Harmonic Oscillator

 


 The Hamiltonian for the harmonic oscillator is given by setting qm07-x-01.gif (1039 bytes)

in the expression for the Hamiltonian giving

 qm07-eq-01.gif (1245 bytes) 

where K is the spring constant. p_op.gif (838 bytes) is the operator for the x-component of momentum. The time-independent Schrodinger equation (for one-dimension)

 qm07-eq-02.gif (1157 bytes)

 becomes 

qm07-eq-03.gif (1561 bytes) 

Substituting qm07-x-02.gif (1068 bytes) and x_op.gif (829 bytes) = x into Eq. (2) gives

 qm07-eq-04.gif (1395 bytes)            

 The potential is shown in the diagram below

qm05-im-01.gif (4525 bytes)

 

As seen in the above diagram the classical region is given when the kinetic energy is positive, i.e. for E > V. This corresponds to the interval –x0 < x < x0.


The Hamiltonian in Terms of the Creation and Annihilation Operators

 Let beta2.gif (1007 bytes) where omega2.gif (981 bytes), i.e. K = mw02. Define the operators

 qm07-eq-05.gif (1767 bytes)

The relation qm07-x-03.gif (948 bytes) will prove useful and is derived here.  

qm07-eq-06.gif (4743 bytes)

Substituting the relation qm07-x-04.gif (952 bytes) results in  

qm07-eq-07.gif (1071 bytes)

 Note also that

 qm07-eq-08.gif (1090 bytes)

 The inverses of Eq. (5) are found to be  

qm07-eq-09.gif (1410 bytes)

 The Hamiltonian in Eq. (1) can be expressed in terms of the creation and annihilation operators as follows.  Squaring both x_op.gif (829 bytes) and p_op.gif (838 bytes) gives

 qm07-eq-10.gif (1903 bytes) 

qm07-eq-11.gif (1923 bytes)

Adding Eqs. (10) and (11) gives 

qm07-eq-12.gif (1927 bytes)

 This can be simplified by substituting in Eq. (8)

 qm07-eq-13.gif (1712 bytes)

 Substituting beta2.gif (1007 bytes) yields the final result 

qm07-eq-14.gif (1351 bytes) 

At this point it will prove convenient to define the following operator

 qm07-eq-15.gif (1067 bytes)

 With this definition the Hamiltonian in Eq. (14) becomes

 qm07-eq-16.gif (1340 bytes)

 Let the eigenvalues of Hamiltonian be n and the eigenkets be n_ket.gif (873 bytes). From Eq. (16) and Eq. (8) we get the following relation

 qm07-eq-17.gif (2439 bytes)

  It follows from Eq. (17) that  an_ket.gif (899 bytes) is an eigenket of N_op.gif (853 bytes) corresponding to the eigenvalue n - 1. That is to say

 qm07-eq-18.gif (1110 bytes)

 Notice the effect that a_op.gif (829 bytes) has on an eigenket of N_op.gif (853 bytes); It reduces the eigenvalue by one.  E.g.

 qm07-eq-19.gif (1206 bytes)

 It is for this reason that a_op.gif (829 bytes) is called the annihilation operator.  In a similar fashion

 qm07-eq-20.gif (1792 bytes)

 It follows from Eq. (20) that a_dag_n_ket.gif (918 bytes) is an eigenket of N_op.gif (853 bytes) corresponding to the eigenvalue n + 1. That is to say

 qm07-eq-21.gif (1137 bytes)

 Notice the effect that a_dag_op.gif (849 bytes) has on an eigenket of N_op.gif (853 bytes); It increases the eigenvalue by one.  E.g.

 qm07-eq-22.gif (1210 bytes)

 It is for this reason that a_dag_op.gif (849 bytes) is called the creation operator. 


Eigenvalues of the Hamiltonian


The expectation of the Hamiltonian, e.g. Eq. (1), in the state n_ket.gif (873 bytes) is found to be

 qm07-eq-23.gif (2111 bytes)

Note that for any Hermitian operator a_op.gif (845 bytes) the expectation of the square of a_op.gif (845 bytes) in the state n_ket.gif (873 bytes) is given by

 qm07-eq-24.gif (1713 bytes)

 And therefore the expectation of the square is always greater than or equal to zero. Thus Eq. (24) shows that qm07-x-05.gif (995 bytes). Therefore

 qm07-eq-25.gif (1929 bytes)

 qm07-eq-26.gif (1086 bytes) 

Eq. (26) implies that all eigenstates corresponding to n < -1/2 must vanish.  This situation is obtained if we set

 qm07-eq-27.gif (1061 bytes)

Eq. (27) implies that

qm07-eq-28.gif (1370 bytes)

 Applying a_dag_op.gif (849 bytes)to Eq. (27) and noting the definition N_op_equals.gif (930 bytes) it follows that

 qm07-eq-29.gif (1154 bytes) 

Therefore the eigenvalue of N_op.gif (853 bytes) corresponding to n_0_ket.gif (871 bytes) is zero. Multiplying the relation qm07-x-06.gif (976 bytes) by N_op.gif (853 bytes) gives

 qm07-eq-30.gif (2309 bytes)

Or since qm07-x-06.gif (976 bytes)

 qm07-eq-31.gif (1106 bytes) 

Therefore the eigenvalue of N_op.gif (853 bytes) corresponding to n_1_ket.gif (870 bytes) is one. In a similar fashion it can be shown that the eigenvalue of N_op.gif (853 bytes) corresponding to n_ket.gif (873 bytes) is n where n is an integer. The eigenvalues of the Hamiltonian are therefore found as follows

 qm07-eq-32.gif (1778 bytes)

Therefore the possible values of the energy for the quantum harmonic oscillator are

 qm07-eq-33.gif (1466 bytes)


Hosted by www.Geocities.ws

1