
Abstraction Refinement by Controllability and
Cooperativeness Analysis

Freddy Y.C. Mang and Pei-Hsin Ho

Advanced Technology Group, Synopsys, Inc.

{fmang, pho}@synopsys.com

We present a new abstraction refinement algorithm to better refine
the abstract model for formal property verification. In previous
work, refinements are selected either based on a set of counter
examples of the current abstract model, as in
[5][6][7][8][9][19][20], or independent of any counter examples,
as in [17]. We (1) introduce a new “controllability” analysis that
is independent of any particular counter examples, (2) apply a
new “cooperativeness” analysis that extracts information from a
particular set of counter examples and (3) combine both to better
refine the abstract model. We implemented the algorithm and
applied it to verify several real-world designs and properties. We
compared the algorithm against the abstraction refinement
algorithms in [19] and [20] and the interpolation-based
reachability analysis in [14]. The experimental results indicate
that the new algorithm outperforms the other three algorithms in
terms of runtime, abstraction efficiency (as defined in [19]) and
the number of proven properties.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided Design
(CAD).

General Terms
Algorithms, Experimentation, Verification.

Keywords
Formal Verification, Abstraction Refinement, Controllability,
Cooperativeness.

1. INTRODUCTION

Formal property verification exhaustively verifies logic designs
against some desired properties of the designs with respect to all
possible input sequences of any length. In this paper we focus on
the verification of safety properties. Informally, safety properties
specify that some “bad” states are not reachable from the initial
states through any traces of the design. A counter example of a
safety property is a trace that reaches a bad state from an initial
state of the design.

Without abstraction, state-of-the-art formal property verification

engines based on Binary Decision Diagrams (BDD’s) [16] or
clauses in Boolean satisfiability (SAT) solvers [15] usually cannot
verify properties of designs with more than a couple of hundred
registers. As a result, formal property verification relies on
automatic abstraction techniques to verify real-world logic
designs.

Interpolation-based reachability analysis [14] and abstraction
refinement [5][6][7][8][9][17][19][20] are commonly viewed as
the most practical automatic abstraction methods. Interpolation-
based reachability analysis uses a SAT solver to compute the
interpolants of two Boolean formulas derived from the bounded-
model-checking formula in [3] on the whole design as a
conservative abstraction of the set of reachable states from the
initial states of the design.

Abstraction refinement incrementally refines the abstract model, a
subset of the design, by including more and more logic from the
original design until the underlying formal property verification
engine verifies or falsifies the property. More precisely, the
generic abstraction refinement algorithm is as follows.

1. Generate the abstract model.
2. Prove the property or search for a counter example on the

abstract model; if the property is proven for the abstract
model, stops (it is proven for the original design).

3. Use the counter example found on the abstract model to
guide the search of a counter example on the original design;
if a counter example is found, stops (the property is falsified
for the original design).

4. Refine the abstract model by adding more details to the
abstract model; go back to Step 1.

Figure 1 Abstraction refinement algorithm

Since the performance of an underlying formal property
verification engine decreases as the complexity of the abstract
model increases, the biggest challenge of an abstraction
refinement algorithm is to buildup an abstract model that is as
simple as possible but contains enough details to verify the
property. Therefore, Step 4 is usually an abstraction refinement
algorithm’s key differentiator, since it determines if the property
can be proven at Step 2 or falsified at Step 3.

In this paper we present a new algorithm to improve Step 4. In
previous work, the refinement schemes are computed either based
on a set of counter examples of the current abstract model as in
[5][6][7][8][9][19][20] or independent of any counter examples
of the current abstract model as in [17]. We introduce (1) a
counter-example independent “controllability” analysis, (2) a
counter-example dependent “cooperativeness” analysis and (3)
combine both methods to better refine the abstract model.

ABSTRACT

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DAC 2004, June 7-11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

We implemented the algorithm and compared it against the
abstraction refinement methods in [19] and [20] and the
interpolation-based reachability analysis in [14]. Experimental
results indicate that the new method outperforms the other three
methods in terms of runtime, abstraction efficiency (how much of
the design is required to prove the properties, as defined in [19])
and the number of proven properties.

The rest of the paper is organized as follows. In Section 2 we
introduce some terminology before we present the algorithm in
Section 3. We survey the related work in Section 4. We present
the experimental results in Section 5 and conclude the paper in
Section 6.

2. PRELIMINARIES
We define in this section the syntax and semantics of designs and
properties and the k-controllability and k-cooperativeness.

2.1 Designs and Safety Properties
At a high level, a design consists of a collection of inputs,
registers and the transition functions of the registers. Formally, a
design (,)D V T= is an ordered pair where 1{ ,..., }nV v v= is a set

of Boolean variables and 1{ ,..., }mT t t= is a set of Boolean

functions called the transition functions. A (partial) state s is a
Boolean function whose domain is (a subset of) the set V of
variables. Each transition function it of T maps each state s to a

Boolean value and is associated with a distinct variable iv of V.

A variable iv is called a register if it has a correspondent transition

function in T and otherwise an input. Let ()Q D and)(DR denote
respectively the set of inputs and registers of the design D. The
relation ()

� () ()
iv R D i iD v t∈ ′= =∧ is the transition relation of the

design D where the primed variables iv′ are the next-state

variables of the registers .iv

A (partial) trace of the design D is a sequence 0
�

,..., ks s= such

that (1) 0,..., ks s are (partial) states of D and (2) 1
� ()(,)i iD s s + for

each 0,..., 1.i k= − If 0
�

,..., ks s= is a trace of D we say that the

state ks is reachable from the state 0.s

Two partial states are consistent if they map each variable in the
intersection of their domains to a consistent value. The union

1 2(,)s s of two consistent partial states is a partial state that maps

each variable v in the domain of 1s to 1()s v and each variable v

in the domain of 2s to 2()s v . Two partial traces are consistent if

they are of the same length and the corresponding states of the
partial traces are consistent. An (partial) input vector u is a
partial state whose domain is (a subset of) the set ()Q D of inputs.
An (partial) input trace is a partial trace of (partial) input vectors.
For each input trace 0

� ,..., ku u= and starting state 0s that is

consistent with the input vector 0,u there is a unique trace

0
�

,..., ks s= that is consistent with the input trace � . We say that

the input trace � generates the trace � . A partial trace � is valid
if there exists a trace that is consistent with the partial trace � .
Otherwise it is invalid. Note that every input trace is valid.

With a construction similar to the one in [12], we can define
without loss of generality that a safety property P specifies an
initial state as and a fail variable .fv A counter example

0
�

,..., ks s= of a design D for a safety property P is a trace

such that 0 as s= and () 1.k fs v = A state that maps the fail

variable to 1 is called a fail state. The safety property P is True for
the design D if and only if there does not exist a counter example
of D for the property P. An input trace � violates the safety
property P if � generates a counter example of D for the property
P. In this paper we only consider safety properties, the most
widely verified properties.

A design (,)C V T′= is an abstract model of the design D if the

set T′ is a subset of the transition functions T of D. In other
words, some registers of the design D become inputs of the
abstract model C. Clearly, if a property is True for an abstract
model of D, the property is also True for the design D.

2.2 K-Controllability and K-
Cooperativeness

To define k-controllability and k-cooperativeness, we first
introduce the notion of k-dominancy. Let (,)C V T′= be an
abstract model of the design D. We say that a subset Q of the
inputs of C is k-dominant for the abstract model C and the
property P if for any partial input trace 0,..., kw w of the rest of the

inputs () \ ,Q C Q there exists a partial input trace 0,..., ku u of the

inputs Q such that the input trace 0 0(,),...,(,)k ku w u w is not

consistent with any counter example of C for the property P. In
other words, imagine a game of two players played on the abstract
model C, in which player 1 wins if she can control the inputs

() \Q C Q to drive the abstract model to a fail state in k steps and

player 2 wins if she can control the inputs Q to steer the abstract
model clear of any fail states for k steps. Then player 2 can win if
and only if Q is k-dominant.

Second we introduce the notion of partitioned abstract models. A
partitioned abstract model (,) (,)c s c sC C V T T= ∪ of the design D

is an abstract model where (,)c cC V T= and (,)s sC V T= are also

abstract models called respectively the core and the shield such
that the registers ()sR C of the shield is a subset of the inputs

()cQ C of the core. In other words, the registers of the shield drive

some inputs of the core. Figure 2 depicts a partitioned abstract
model of a design D. Among the five inputs of the core, inputs r1
and r2 are driven by the registers of the shield, inputs q1 and q2
are driven by some other registers of the design D and input i1 is
an input of D. The triangles represent the transition functions of
these variables.

core

r2

shield

r1 q2 q1

i1

Figure 2 Partitioned abstract model

Let (,)c sC C C= be a partitioned abstract model of a design D.

An input (() ()) \ ()i c sv Q C R D R C∈ ∩ of the core not driven by

the shield (e.g., inputs q1 and q2 in Figure 2) is k-controlling for
the partitioned abstract model C if (1) the set () ()c sQ C R C∩ of

inputs of the core driven by the shield (e.g., inputs r1 and r2 in
Figure 2) is not k-dominant for the core cC but (2) the set

{ } (() ())i c sv Q C R C∪ ∩ is k-dominant for the core .cC In the 2-

player game scenario, suppose that the players played the game on
the core and player 2 was controlling the set of inputs driven by
the shield and lost because the set () ()c sQ C R C∩ is not k-

dominant. If player 2 gets to pick one additional input to control
in a new game, then player 2 will be able to win the new game if
and only if she picks a k-controlling input. Note that k-
controllability is counter-example independent.

An input (() ()) \ ()i c sv Q C R D R C∈ ∩ with transition function it

is k-cooperative for the partitioned abstract model
(,) (,)c sC C C V T′= = and the property P if (1) there is an input

trace 0� ,..., ku u= of C violating the property P and (2) the partial

trace � is invalid on the abstract model (, { }).iV T t′ ∪ Clearly, k-

cooperativeness is counter-example dependent.

On the one hand, the k-controllability estimates the potential of a
variable in invalidating counter examples if it was under full
control of player 2 (but in reality, the transition function, not
player 2, controls the behavior of the variable). On the other hand,
the k-cooperativeness demonstrates that the transition function is
cooperative with player 2 on invalidating some counter examples.
Variables that are both k-controlling and k-cooperative have the
potential and seem to be willing to help prove the property.
Therefore we want to include their transition functions to refine
the abstract model.

3. ABSTRACTION REFINEMENT
ALGORITHM

Our algorithm aims to do a better job in Step 4 of the generic
abstraction refinement algorithm in Figure 1. The first three steps
of our abstraction refinement algorithm are the same as the RFN
method in [20]. In Step 1, the abstract model initially contains
only the fail variable and its transition function. In Step 2 RFN
applies a hybrid ATPG-BDD method to find a set of counter
examples represented by a sequence of cubes (partial input
vectors). If the property is True for the abstract model, RFN
reports that the property is True for the design and terminates.
Otherwise in Step 3 RFN uses the counter example found on the
abstract model to guide sequential ATPG to search for a counter
example on the design. If such a counter example is found, RFN
reports that the property is False, reports the counter example and
terminates. Otherwise RFN proceeds to Step 4.

In the rest of the section, we will discuss how to compute k-
controllability and k-cooperativeness and use them to better refine
the abstract model in Step 4.

3.1 Computing k-Controllability

Let (,)C V T′= be an abstract model, let Q be a subset of inputs
of the C, and let � be a Boolean formula representing a set of

states of the abstract model. We define the controllable
predecessor predicate to be the following Boolean predicate:

(�) (() \). . ().(� (C) �)cpre Q C Q Q R C′ ′= ∀ ∃ ∃ ∧ ,

where ()R C′ is the set of the next-state variables and � ′ is the
Boolean formula obtained by substituting all variables in � by
their corresponding next-state variables. In other words, the
controllable predecessor predicate (�)cpre computes a set of
states of the abstract model C such that, no matter what values
player 1 choose for the inputs () \Q C Q , player 2 can always

choose some values for the inputs Q to transition to some states

in � . The controllable predecessor predicate can be computed by

BDD operations.

To check if the set Q of inputs is k-dominant, we iteratively
compute the controllable predecessor predicate from the non-fail

states as follows. Let 0 f
X v= ¬ . For 0,..., 1i k= − , we

compute
1

()
i f i

X v cpre X+ = ¬ ∧ , which represents the set of

states from which player 2 can avoid violating the property P for
i steps. Thus the following theorem follows.

Theorem 1. The set Q of inputs is k-dominant if and only if
,a ks X→ where as is the initial state of the design D.

Knowing how to check whether a set of inputs is k-dominant we
can determine if a variable (() ()) \ ()i c sv Q C R D R C∈ ∩ of a

partitioned abstract model (,)c sC C is k-controllable by the

definition of k-controllability.

We implemented the above algorithm using the CUDD [18]

package. We simplify each predicate
i

X by treating the states

that are not reachable from the initial state in k-i steps as don’ t
cares in the BDD operations. The predicate that represents the set
of reachable states of the abstract model C can be computed by a
BDD-based forward image computation from the initial state.

3.2 Computing k-Cooperativeness

Given an abstract model C and a partial trace 0
�

,..., ks s= that

represents a set of counter examples of C for P, we identify a
subset of the k-cooperative inputs of C by performing 3-value
simulation on the design. The advantage of 3-value simulation is
that the runtime is linear in the size of the design times the length
k of the partial trace. We use the unknown value X to over-
approximate the value of a variable that is of value either 0 or 1.
As a result, we may not identify all k-cooperative inputs.

We arrange the design so that the registers and inputs of the
design are on the left and the next-state registers are on the right.
At the i-th step of the 3-value simulation, for each

0,..., 1,i k= − we (1) drive the registers and inputs v on the left

with ()is v if v is in the domain of is and with the unknown

value X if v is not in the domain of ,is (2) perform 3-value

simulation on the design to compute a partial state 1is +′ of the

next-state variables on the right, and (3) record the conflict
variables, variables (() ()) \ ()c sv Q C R D R C∈ ∩ that have

conflicting values (the unknown value X does not conflict with

any value) between the partial states 1is +′ and 1.is + It is clear that

the following theorem is true.

Theorem 2. If a variable (() ()) \ ()c sv Q C R D R C∈ ∩ has

conflicting values in the result 1is +′ of the i-th cycle of 3-value

simulation and the next partial state 1is + of the counter

example, then the variable v is k-cooperative.

The k-cooperative variables are ranked and placed in a priority
queue first by their frequencies of appearances, the number of
conflicts that they introduced in the counter example (the higher
the better); then by sequential distances, the least number of
registers on a path between the variable and the fail variable (the
less the better); and finally by input widths, the number of inputs
that appear in the BDD representation of the transition function of
the variable (the fewer the better). We will use this priority queue
in the following abstraction refinement algorithm.

3.3 Abstraction Refinement
In Step 4, we have a set of counter examples for the abstract
model C represented by a partial trace 0

�
,..., ks s= of length k.

We maintain the abstract model (,)c sC C C= in the form of a

partitioned abstract model. We select exactly one transition
function to be included in the abstract model in every iteration of
the abstraction refinement algorithm. This differs from RFN,
which may add multiple transition functions in an iteration.

We first compute the priority queue of the k-cooperative variables
using the simulation-based method in Section 3.2. Before the
property is proven, the queue is seldom empty in our experience.
If the queue is indeed empty, we apply the netlist-topology based
BFS method in [11] to select an input of the core that is not
driven by the shield as our variable for refinement. We then add
the transition function of the chosen variable to the shield of the
abstract model.

Otherwise the priority queue of k-cooperative variables is not
empty and we search for a k-controlling variable among the first
three variables in the queue using the BDD-based method in
Section 3.1. The first k-controlling variable of the top three k-
cooperative variables becomes our variable for refinement. In our
experience, there is a good chance (greater than 30%) finding
such a refinement variable at each iteration of the abstraction
refinement algorithm. We then add the transition function of the
refinement variable to the shield of the abstract model.

We must maintain a loop invariant during the abstraction
refinement iterations: the set of inputs of the core driven by the
shield is not k-dominant for the core. Without this loop invariant,
every input of the core not driven by the shield might become k-
controlling in the next iteration of the abstraction refinement
algorithm. To maintain the loop invariant, after including a k-
controlling variable into the shield, we move one-by-one the
“oldest” variables (the variables that were included first) of the
shield into the core, until the set of inputs of the core driven by
the shield is no longer k-dominant.

If we do not find a k-controlling variable among the first three k-
cooperative variables, we simply add the head of the priority
queue, a k-cooperative variable, to the shield of the abstract
model. Note that we could have searched deeper in the priority
queue for k-controlling variables. But since k-controllability

analysis requires non-trivial BDD operations, checking only the
first three variables in the priority queue for k-controllability
makes a good tradeoff.

4. RELATED WORK
Kurshan first introduced the abstraction refinement algorithm and
implemented it in the tool COSPAN [13]. But there is little
published detail about the method.

Clarke et al [6] proposed an abstraction-refinement algorithm for
ACTL* model checking. The method identifies in a counter
example (1) the deadend states that are reachable from the initial
states in the design and can reach the fail states in the abstract
model, and (2) the bad states that are reachable from the initial
states in the abstract model and can reach the fail states in the
design. The method refines the abstract model to separate the
deadend states from the bad states. It requires BDD-based image
computation on the whole design, which severely limits its
capacity. The methods in [5] and [7] were designed to fix this
capacity problem by applying SAT solvers and ILP solvers to
identify deadend states and pick minimal refinement to separate
the deadend states from the bad states. However, in our
experience, when the design is large, running SAT solvers on the
whole design is often time consuming and likely to produce many
conflict clauses that do not help zero in on good refinement
candidates for proving the property. Experimental results in [19]
seem to agree with this observation.

The RFN method in [20] was designed to verify large real-world
designs by avoiding expensive computations on the whole design.
It also applies a BDD-ATPG hybrid method to find counter
examples on bigger abstract models, which limits RFN to only
consider the set of counter examples that can be represented by a
single sequence of cubes, or a partial input trace. The method in
this paper is basically an improvement of RFN by controllability
and cooperativeness analysis. We compare our algorithm against
RFN in Section 5.

The work in [8] enhanced RFN by (1) considering multiple
counter examples represented by a sequence of BDDs instead of
cubes to identify refinement candidates and (2) performing
refinement at a finer granularity --- in terms of logic gates rather
than registers with their whole combinational transitive fan-ins.

The method GRAB in [19] picks the refinement variables by
analyzing all shortest counter examples represented as a sequence
of BDDs called synchronous onion rings (SORs). GRAB scores
each design register that is an input of the abstract model based on
a game-theoretic formula that estimates how many transitions
within the SOR the variable can invalidate if it was under the
control of player 2. The abstract model is then augmented with the
variables with the highest scores until the whole set of SORs is
invalidated. The controllable predecessor predicate used in our k-
controllability analysis is similar to the game-theoretic formula of
GRAB. The major differences between the two methods are: (1) a
k-controlling variable may not get the highest score from the
game-theoretic formula of GRAB and the variable getting the
highest score may not be a k-controlling variable, (2) the k-
controllability analysis is independent of the SORs and (3) GRAB
does not try to analyze the rest of the design as what k-
cooperativeness analysis does using 3-value simulation. We
implemented this method for the experiments in Section 5.

In [1] and [2] a predicate similar to the controllability predecessor
predicate is used for the purpose of compositional verification but
not abstraction refinement.

Refinement is selected based on proofs rather than counter
examples in [9] and [17]. The abstract models consist of the
clauses that are involved in refutation proofs generated by the
SAT solvers. Our method does not rely on running SAT solvers
on the whole design to identify refinement candidates.

Interpolation-based reachability analysis [14] is an automatic
abstraction method that is not based on abstraction refinement. It
has drawn lots of interests lately because of its promising results
on verifying some large designs. We compare the performance of
an implementation [4] of this method in the next section.

5. EXPERIMENTAL RESULTS
We compared an implementation of our method, CNTL, against
(1) RFN, an implementation of the algorithm in [20], (2) mGrab,
an implementation of the GRAB algorithm in [19], and (3) INT,
an implementation [4] of the interpolation method in [14]. Note
that our implementations may not be as effective as the original
implementations.

The comparison is based on 7 properties specified for 6 real-world
designs. All properties are True, as we are more interested in
comparing the property verification capabilities of the four
methods. All experiments were done on SUN workstations with
750MHz SPARC processors and 4G-byte main memory running
Solaris 5.8 OS. We set a time limit of 10 CPU hours. The
experimental results are shown in Table 1.

 Table 1 Runtime comparison on 7 industrial properties

 #gates

/#rgstrs

CNTL RFN mGrab INT

p1 481

/60

2246.3s 3826.6s 3333.9s >10hr

p2 8372

/697

1091.9s 13555.6s >10hr 65.1s

p3 61552

/4986

737.0s 310.2s >10hr 194.2s

p4 77545

/2122

202.8s 1049.0s >10hr >10hr

p5 127229

/4891

10004.9s 10027.2s >10hr >10hr

p6 127261

/4895

8311.6s 10920.5s >10hr >10hr

p7 137365

/4494

230.3s 340.7s >10hr >10hr

The first column of Table 1 shows the names of the properties.
The second column shows the numbers of gates and registers in
the cone of influence (COI) of each property (the sequential
transitive fan-in cone of the fail variable). The third through the

sixth columns show the runtimes of the four methods on those
properties.

On average our method CNTL is 3.4x faster than RFN. Both
methods however managed to prove all properties. The mGrab
program completed one proof within the time limit. We make the
following observations. First, the time taken for input scoring is
directly proportional to the number of inputs in the abstract model
as well as the length of the SORs. Both quantities can grow
rapidly as the abstract models grow. In our experiments, an
abstract model with 10 registers could have 60 to 760 inputs -
while the length of SORs ranged from 16 to 100. The mGrab
program spent a lot of time scoring these inputs. Second, mGrab
spent a significant amount of time computing the SORs.

INT is on average 10.3x faster than CNTL on the properties p2
and p3, but did not complete the proofs for the other 5 properties.
Our impression is that since the interpolation method uses SAT
engines that make decisions for each gate of the COI, its
effectiveness tend to be impacted by the number of gates in the
COI (INT did not terminate on COI with more than 70K gates).
On the other hand, the complexity of the abstract models impacts
the effectiveness of CNTL and RFN more than the size of the COI
(only 3-value simulation and limited sequential ATPG were
performed on the COI). Thus we think that the abstraction
refinement methods may be more scalable than the interpolation
method. INT proved the properties p2 and p3 with COI of 697
and 4986 registers respectively, which clearly outperformed any
BDD-based methods. Thus we think that INT could serve as a
powerful alternative proof engine for verifying the abstract model
during abstraction refinement.

Table 2 shows the number of registers in the abstract models
generated by the three abstraction refinement methods. The first
column shows the names of the properties. The second column
shows the number of registers in the abstract models generated by
CNTL. The third column shows the number of k-controllable
variables found during abstraction refinement. The fourth and
fifth columns show the number of registers in the abstract models
generated by RFN and mGrab respectively.

Table 2 Number of registers in the abstract models

 CNTL k-controllable &
k-cooperative

RFN mGrab

p1 51 38 57 52
p2 62 28 75 > 66
p3 21 7 17 > 27
p4 10 10 34 > 9
p5 51 34 51 > 45
p6 54 32 60 > 50
p7 13 13 23 > 8

RFN on average uses about 49% more registers than CNTL to
prove the properties, which means that CNTL provides better
abstraction efficiency. In general mGrab selected fewer registers
than CNTL before the time out. As mentioned above, the scoring
of each input of the abstract models and the construction of the
SORs bogged down the performance of mGrab.

Table 2 also shows that between 33 and 100 percent of the
variables that CNTL included in the abstract models are both k-
controllable and k-cooperative. The rest of the variables are k-

cooperative only. The abstract model that CNTL built for property
p3 has the lowest percentage of k-controllable variables (33
percent); property p3 is also the only property that CNTL built a
bigger abstract model and took more time to prove than RFN.
Our conjecture is that the more k-controllable variables can be
found, the more efficient CNTL is compared to RFN.

6. CONCLUSIONS
We introduce k-controllability analysis, a counter-example
independent analysis that identifies variables that have the
potential to invalidate all shortest counter examples; and k-
cooperativeness analysis, a counter-example dependent analysis
that identifies variables whose transition functions invalidate
some counter examples. The k-controllability is computed by
BDD operations on the abstract models and k-cooperativeness is
computed by 3-value simulation on the whole design. We present
an abstraction refinement algorithm that utilizes both k-
controllability and k-cooperativeness analysis to better refine the
abstract model for formally verifying safety properties.

We compared the algorithm against three automatic abstraction
methods, RFN [20], GRAB [19] and the interpolation method
[14], on 7 real-world properties. We found that the new method is
on average 3.4x faster in runtime and 49% better in abstraction
efficiency than RFN. The new method proved more properties
than our implementations of the GRAB and the interpolation
method. Since automatic abstraction is the key for verifying large
designs, we believe that this method will make a positive impact
to formal property verification.

This method may be improved by (1) more efficient k-
controllability analysis and more accurate k-cooperativeness
analysis and (2) using GRAB’ s game-theoretic formula to rank a
subset of the k-cooperative variables in the priority queue when
no k-controllable variable was found.

7. ACKNOWLEDGEMENTS
We thank Per Bjesse for helping us run his implementation [4] of
the interpolation method and for many valuable discussions.

8. REFERENCES
[1] R. Alur, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang.

Automating Modular Verification. In Proceedings of
CONCUR, pp. 82-97, 1999.

[2] L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Detecting
Errors Before Reaching Them. In Proceedings of CAV, pp.
186-201, 2000.

[3] A. Biere, A. Cimatti, E.M. Clarke and Y. Zhu. Symbolic
model checking without BDDs. In Proceedings of TACAS,
pp.193-207, 1999.

[4] P. Bjesse and R. Damiano. An implementation of
McMillan’s interpolation algorithm, private communication
and unpublished manuscript, 2003.

[5] P. Chauhan, E.M. Clarke, J. Kukula, S. Sapra, H. Veith and
D. Wang. Automated abstraction refinement for model
checking large state space using SAT based conflict analysis.
In Proceedings of FMCAD, pp.33-51, 2002.

[6] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith.
Counterexample-guided abstraction refinement. In
Proceedings of CAV, pp.154-169, 2000.

[7] E.M. Clarke, A. Gupta, J. Kukula and O. Strichman. SAT
based abstraction refinement using ILP and machine learning
techniques. In Proceedings of CAV, pp.265-279, 2002.

[8] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer and M.Y.
Vardi. Multiple-counterexample guided iterative abstraction
refinement: an industrial evaluation. In Proceedings of
TACAS, pp.176-191, 2003.

[9] A. Gupta, M. Ganai, Z. Yang and P. Ashar. Iterative
abstraction using SAT-based BMC with proof analysis, In
Proceedings of ICCAD, pp.416-423, 2003,

[10] R.H. Hardin, Z. Har’El, and R.P. Kurshan. COSPAN. In
Proceedings of CAV, pp.423–427, 1996.

[11] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V.
Bertacco, J. Taylor and J. Long. Smart Simulation Using
Collaborative Formal and Simulation Engines. In
Proceedings of ICCAD, pp.120-126, 2000.

[12] O. Kupferman and M.Y. Vardi. Model checking for safety
properties. Formal Methods in System Design, 19(3),
pp.291-314, 2001.

[13] R.P. Kurshan. Computer-Aided Verification of Coordinating
Processes: The Automata-Theoretic Approach. Princeton
University Press, 1994.

[14] K.L. McMillan. Interpolation and SAT-based model
checking. In Proceedings of CAV, pp.1-13, 2003.

[15] K.L. McMillan. Applying SAT methods in unbounded
symbolic model checking. In Proceedings of CAV, pp.250-
264, 2002.

[16] K.L. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Problem. Kluwer Academic Publishers,
1993.

[17] K.L. McMillan and Nina Amla. Automatic abstraction
without counter examples. In Proceedings of TACAS, pp.2-
17, 2003.

[18] F. Somenzi. CUDD: CU Decision Diagram Package.
ftp://vlsi.colorado.edu/pub/.

[19] C. Wang, B. Li, H. Jin, G.D. Hachtel, F. Somenzi. Improving
Ariadne’s bundle by following multiple threads in
abstraction refinement. In Proceedings of ICCAD, pp.408-
415, 2003.

[20] D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu, H.-K. T. Ma
and R. Damiano. Formal property verification by abstraction
refinement with formal, simulation and hybrid engines. In
Proceedings of DAC, pp.35-40, 2001.

