,44% de incertidumbre).

En donde se puede ver que los datos reales se encuentran cercanos a los de la recta de regresión (en rojo).

A.2) Aviones fabricados con tamaño de lámina 1/2 DIN A3

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con el tamaño de superficie de planeo mediano (lámina 1/2 DIN A3) para los distintos pesos (1, 2 ó 3 láminas), en el modelo longitudinal:

SUPERFICIE PLANEO MEDIO							
Distancia vuelo (m)	Nº Láminas 1/2DIN A3						
3,2325	1						
2,8025	2						
2,5	3						


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

	TAMAÑO MEDIO					
Estadísticas	de la regresió	n				
Coeficiente de	e correlación m	últiple				-0,99498836
Coeficiente de	e determinaciór	n R^2				0,99000185
R^2 ajustado						0,98000369
Error típico						0,05205166
Observacione	s					3
ANÁLISIS DE	VARIANZA					
	Grados de Suma de Promedio de los F Valor cr libertad cuadrados cuadrados					tico de F
Regresión	1	0,26827813	0,26827813	99,0184544	0,063	76266
Residuos	1	0,00270937	0,00270937			
Total	2	0,2709875				
ANÁLISIS DE	ANÁLISIS DE REGRESIÓN					
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	3,5775	0,07951022	44,9942161	0,0141466	2,5672312	4,5877688
Nº Láminas 1/2DIN A3	-0,36625	0,03680608	-9,9508017	0,06376266	-0,83391358	0,10141358

Puede apreciarse que al aumentar el peso disminuye la distancia lineal de vuelo, pudiendo establecer una relación aproximada:

Distancia vuelo =
$$-0.36625$$
 (nº láminas) + 3.5775

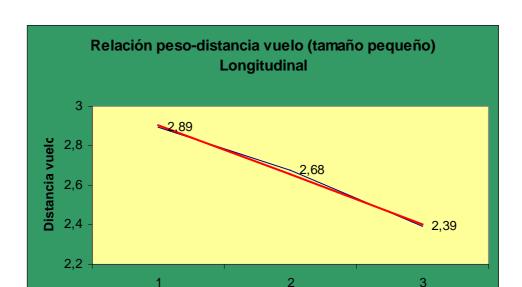
Es decir, que por cada lámina que se aumenta, la distancia de vuelo tiende a disminuir en 36,625 cm, por término medio (con un grado de certeza apreciable aunque no muy alto, 6,38% de incertidumbre).

En donde se puede ver que los datos reales se encuentran muy cercanos a los de la recta de regresión (en rojo).

A.3) Aviones fabricados con tamaño de lámina 1/4 DIN A3

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con el tamaño de superficie de planeo más pequeño (lámina 1/4 DIN A3) para los distintos pesos (1, 2 ó 3 láminas), en el modelo longitudinal:

SUPERFICIE PLANEO PEQUEÑO			
Distancia vuelo (m)	Nº Láminas 1/4DIN A3		
2,89375	1		
2,675	2		
2,39125	3		


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

	TAMAÑO PEQUEÑO					
Estadísticas	de la regresió	n				
Coeficiente de	e correlación m	últiple				-0,9972229
Coeficiente de	e determinaciór	n R^2				0,99445352
R^2 ajustado						0,98890703
Error típico						0,02653614
Observacione	S					3
ANÁLISIS DE	VARIANZA					
	Grados de Suma de Promedio de los F Valor crític					tico de F
Regresión	1	0,12625313	0,12625313	179,294379	0,047	45602
Residuos	1	0,00070417	0,00070417			
Total	Total 2 0,12695729					
ANÁLISIS DE	ANÁLISIS DE REGRESIÓN					
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	3,15583333	0,04053462	77,8552556	0,00817652	2,64079434	3,67087233
Nº Láminas 1/4DIN A3	-0,25125	0,01876388	-13,3900851	0,04745602	-0,48966673	-0,01283327

Puede apreciarse que al aumentar el peso disminuye la distancia lineal de vuelo, pudiendo establecer una relación aproximada:

Distancia vuelo =
$$-0.25125$$
 (nº láminas) + 3.155833

Es decir, que por cada lámina que se aumenta, la distancia de vuelo tiende a disminuir en 25,125 cm, por término medio (con un alto grado de certeza, tan solo un 4,75% de incertidumbre).

En donde se puede ver que los datos reales se encuentran muy cercanos a los de la recta de regresión (en rojo).

Nº Láminas 1/4DIN A3

Conclusión final en el modelo longitudinal: de forma persistente, en las 3 situaciones experimentales (de 3 tamaños distintos), hemos comprobado que al aumentar el peso de los aviones (manteniendo constante el tamaño) también aumenta la distancia lineal de vuelo, por lo que podemos confirmar la hipótesis, aunque con reservas porque el grado de certeza no siempre es suficientemente elevado.

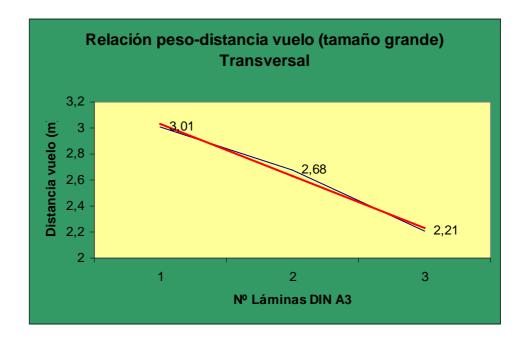
Calculando la media aritmética entre 0,27625, 0,36625 y 0,25125 podemos decir que cada lámina que añadimos cuando fabricamos los aviones del modelo longitudinal aumenta la distancia lineal de vuelo, por término medio, en 0,29792 m ó 29,792 cm

B) EN EL MODELO TRANSVERSAL

B.1) Aviones fabricados con tamaño de lámina DIN A3

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con el tamaño de superficie de planeo más grande (lámina DIN A3) para los distintos pesos (1, 2 ó 3 láminas), en el modelo transversal:

SUPERFICIE PLANEO GRANDE			
Distancia vuelo (m)	Nº Láminas DIN A3		
3,0075	1		
2,67625	2		
2,21125	3		


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

	TAMAÑO GRANDE					
Estadísticas	de la regresió	n				
Coeficiente de	correlación m	últiple				-0,99533032
Coeficiente de	e determinaciór	n R^2				0,99068245
R^2 ajustado						0,98136489
Error típico						0,05460321
Observacione	S					3
ANÁLISIS DE	VARIANZA					
	Grados de Suma de Promedio de los F Valor crítico de F				tico de F	
Regresión	1	0,31700703	0,31700703	106,324308	0,061	54713
Residuos	1	0,00298151	0,00298151			
Total	2	0,31998854				
ANÁLISIS DE	REGRESIÓN					
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	3,42791667	0,08340778	41,0982848	0,01548712	2,36812489	4,48770845
Nº Láminas DIN A3	-0,398125	0,0386103	-10,3113679	0,06154713	-0,88871327	0,09246327

Puede apreciarse que al aumentar el peso disminuye la distancia lineal de vuelo, pudiendo establecer una relación aproximada:

Distancia vuelo = $-0.398125(n^{\circ} láminas) + 3.42791667$

Es decir, que por cada lámina que se aumenta, la distancia de vuelo tiende a disminuir en 39,8125 cm, por término medio (con cierto grado de certeza, aunque no muy elevado, 6,15% de incertidumbre).

En donde se puede ver que los datos reales se encuentran muy cercanos a los de la recta de regresión (en rojo).

B.2) Aviones fabricados con tamaño de lámina 1/2 DIN A3

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con el tamaño de superficie de planeo mediano (lámina 1/2 DIN A3) para los distintos pesos (1, 2 ó 3 láminas), en el modelo transversal

SUPERFICIE PLANEO MEDIO			
Distancia vuelo(m)	Nº Láminas 1/2DIN A3		
2,95	1		
2,4725	2		
2,175	3		

:

Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

	TAMAÑO MEDIO					
Estadísticas	de la regresió	n				
Coeficiente de	e correlación m	últiple				-0,99112882
Coeficiente de	e determinaciór	n R^2				0,98233635
R^2 ajustado						0,96467269
Error típico						0,07348469
Observacione	s					3
ANÁLISIS DE	VARIANZA					
	Grados de Suma de Promedio de los F Valor crítico de F libertad cuadrados cuadrados					ítico de F
Regresión	1	0,3003125	0,3003125	55,6134259	0,084	86084
Residuos	1	0,0054	0,0054			
Total	2	0,3057125				
ANÁLISIS DE	ANÁLISIS DE REGRESIÓN					
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	3,3075	0,11224972	29,4655519	0,02159727	1,88123817	4,73376183
Nº Láminas 1/2 DIN A3	-0,3875	0,05196152	-7,45744098	0,08486084	-1,04773094	0,27273094

Puede apreciarse que al aumentar el peso disminuye la distancia lineal de vuelo, pudiendo establecer una relación aproximada:

Distancia vuelo =
$$-0.3875$$
(nº láminas) + 3.3075

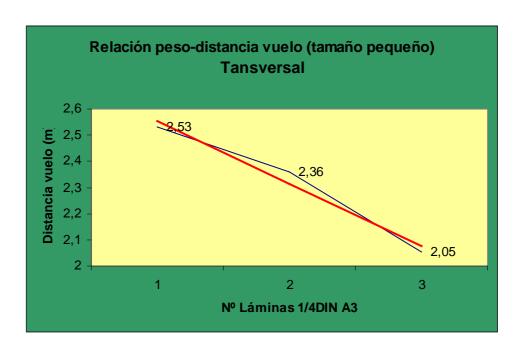
Es decir, que por cada lámina que se aumenta, la distancia de vuelo tiende a disminuir en 38,75 cm, por término medio (con cierto grado de certeza, aunque no muy elevado, 8,49% de incertidumbre).

En donde se puede ver que los datos reales se encuentran muy cercanos a los de la recta de regresión (en rojo).

B.3) Aviones fabricados con tamaño de lámina 1/4 DIN A3

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con el tamaño de superficie de planeo más pequeño (lámina 1/4 DIN A3) para los distintos pesos (1, 2 ó 3 láminas), en el modelo transversal:

SUPERFICIE PLANEO PEQUEÑO			
Distancia vuelo (m)	Nº Láminas 1/4DIN A3		
2,53125	1		
2,35875	2		
2,05375	3		


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

	TAMAÑO PEQUEÑO					
Estadísticas	de la regresió	n				
Coeficiente de	e correlación m	últiple				-0,9874087
Coeficiente de	e determinación	n R^2				0,97497595
R^2 ajustado						0,94995189
Error típico						0,0540929
Observacione	S					3
ANÁLISIS DE	VARIANZA					
	Grados de Suma de Promedio de los F Valor cri					tico de F
Regresión	1	0,11400313	0,11400313	38,9615522	0,101	13165
Residuos	1	0,00292604	0,00292604			
Total	2	0,11692917				
ANÁLISIS DE	REGRESIÓN					
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	2,79208333	0,08262827	33,7908978	0,01883448	1,74219615	3,84197052
Nº Láminas 1/4 DIN A3	-0,23875	0,03824946	-6,24191895	0,10113165	-0,72475333	0,24725333

Puede apreciarse que al aumentar el peso disminuye la distancia lineal de vuelo, pudiendo establecer una relación aproximada:

Distancia vuelo = -0.23875 (nº láminas) + 2.79208333

Es decir, que por cada lámina que se aumenta, la distancia de vuelo tiende a disminuir en 23,875 cm, por término medio (con cierto grado de certeza, aunque no muy elevado, 10,11% de incertidumbre).

En donde se puede ver que los datos reales se encuentran muy cercanos a los de la recta de regresión (en rojo).

Conclusión final en el modelo transversal: de forma persistente, en las 3 situaciones experimentales (de 3 tamaños distintos), hemos comprobado que al aumentar el peso de los aviones (manteniendo constante el tamaño) también aumenta la distancia lineal de vuelo, por lo que podemos confirmar la hipótesis, aunque con reservas porque el grado de certeza nunca es suficientemente elevado.

Calculando la media aritmética entre 0,398125, 0,3875 y 0,23875 podemos decir que cada lámina que añadimos cuando fabricamos los aviones modelo transversal aumenta la distancia lineal de vuelo, por término medio, en 0,341458 m ó 34,1458 cm

CONCLUSIÓN FINAL SOBRE LA VALORACIÓN DE LA HIPÓTESIS 1:

Recogidas las valoraciones finales de los resultados obtenidos en los experimentos de lanzamiento con aviones del modelo longitudinal y transversal, podemos decir que **se confirma la hipótesis** de que " el aumento del peso de los aviones de papel (manteniendo constante la superficie de planeo) hace disminuir la distancia lineal de vuelo", aunque **con reservas** porque el grado de certeza no es muy elevado.

El aumento del peso del avión que supone su fabricación con una lámina más, hace disminuir, en todas las situaciones experimentales, la distancia lineal de vuelo, estando esta disminución en un intervalo cercano a una longitud media de 31,97 cm por cada lámina añadida (27,625 cm, 36,625 cm y 25,125 cm en el modelo longitudinal y 39,8125 cm, 38,75 cm y 23,875 cm en el modelo transversal)

VERIFICACIÓN DE LA HIPÓTESIS 2

HIPÓTESIS 2: El aumento de **la superficie de planeo** (manteniendo constante el peso por unidad de superficie del avión) aumenta la **distancia lineal de vuelo.**

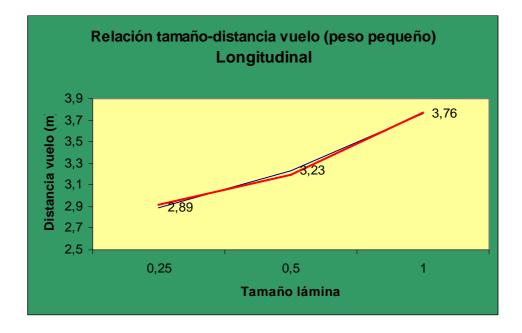
A) EN EL MODELO LONGITUDINAL

A.1) Aviones fabricados con una única lámina (peso pequeño):

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con una única lámina para los distintos tamaños (DIN A3, 1/2 DIN A3 y 1/4 DIN A3), en el modelo longitudinal:

UNA ÚNICA LÁMINA			
Distancia vuelo (m)	Tamaño lámina		
2,89375	0,25		
3,2325	0,5		
3,7575	1		

Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:


	UNA ÚNICA LÁMINA (PESO PEQUEÑO)					
Estadísticas	de la regresió	n				
Coeficiente de	correlación m	últiple				0,99780501
Coeficiente de	e determinaciór	n R^2				0,99561483
R^2 ajustado						0,99122967
Error típico						0,04075734
Observacione	S					3
ANÁLISIS DE	VARIANZA					
Grados de Suma de Promedio de F Valor crítico de libertad cuadrados los cuadrados					ítico de F	
Regresión	1	0,37715238	0,37715238	227,041476	0,042	18821
Residuos	1	0,00166116	0,00166116			
Total	2	0,37881354				
ANÁLISIS DE	REGRESIÓN					
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	2,63125	0,04991734	52,7121412	0,01207584	1,99699274	3,26550726
Tamaño Iámina	1,13714286	0,07546793	15,0678955	0,04218821	0,17823602	2,09604969

Puede apreciarse que al aumentar el tamaño de la lámina con la que se fabrica el avión aumenta la distancia lineal de vuelo, pudiendo establecerse una relación aproximada:

Distancia vuelo = 1,13714286 (tamaño lámina) + 2,63125

Es decir, que por cada unidad de aumento del tamaño de las láminas con las que se fabrican los aviones, la distancia de vuelo tiende a aumentar en 1,13714286 m, por término medio (y con alto grado de certeza ya que la incertidumbre es de tan sólo un 4,22%).

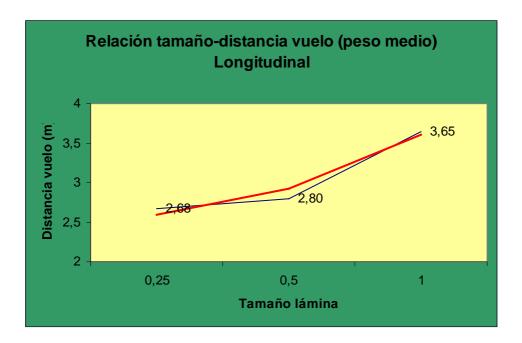
Una visión gráfica de los resultados puede apreciarse en:

En donde se puede ver que los datos reales se encuentran muy cercanos a los de la regresión (en rojo)

A.2) Aviones fabricados con 2 láminas (peso medio):

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con 2 láminas para los distintos tamaños (DIN A3, 1/2 DIN A3 y 1/4 DIN A3), en el modelo longitudinal:

2 LÁMINAS			
Distancia vuelo (m)	Tamaño lámina		
2,675	0,25		
2,8025	0,5		
3,64875	1		


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

2 LÁMINAS (PESO MEDIO)							
Estadísticas	Estadísticas de la regresión						
Coeficiente de	correlación m	últiple				0,97745929	
Coeficiente de	e determinaciór	n R^2				0,95542666	
R^2 ajustado						0,91085331	
Error típico						0,15801821	
Observacione	S					3	
ANÁLISIS DE	VARIANZA						
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F		
Regresión	1	0,53522504	0,53522504	21,4349339	0,135	42477	
Residuos	1	0,02496975	0,02496975				
Total	2	0,56019479					
ANÁLISIS DE	REGRESIÓN						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	
Intercepción	2,251875	0,19353199	11,6356732	0,05457865	-0,20717157	4,71092157	
Tamaño Iámina	1,35464286	0,29259287	4,62978768	0,13542477	-2,36308611	5,07237182	

Puede apreciarse que al aumentar el tamaño de las láminas con las que se fabrica el avión aumenta la distancia lineal de vuelo, pudiendo establecerse una relación aproximada:

Distancia vuelo = 1,35464286 (tamaño lámina) + 2,251875

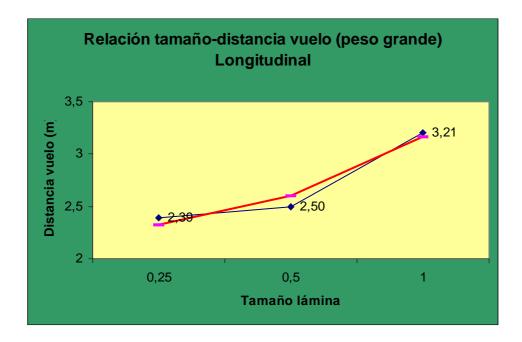
Es decir, que por cada unidad de aumento del tamaño de las láminas con las que se fabrican los aviones, la distancia de vuelo tiende a aumentar en 1,35464286 m, por término medio (aunque con un moderado grado de certeza ya que la incertidumbre es de un 13,54%).

En donde se puede ver que los datos reales se encuentran cercanos a los de la regresión (en rojo).

A.3) Aviones fabricados con 3 láminas (peso alto):

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con 3 láminas para los distintos tamaños (DIN A3, 1/2 DIN A3 y 1/4 DIN A3), en el modelo longitudinal:

3 LÁMINAS (PESO ALTO)				
Distancia vuelo (m)	Tamaño lámina			
2,39125	0,25			
2,5	0,5			
3,205	1			


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

	3 LÁMINAS (PESO ALTO)						
Estadísticas	Estadísticas de la regresión						
Coeficiente de	correlación m	últiple				0,97801426	
Coeficiente de	e determinaciór	n R^2				0,95651189	
R^2 ajustado						0,91302379	
Error típico						0,13028986	
Observacione	S					3	
ANÁLISIS DE	VARIANZA						
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F		
Regresión	1	0,37337143	0,37337143	21,9947929	0,13	3741	
Residuos	1	0,01697545	0,01697545				
Total	2	0,39034688					
ANÁLISIS DE REGRESIÓN							
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	
Intercepción	2,03875	0,15957183	12,7763777	0,0497265	0,01120632	4,06629368	
Tamaño Iámina	1,13142857	0,24124993	4,68986065	0,133741	-1,93392935	4,19678649	

Puede apreciarse que al aumentar el tamaño de las láminas con las que se fabrica el avión aumenta la distancia lineal de vuelo, pudiendo establecerse una relación aproximada:

Distancia vuelo = 1,13142857 (tamaño lámina) + 2,03875

Es decir, que por cada unidad de aumento del tamaño de las láminas con las que se fabrican los aviones, la distancia de vuelo tiende a aumentar en 1,13142857 m, por término medio (aunque con un moderado grado de certeza ya que la incertidumbre es de un 13,37%).

En donde se puede ver que los datos reales se encuentran cercanos a los de la regresión (en rojo)

Conclusión final en el modelo longitudinal: de forma persistente, en las 3 situaciones experimentales (con 3 pesos distintos), hemos comprobado que al aumentar el tamaño de los aviones (manteniendo constante el peso por unidad de superficie) también aumenta la distancia lineal de vuelo, por lo que **podemos confirmar la hipótesis**, aunque **con reservas** porque el grado de certeza no siempre es suficientemente elevado.

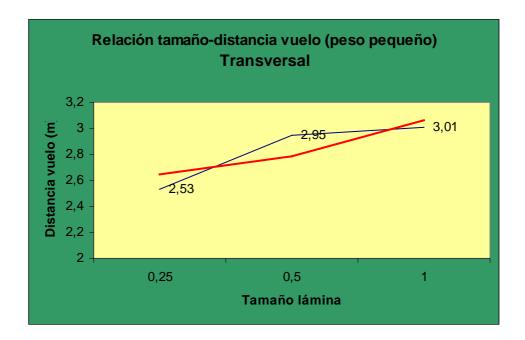
Calculando la media aritmética entre 1,13714286, 1,35464286 y 1,13142857 podemos decir que por cada unidad de tamaño añadido cuando fabricamos los aviones del modelo longitudinal aumenta la distancia lineal de vuelo, por término medio, en 1,2077381 m.

B) EN EL MODELO TRANSVERSAL

B.1) Aviones fabricados con una única lámina (peso pequeño):

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con una única lámina para los distintos tamaños (DIN A3, 1/2 DIN A3 y 1/4 DIN A3), en el modelo transversal:

UNA ÚNICA LÁMINA (peso pequeño)			
Distancia vuelo (m)	Tamaño lámina		
2,53125	0,25		
2,95	0,5		
3,0075	1		


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

	ı	UNA ÚNICA L	ÁMINA (PES	O PEQUEÑO)			
Estadísticas	de la regresió	n					
Coeficiente de correlación múltiple						0,82369282	
Coeficiente de	e determinaciór	n R^2				0,67846986	
R^2 ajustado						0,35693972	
Error típico						0,20846377	
Observacione	s					3	
ANÁLISIS DE	VARIANZA						
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F		
Regresión	1	0,09170015	0,09170015	2,11012834	0,383	82015	
Residuos	1	0,04345714	0,04345714				
Total	2	0,13515729					
ANÁLISIS DE	ANÁLISIS DE REGRESIÓN						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	
Intercepción	2,5025	0,25531493	9,80162024	0,06472651	-0,74156989	5,74656989	
Tamaño Iámina	0,56071429	0,38599989	1,45262808	0,38382015	-4,34385839	5,46528696	

Puede apreciarse que al aumentar el tamaño de la lámina con la que se fabrica el avión aumenta la distancia lineal de vuelo, pudiendo establecerse una relación aproximada:

Distancia vuelo = 0.56071429 (tamaño lámina) + 2.5025

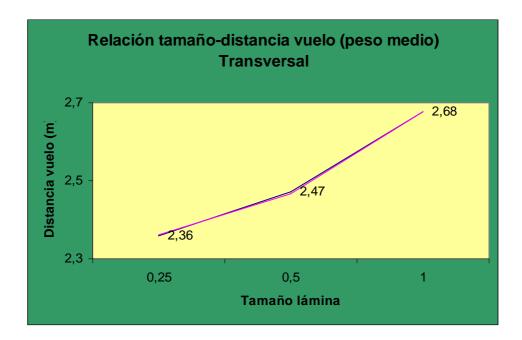
Es decir, que por cada unidad de aumento del tamaño de las láminas con las que se fabrican los aviones, la distancia de vuelo tiende a aumentar en 0,56071429 m, por término medio (aunque con bajo grado de certeza ya que la incertidumbre es de un 38,38%).

En donde se puede ver que los datos reales, aunque algo separados de los de la regresión (en rojo), siguen una relación semejante.

B.2) Aviones fabricados con 2 láminas (peso medio):

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con 2 láminas para los distintos tamaños (DIN A3, 1/2 DIN A3 y 1/4 DIN A3), en el modelo transversal:

2 LÁMINAS (peso medio)				
Distancia vuelo (m)	Tamaño lámina			
2,35875	0,25			
2,4725	0,5			
2,67625	1			


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

2 LÁMINAS (PESO MEDIO)							
Estadísticas	Estadísticas de la regresión						
Coeficiente de	correlación m	últiple				0,99961067	
Coeficiente de	e determinaciór	n R^2				0,99922149	
R^2 ajustado						0,99844299	
Error típico						0,00634745	
Observacione	S					3	
ANÁLISIS DE	VARIANZA						
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor cri	tico de F	
Regresión	1	0,05171283	0,05171283	1283,5097	0,017	76511	
Residuos	1	4,029E-05	4,029E-05				
Total	2	0,05175313					
ANÁLISIS DE	REGRESIÓN						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	
Intercepción	2,256875	0,00777401	290,31019	0,00219289	2,15809723	2,35565277	
Tamaño Iámina	0,42107143	0,0117532	35,8261035	0,01776511	0,27173348	0,57040938	

Puede apreciarse que al aumentar el tamaño de las láminas con las que se fabrica el avión aumenta la distancia lineal de vuelo, pudiendo establecerse una relación aproximada:

Distancia vuelo = 0,42107143 (tamaño lámina) + 2,256875

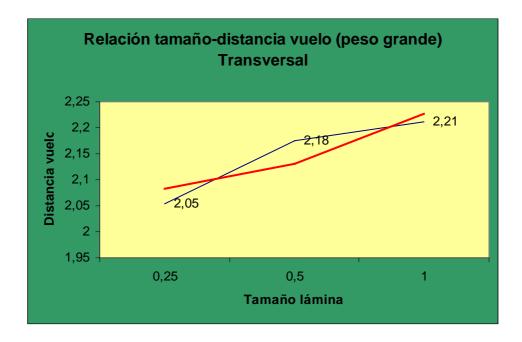
Es decir, que por cada unidad de aumento del tamaño de las láminas con las que se fabrican los aviones, la distancia de vuelo tiende a aumentar en 0,42107143 m, por término medio (y con un alto grado de certeza ya que la incertidumbre es de tan sólo un 1,78%).

En donde se puede ver que los datos reales coinciden casi exactamente con los de la regresión (en rojo).

B.3) Aviones fabricados con 3 láminas (peso alto):

Recogidos los promedio de las distancias de vuelo realizadas por los aviones fabricados con 3 láminas para los distintos tamaños (DIN A3, 1/2 DIN A3 y 1/4 DIN A3), en el modelo transversal:

3 LÁMINAS (PESO ALTO)				
Distancia vuelo (m)	Tamaño lámina			
2,05375	0,25			
2,175	0,5			
2,21125	1			


Se realiza un análisis de regresión en una hoja de cálculo Excel obteniéndose el siguiente resultado:

3 LÁMINAS (PESO ALTO							
Estadísticas	Estadísticas de la regresión						
Coeficiente de	correlación m	últiple				0,88130601	
Coeficiente de	e determinaciór	n R^2				0,77670028	
R^2 ajustado						0,55340055	
Error típico						0,05512263	
Observacione	S					3	
ANÁLISIS DE	VARIANZA						
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F		
Regresión	1	0,01056879	0,01056879	3,47828589	0,313	32989	
Residuos	1	0,0030385	0,0030385				
Total	2	0,01360729					
ANÁLISIS DE	REGRESIÓN						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	
Intercepción	2,035625	0,06751116	30,1524223	0,02110565	1,17781806	2,89343194	
Tamaño Iámina	0,19035714	0,10206728	1,86501632	0,31332989	-1,10652505	1,48723934	

Puede apreciarse que al aumentar el tamaño de las láminas con las que se fabrica el avión aumenta la distancia lineal de vuelo, pudiendo establecerse una relación aproximada:

Distancia vuelo = 0,19035714 (tamaño lámina) + 2,035625

Es decir, que por cada unidad de aumento del tamaño de las láminas con las que se fabrican los aviones, la distancia de vuelo tiende a aumentar en 0,19035714 m, por término medio (aunque con un reducido grado de certeza ya que la incertidumbre es de un 31,33%).

En donde se puede ver que los datos reales, aunque algo separados de los de la regresión (en rojo), siguen una relación semejante.

Conclusión final en el modelo transversal: de forma persistente, en las 3 situaciones experimentales (con 3 pesos distintos), hemos comprobado que al aumentar el tamaño de los aviones (manteniendo constante el peso por unidad de superficie) también aumenta la distancia lineal de vuelo, por lo que **podemos confirmar la hipótesis**, aunque **con reservas** porque el grado de certeza no siempre es suficientemente elevado.

Calculando la media aritmética entre 0,56071429, 0,42107143 y 0,19035714 podemos concluir que por cada unidad de tamaño añadido cuando fabricamos los aviones del modelo longitudinal aumenta la distancia lineal de vuelo, por término medio, en 0,39071429 m.

CONCLUSIÓN FINAL SOBRE LA VALORACIÓN DE LA HIPÓTESIS 2:

Recogidas las valoraciones finales de los resultados obtenidos en los experimentos de lanzamiento con aviones del modelo longitudinal y transversal, podemos decir que se confirma la hipótesis de que " el aumento de la superficie de planeo (manteniendo constante el peso por unidad de superficie del avión) aumenta la distancia lineal de vuelo ", aunque con reservas porque el grado de certeza no es muy elevado.

El aumento de la superficie de planeo en la fabricación de los aviones, hace aumentar, en todas las situaciones experimentales, la distancia lineal de vuelo, estando este aumento alrededor de un intervalo que corresponde a una longitud media de 0,79922619 m por cada unidad de superficie añadida (1,13714286 m, 1,35464286 m y 1,13142857 m en el modelo longitudinal y 0,56071429 m, 0,42107143 m y 0,19035714 m en el modelo transversal).

También puede apreciarse que el efecto de la variación de la superficie de planeo es mayor en el modelo longitudinal (media de 1,2077381 m/unidad) que en transversal (media de 0,39071429 m/unidad).

VERIFICACIÓN DE LA HIPÓTESIS 3

HIPÓTESIS 3. Los aviones del modelo longitudinal realizan mayores distancias de vuelo que los del modelo transversal.

A partir de los promedios de longitud de vuelo de las 9 situaciones experimentales de cada modelo obtenidos en las pruebas de lanzamiento se calcula la media aritmética de todos los promedios:

LONGITUDES PROM	OMEDIODE VUELO (m)		
LONGITUDINAL	TRANSVERSAL		
2,89375	2,53125		
3,2325	2,95		
3,7575	3,0075		
2,675	2,35875		
2,8025	2,4725		
3,64875	2,67625		
2,39125	2,05375		
2,5	2,175		
3,205	2,21125		
MEDIA DE P	ROMEDIOS		
3,011805556	2,492916667		

Y se realiza una prueba "t" para medias de 2 muestras emparejadas (en una hoja de cálculo Excel) para comprobar si la diferencia de medias entre las longitudes de vuelo de los aviones del modelo longitudinal y transversal se pueden considerar significativa, resultando:

Prueba t para medias de dos muestras emparejadas						
	LONGITUDINAL	TRANSVERSAL				
Media	3,011805556	2,492916667				
Varianza	0,233250825	0,112561719				
Observaciones	9	9				
Coeficiente de correlación de Pearson	0,79237018					
Diferencia hipotética de las medias	0					
Grados de libertad	8					
Estadístico t	5,217071937					
P(T<=t) una cola	0,000402727					
Valor crítico de t (una cola)	1,85954832					
P(T<=t) dos colas	0,000805454					
Valor crítico de t (dos colas)	2,306005626					

Podemos decir que la diferencia de medias es significativa (al ser el estadístico t mayor que los valores críticos) y, por tanto, **confirmamos la hipótesis**.

CONCLUSIÓN FINAL SOBRE LA VALORACIÓN DE LA HIPÓTESIS 3:

Resultando que la diferencia en la longitud media de vuelo de los aviones del modelo longitudinal (3,011805556 m) y del modelo transversal (2,492916667) es estadísticamente significativa a favor del primer modelo y, además, en todas las situaciones experimentales el promedio de la longitud alcanzada en el vuelo es mayor, podemos concluir que los aviones del modelo longitudinal realizan mayores distancias de vuelo que los del modelo transversal.