Affine Vs. Metric Geometry

Back to Physics World
Back to Geometrical Math for GR


Since Ohanian et al explain this so well I think a quote is in order. From Gravitation and Spacetime - Second Edition, Hans C. Ohanian, W.W. Norton & Co., (1994), From page 302

Mathematically, a Riemannian space is a differentiable manifold endowed with a topological structure and a geometrical structure. In the discussion of the geometric structure of a curved space we can make a distinction between the affine geometry and the metric geometry. These two kinds of geometries correspond to two different ways in which we can detect the curvature of a space. One way is by examining the behavior of of parallel line segments, or parallel vectors. For example, on the surface of a sphere, we can readily detect the curvature by transporting a vector around a close path, always keeping the vector parallel to itself as possible. [fig not shown here] shows what happens if we parallel transport a vector around a triangular path on the sphere. The final vector differs in the direction from the initial vector, whereas on a flat surface the final vector would not differ. Such changes in a vector produced by parallel transport characterize the affine geometry (the word affine means connected, and refers to how parallels at different places are connected, or related). .... Another way in which we can detect curvature is by measurements of lengths and areas. For example, we can draw a circle on the sphere, and check the radius vs. circumference, or the radius vs. area. Both the circumference and the area of such a circle are smaller than for a circle on a flat surface [figure not shown here]. Such deviations from what we expect on a flat surface characterize the metric geometry


Back to Geometrical Math for GR
Back to Physics World
Hosted by www.Geocities.ws

1