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1 Why Boolean function minimization?

Here we will not go into the theory of Boolean functions, automata or finite state machines. The reader is
expected to have some background knowledge in them or at the very least understanding what logical
conjunction (and), disjunction (or) and negation (not) are.

The following short notations will be used throughout this document:

x and y ↔ xy

x or y ↔ x + y

not(x) ↔ x̄

Let us start with a motivating example. Assume you have a logical function f depending on 4 logical
variables a, b, c and d, as follows:

f = b̄ + ācd + bc̄d + cd̄ + ad̄ + ab̄

This could be an activation function f for some automata, that depends on state of the 4 signals. This
could also be some logical expression in a programming language, that depends on the combination of
4 logical conditions. For example in C this could be

if (!b || (!a && c && d) || (b && c && d) || (c && !d) || (a && !d) || (a && !b))

The question that we want to answer not is Can we simplify this expression?

This can be motivated by the fact that we want to reduce the number of logical elements involved in
out activation function (respectively the size and cost of the final product) or that we want to make our
program faster and hopefully understandable. In the rest we will abstract ourselves from the underlying
problem and will deal only with the problem posed above.

2 How to solve Boolean minimization problems?

There are 2 main algorithms: Karnaugh map (also known as Veitch diagram) and Quine-McCluskey
method. While the former is an relative easy and intuitive it becomes difficult to use with more than
5 Boolean variables and is difficult to implement in a program. On other hand the Quine-McCluskey
method is more complicated, but easier for computer implementation. Therefore minBool.m is an
implementation of this method [1]
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Coming back to the above example, there are altogether 16 combinations that can occur between them.
They are listed in Table 1. In the last column with + are marked the combinations, that will set f to 1 for
our example. For example the condition b̄ will be true for combinations 0 . . . 3 and 8 . . . 11.

Table 1: Activation combinations

a b c d used
0 0 0 0 0 +
1 0 0 0 1 +
2 0 0 1 0 +
3 0 0 1 1 +
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0 +
7 0 1 1 1 +
8 1 0 0 0 +
9 1 0 0 1 +
10 1 0 1 0 +
11 1 0 1 1 +
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0 +
15 1 1 1 1 +

At the end we obtain, that f will be 1 for combinations 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 14 and 15.

To find the minimal combination simply call minBool.m with the list of activating combinations:

>> R = minBool([0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 14, 15])
R =

1 2 3 4
0 -1 0 0
0 0 1 0

What the result is telling us is that we can exchange the initial activation for f by a disjunction of 2
conjunctions. The first line of R is giving only the numbers of the incoming variables we have used.
Each line that follows it is describing one of the conjunctions. The first line is showing us that only the
2nd signal, i.e. b, is involved and it has to be negated (-1 shows negation, 1 shows that the signal is
involved directly). The second line is stating that the second conjunction is only of signal 3, i.e. c. Of the
whole Boolean condition can be exchanged with

f = b̄ + c

or if it is a program if (!b || c)

Looks better, doesn’t it!

3 What if there are “don’t care” combinations?

So called “don’t care” combinations can occur for example by the activation function by J-K and R-S
flip-flops. The reason for their occurrence is that the flip-flop can change state depending only on 1 of
the inputs and what is the signal on the other input is of no importance (see Table 2) and furthermore
there are combinations that (by normal operation) will never be reached. Thus this gives freedom to
chose a signal for this “free” input, that allows simplification of the activation function.



minBool manual 3

Table 2: J-K and R-S flip-flops

State Flip-Flop inputs
Q(k) Q(k + 1) R S J K

0 0 x 0 0 x
0 1 0 1 1 x
1 0 1 0 x 1
1 1 0 x x 0

Again for a small-scale problems Karnaugh maps can be used to chose appropriate values for those
“don’t care” situations, but as the number of activation signals increases so does the complexity. In such
cases one can use the method proposed [2]. It uses genetic algorithm to propose values for those “free”
states and than evaluates which combination is better depending on the total number of conjunctions,
signals involved in the conjunctions and/or number of negations needed. The method is illustrated
with the GAmin toolbox (see [3]), but can be used with other genetic/evolutionary algorithms as well.

As an example consider that we want to implement the second J-K flip-flop (Q2) from [2] and in par-
ticular the activation function for its J input (i.e. J2). The state of this signal (0 or 1) is no importance
by combinations 2, 3, 6, 7, 10, 11, 14 and 15. Thus there are total of 8 decision variables for a genetic
algorithm to chose.

The genetic algorithm used in [2] is a multiobjective one, since it gives the freedom to chose the “best”
solution after the algorithm has finished, instead of deciding what is more important (the number of
disjunction, the number of negation, etc) before the optimization algorithm. This way also the problem
of deciding of weights that allow combining several objectives to a single one is avoided.

The three objective functions used here are

F1 number of conjunctions in the disjunctive function generating the J or K (respectively S and R)
signals

F2 total number of signals involved in the activation function

F3 total number of inversion

For an activation function like J = ābc + bd the values are F1 = 2, F2 = 5, F3 = 1.

If one has different requirements or plans to use other activation logic (e.g. NOT-OR) one can design
other cost functions.

The first step of the evaluation program is to substitute the decision variables into the activation function
and see which combinations are used. Then those combinations are passed to minBool.m which eval-
uates the minimal function representation. Finally the values of the objective functions are computed
and returned to the evolutionary algorithm.

The following Matlab code realizes the above algorithm. It is taken from the demonstration functions
for [2].

function costFun = evalBool_J2( B )
% B is a vector with the 8 decision variables

% substitute the variables in the correct positions
J2 = [0 1 B(1:2) 0 1 B(3:4) 0 0 B(5:6) 0 1 B(7:8)];

% take only the combinations for which J2 is 1
G = find(J2)-1; % -1, because the counting starts at 0

% Perform boolean minimization
R = minBool(G);
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R = R(2:end,:); % remove the heading row

% evaluate the cost functions
costFun(1) = n = size(R,1); % number of desjunctions
costFun(2) = sum(sum(R˜=0)); % number of involved signals
costFun(3) = sum(sum(R==-1)); % number of inverted signals

Now to run the optimization just define the number of variables (8), the fact that they are integers, taking
only values of 0 and 1 and the function, computing the cost function evalBool_J2.

% Define optimization options
opt = GAopt(-5);
opt.MaxIter = 100; opt.Graphics = ’off’;

% lower and upper boundary and variable type
BNDS = [zeros(8,1) ones(8,1) -ones(8,1)];

%% Run the optimization
[rGens, rFit] = GAMOminSC(’evalBool_J2’, BNDS, opt);

The only remaining thing is interpreting the results and if there are several results obtained from the
multiobjective algorithm choosing the most appropriate one.

for i = 1:size(rGens,1)
B = rGens(i,:);
fprintf(’\n Proposed solution number %d\n’,i);

J2 = [0 1 B(1:2) 0 1 B(3:4) 0 0 B(5:6) 0 1 B(7:8)];
R = minBool(find(J2));

fprintf(’\t x Q1 Q2 Q3\n’);
disp(R(2:end,:))

end

Executing this gives exactly 1 activation function: J2 = x̄Q3 + Q1Q3.

Enjoy!
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