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We present a new abstraction refinement algorithm to better refine 
the abstract model for formal property verification.  In previous 
work, refinements are selected either based on a set of counter 
examples of the current abstract model, as in 
[5][6][7][8][9][19][20], or independent of any counter examples, 
as in [17]. We (1) introduce a new “controllability”  analysis that 
is independent of any particular counter examples, (2) apply a 
new “cooperativeness”  analysis that extracts information from a 
particular set of counter examples and (3) combine both to better 
refine the abstract model. We implemented the algorithm and 
applied it to verify several real-world designs and properties. We 
compared the algorithm against the abstraction refinement 
algorithms in [19] and [20] and the interpolation-based 
reachability analysis in [14]. The experimental results indicate 
that the new algorithm outperforms the other three algorithms in 
terms of runtime, abstraction efficiency (as defined in [19]) and 
the number of proven properties. 

Categories and Subject Descriptors 
J.6 [Computer-Aided Engineering]: Computer-Aided Design 
(CAD). 

General Terms 
Algorithms, Experimentation, Verification. 

Keywords 
Formal Verification, Abstraction Refinement, Controllability, 
Cooperativeness. 

1. INTRODUCTION 

Formal property verification exhaustively verifies logic designs 
against some desired properties of the designs with respect to all 
possible input sequences of any length.  In this paper we focus on 
the verification of safety properties. Informally, safety properties 
specify that some “bad”  states are not reachable from the initial 
states through any traces of the design. A counter example of a 
safety property is a trace that reaches a bad state from an initial 
state of the design. 

Without abstraction, state-of-the-art formal property verification 

engines based on Binary Decision Diagrams (BDD’s) [16] or 
clauses in Boolean satisfiability (SAT) solvers [15] usually cannot 
verify properties of designs with more than a couple of hundred 
registers. As a result, formal property verification relies on 
automatic abstraction techniques to verify real-world logic 
designs. 

Interpolation-based reachability analysis [14] and abstraction 
refinement [5][6][7][8][9][17][19][20] are commonly viewed as 
the most practical automatic abstraction methods. Interpolation-
based reachability analysis uses a SAT solver to compute the 
interpolants of two Boolean formulas derived from the bounded-
model-checking formula in [3] on the whole design as a 
conservative abstraction of the set of reachable states from the 
initial states of the design.  

Abstraction refinement incrementally refines the abstract model, a 
subset of the design, by including more and more logic from the 
original design until the underlying formal property verification 
engine verifies or falsifies the property. More precisely, the 
generic abstraction refinement algorithm is as follows. 

1. Generate the abstract model. 
2. Prove the property or search for a counter example on the 

abstract model; if the property is proven for the abstract 
model, stops (it is proven for the original design). 

3. Use the counter example found on the abstract model to 
guide the search of a counter example on the original design; 
if a counter example is found, stops (the property is falsified 
for the original design). 

4. Refine the abstract model by adding more details to the 
abstract model; go back to Step 1. 

Figure 1 Abstraction refinement algorithm 

Since the performance of an underlying formal property 
verification engine decreases as the complexity of the abstract 
model increases, the biggest challenge of an abstraction 
refinement algorithm is to buildup an abstract model that is as 
simple as possible but contains enough details to verify the 
property. Therefore, Step 4 is usually an abstraction refinement 
algorithm’s key differentiator, since it determines if the property 
can be proven at Step 2 or falsified at Step 3. 

In this paper we present a new algorithm to improve Step 4.  In 
previous work, the refinement schemes are computed either based 
on a set of counter examples of the current abstract model as in 
[5][6][7][8][9][19][20] or independent of any counter examples 
of the current abstract model as in [17].  We introduce (1) a 
counter-example independent “controllability”  analysis, (2) a 
counter-example dependent “cooperativeness”  analysis and (3) 
combine both methods to better refine the abstract model. 

ABSTRACT 

 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage 
and that copies bear this notice and the full citation on the first page. 
To copy otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee. 

DAC 2004, June 7-11, 2004, San Diego, California, USA. 
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00. 



We implemented the algorithm and compared it against the 
abstraction refinement methods in [19] and [20] and the 
interpolation-based reachability analysis in [14]. Experimental 
results indicate that the new method outperforms the other three 
methods in terms of runtime, abstraction efficiency (how much of 
the design is required to prove the properties, as defined in [19]) 
and the number of proven properties. 

The rest of the paper is organized as follows.  In Section 2 we 
introduce some terminology before we present the algorithm in 
Section 3.  We survey the related work in Section 4.  We present 
the experimental results in Section 5 and conclude the paper in 
Section 6. 

2. PRELIMINARIES 
We define in this section the syntax and semantics of designs and 
properties and the k-controllability and k-cooperativeness. 

2.1 Designs and Safety Properties 
At a high level, a design consists of a collection of inputs, 
registers and the transition functions of the registers.  Formally, a 
design ( , )D V T=  is an ordered pair where 1{ ,..., }nV v v=  is a set 

of Boolean variables and 1{ ,..., }mT t t=  is a set of Boolean 

functions called the transition functions. A (partial) state s  is a 
Boolean function whose domain is (a subset of) the set V of 
variables. Each transition function it  of T maps each state s  to a 

Boolean value and is associated with a distinct variable iv  of V.  

A variable iv is called a register if it has a correspondent transition 

function in T and otherwise an input. Let ( )Q D and )(DR  denote 
respectively the set of inputs and registers of the design D. The 
relation ( )

� ( ) ( )
iv R D i iD v t∈ ′= =∧  is the transition relation of the 

design D where the primed variables iv′  are the next-state 

variables of the registers .iv  

A (partial) trace of the design D is a sequence 0
�

,..., ks s=  such 

that (1) 0,..., ks s  are (partial) states of D and (2) 1
� ( )( , )i iD s s +  for 

each 0,..., 1.i k= −  If 0
�

,..., ks s=  is a trace of D we say that the 

state ks is reachable from the state 0.s  

Two partial states are consistent if they map each variable in the 
intersection of their domains to a consistent value. The union 

1 2( , )s s of two consistent partial states is a partial state that maps 

each variable v in the domain of 1s  to 1( )s v  and each variable v 

in the domain of 2s  to 2( )s v .  Two partial traces are consistent if 

they are of the same length and the corresponding states of the 
partial traces are consistent. An (partial) input vector u  is a 
partial state whose domain is (a subset of) the set ( )Q D  of inputs.  
An (partial) input trace is a partial trace of (partial) input vectors. 
For each input trace 0

� ,..., ku u=  and starting state 0s  that is 

consistent with the input vector 0,u  there is a unique trace 

0
�

,..., ks s=  that is consistent with the input trace � .  We say that 

the input trace �  generates the trace � .  A partial trace �  is valid 
if there exists a trace that is consistent with the partial trace � .  
Otherwise it is invalid. Note that every input trace is valid. 

With a construction similar to the one in [12], we can define 
without loss of generality that a safety property P  specifies an 
initial state as  and a fail variable .fv  A counter example 

0
�

,..., ks s=  of a design D  for a safety property P  is a trace 

such that 0 as s=  and ( ) 1.k fs v =  A state that maps the fail 

variable to 1 is called a fail state. The safety property P is True for 
the design D if and only if there does not exist a counter example 
of D for the property P. An input trace �  violates the safety 
property P if �  generates a counter example of D for the property 
P. In this paper we only consider safety properties, the most 
widely verified properties. 

A design ( , )C V T′=  is an abstract model of the design D if the 

set T′  is a subset of the transition functions T of D. In other 
words, some registers of the design D become inputs of the 
abstract model C.  Clearly, if a property is True for an abstract 
model of D, the property is also True for the design D.  

2.2 K-Controllability and K-
Cooperativeness  

To define k-controllability and k-cooperativeness, we first 
introduce the notion of k-dominancy. Let ( , )C V T′=  be an 
abstract model of the design D. We say that a subset Q of the 
inputs of C is k-dominant for the abstract model C and the 
property P if for any partial input trace 0,..., kw w  of the rest of the 

inputs ( ) \ ,Q C Q  there exists a partial input trace 0,..., ku u  of the 

inputs Q such that the input trace 0 0( , ),...,( , )k ku w u w  is not 

consistent with any counter example of C for the property P.  In 
other words, imagine a game of two players played on the abstract 
model C, in which player 1 wins if she can control the inputs 

( ) \Q C Q  to drive the abstract model to a fail state in k steps and 

player 2 wins if she can control the inputs Q  to steer the abstract 
model clear of any fail states for k steps. Then player 2 can win if 
and only if Q is k-dominant. 

Second we introduce the notion of partitioned abstract models. A 
partitioned abstract model ( , ) ( , )c s c sC C V T T= ∪  of the design D 

is an abstract model where ( , )c cC V T=  and ( , )s sC V T=  are also 

abstract models called respectively the core and the shield such 
that the registers ( )sR C  of the shield is a subset of the inputs 

( )cQ C  of the core. In other words, the registers of the shield drive 

some inputs of the core. Figure 2 depicts a partitioned abstract 
model of a design D.  Among the five inputs of the core, inputs r1 
and r2 are driven by the registers of the shield, inputs q1 and q2 
are driven by some other registers of the design D and input i1 is 
an input of D. The triangles represent the transition functions of 
these variables. 

core 

r2 

shield 

r1 q2 q1 

i1 
 

Figure 2 Partitioned abstract model 



Let ( , )c sC C C=  be a partitioned abstract model of a design D.  

An input ( ( ) ( )) \ ( )i c sv Q C R D R C∈ ∩ of the core not driven by 

the shield (e.g., inputs q1 and q2 in Figure 2) is k-controlling for 
the partitioned abstract model C if (1) the set ( ) ( )c sQ C R C∩  of 

inputs of the core driven by the shield (e.g., inputs r1 and r2 in 
Figure 2) is not k-dominant for the core cC  but (2) the set 

{ } ( ( ) ( ))i c sv Q C R C∪ ∩  is k-dominant for the core .cC  In the 2-

player game scenario, suppose that the players played the game on 
the core and player 2 was controlling the set of inputs driven by 
the shield and lost because the set ( ) ( )c sQ C R C∩  is not k-

dominant. If player 2 gets to pick one additional input to control 
in a new game, then player 2 will be able to win the new game if 
and only if she picks a k-controlling input. Note that k-
controllability is counter-example independent. 

An input ( ( ) ( )) \ ( )i c sv Q C R D R C∈ ∩  with transition function it  

is k-cooperative for the partitioned abstract model 
( , ) ( , )c sC C C V T′= =  and the property P if (1) there is an input 

trace 0� ,..., ku u=  of C violating the property P and (2) the partial 

trace �  is invalid on the abstract model ( , { } ).iV T t′ ∪  Clearly, k-

cooperativeness is counter-example dependent. 

On the one hand, the k-controllability estimates the potential of a 
variable in invalidating counter examples if it was under full 
control of player 2 (but in reality, the transition function, not 
player 2, controls the behavior of the variable). On the other hand, 
the k-cooperativeness demonstrates that the transition function is 
cooperative with player 2 on invalidating some counter examples. 
Variables that are both k-controlling and k-cooperative have the 
potential and seem to be willing to help prove the property. 
Therefore we want to include their transition functions to refine 
the abstract model. 

3. ABSTRACTION REFINEMENT 
ALGORITHM 

Our algorithm aims to do a better job in Step 4 of the generic 
abstraction refinement algorithm in Figure 1. The first three steps 
of our abstraction refinement algorithm are the same as the RFN 
method in [20].  In Step 1, the abstract model initially contains 
only the fail variable and its transition function.  In Step 2 RFN 
applies a hybrid ATPG-BDD method to find a set of counter 
examples represented by a sequence of cubes (partial input 
vectors).  If the property is True for the abstract model, RFN 
reports that the property is True for the design and terminates.  
Otherwise in Step 3 RFN uses the counter example found on the 
abstract model to guide sequential ATPG to search for a counter 
example on the design.  If such a counter example is found, RFN 
reports that the property is False, reports the counter example and 
terminates.  Otherwise RFN proceeds to Step 4.   

In the rest of the section, we will discuss how to compute k-
controllability and k-cooperativeness and use them to better refine 
the abstract model in Step 4. 

3.1 Computing k-Controllability 

Let ( , )C V T′=  be an abstract model, let Q  be a subset of inputs 
of the C, and let �  be a Boolean formula representing a set of 

states of the abstract model. We define the controllable 
predecessor predicate to be the following Boolean predicate: 

(� ) ( ( ) \ ). . ( ).( � (C) � )cpre Q C Q Q R C′ ′= ∀ ∃ ∃ ∧ , 

where ( )R C′  is the set of the next-state variables and � ′  is the 
Boolean formula obtained by substituting all variables in �  by 
their corresponding next-state variables. In other words, the 
controllable predecessor predicate (� )cpre  computes a set of 
states of the abstract model C such that, no matter what values 
player 1 choose for the inputs ( ) \Q C Q , player 2 can always 

choose some values for the inputs Q  to transition to some states 

in � .  The controllable predecessor predicate can be computed by 

BDD operations. 

To check if the set Q  of inputs is k-dominant, we iteratively 
compute the controllable predecessor predicate from the non-fail 

states as follows.  Let 0 f
X v= ¬ .  For 0,..., 1i k= − , we 

compute
1

( )
i f i

X v cpre X+ = ¬ ∧ , which represents the set of 

states from which player 2 can avoid violating the property P for 
i steps.  Thus the following theorem follows. 

Theorem 1.  The set Q  of  inputs is k-dominant if and only if 
,a ks X→  where as  is the initial state of the design D. 

Knowing how to check whether a set of inputs is k-dominant we 
can determine if a variable ( ( ) ( )) \ ( )i c sv Q C R D R C∈ ∩  of a 

partitioned abstract model ( , )c sC C  is k-controllable by the 

definition of k-controllability. 

We implemented the above algorithm using the CUDD [18]  

package.  We simplify each predicate
i

X  by treating the states 

that are not reachable from the initial state in k-i steps as don’ t 
cares in the BDD operations. The predicate that represents the set 
of reachable states of the abstract model C  can be computed by a 
BDD-based forward image computation from the initial state.  

3.2 Computing k-Cooperativeness 

Given an abstract model C and a partial trace 0
�

,..., ks s=  that 

represents a set of counter examples of C for P, we identify a 
subset of the k-cooperative inputs of C by performing 3-value 
simulation on the design. The advantage of 3-value simulation is 
that the runtime is linear in the size of the design times the length 
k of the partial trace. We use the unknown value X to over-
approximate the value of a variable that is of value either 0 or 1. 
As a result, we may not identify all k-cooperative inputs. 

We arrange the design so that the registers and inputs of the 
design are on the left and the next-state registers are on the right. 
At the i-th step of the 3-value simulation, for each 

0,..., 1,i k= − we (1) drive the registers and inputs v  on the left 

with ( )is v  if v  is in the domain of is  and with the unknown 

value X if v  is not in the domain of ,is  (2) perform 3-value 

simulation on the design to compute a partial state 1is +′  of the 

next-state variables on the right, and (3) record the conflict 
variables, variables ( ( ) ( )) \ ( )c sv Q C R D R C∈ ∩  that have 

conflicting values (the unknown value X does not conflict with 



any value) between the partial states 1is +′  and 1.is +  It is clear that 

the following theorem is true. 

Theorem 2. If a variable ( ( ) ( )) \ ( )c sv Q C R D R C∈ ∩  has 

conflicting values in the result 1is +′  of the i-th cycle of 3-value 

simulation and the next partial state 1is +  of the counter 

example, then the variable v  is k-cooperative. 

The k-cooperative variables are ranked and placed in a priority 
queue first by their frequencies of appearances, the number of 
conflicts that they introduced in the counter example (the higher 
the better); then by sequential distances, the least number of 
registers on a path between the variable and the fail variable (the 
less the better); and finally by input widths, the number of inputs 
that appear in the BDD representation of the transition function of 
the variable (the fewer the better). We will use this priority queue 
in the following abstraction refinement algorithm. 

3.3 Abstraction Refinement 
In Step 4, we have a set of counter examples for the abstract 
model C represented by a partial trace 0

�
,..., ks s=  of length k. 

We maintain the abstract model ( , )c sC C C=  in the form of a 

partitioned abstract model. We select exactly one transition 
function to be included in the abstract model in every iteration of 
the abstraction refinement algorithm. This differs from RFN, 
which may add multiple transition functions in an iteration. 

We first compute the priority queue of the k-cooperative variables 
using the simulation-based method in Section 3.2. Before the 
property is proven, the queue is seldom empty in our experience.  
If the queue is indeed empty, we apply the netlist-topology based 
BFS method in [11] to select an input of the core that is not 
driven by the shield as our variable for refinement. We then add 
the transition function of the chosen variable to the shield of the 
abstract model. 

Otherwise the priority queue of k-cooperative variables is not 
empty and we search for a k-controlling variable among the first 
three variables in the queue using the BDD-based method in 
Section 3.1. The first k-controlling variable of the top three k-
cooperative variables becomes our variable for refinement.  In our 
experience, there is a good chance (greater than 30%) finding 
such a refinement variable at each iteration of the abstraction 
refinement algorithm. We then add the transition function of the 
refinement variable to the shield of the abstract model.  

We must maintain a loop invariant during the abstraction 
refinement iterations: the set of inputs of the core driven by the 
shield is not k-dominant for the core. Without this loop invariant, 
every input of the core not driven by the shield might become k-
controlling in the next iteration of the abstraction refinement 
algorithm. To maintain the loop invariant, after including a k-
controlling variable into the shield, we move one-by-one the 
“oldest”  variables (the variables that were included first) of the 
shield into the core, until the set of inputs of the core driven by 
the shield is no longer k-dominant.   

If we do not find a k-controlling variable among the first three k-
cooperative variables, we simply add the head of the priority 
queue, a k-cooperative variable, to the shield of the abstract 
model. Note that we could have searched deeper in the priority 
queue for k-controlling variables. But since k-controllability 

analysis requires non-trivial BDD operations, checking only the 
first three variables in the priority queue for k-controllability 
makes a good tradeoff. 

4. RELATED WORK 
Kurshan first introduced the abstraction refinement algorithm and 
implemented it in the tool COSPAN [13]. But there is little 
published detail about the method.  

Clarke et al [6] proposed an abstraction-refinement algorithm for 
ACTL* model checking. The method identifies in a counter 
example (1) the deadend states that are reachable from the initial 
states in the design and can reach the fail states in the abstract 
model, and (2) the bad states that are reachable from the initial 
states in the abstract model and can reach the fail states in the 
design. The method refines the abstract model to separate the 
deadend states from the bad states. It requires BDD-based image 
computation on the whole design, which severely limits its 
capacity. The methods in [5] and [7] were designed to fix this 
capacity problem by applying SAT solvers and ILP solvers to 
identify deadend states and pick minimal refinement to separate 
the deadend states from the bad states. However, in our 
experience, when the design is large, running SAT solvers on the 
whole design is often time consuming and likely to produce many 
conflict clauses that do not help zero in on good refinement 
candidates for proving the property. Experimental results in [19] 
seem to agree with this observation. 

The RFN method in [20] was designed to verify large real-world 
designs by avoiding expensive computations on the whole design. 
It also applies a BDD-ATPG hybrid method to find counter 
examples on bigger abstract models, which limits RFN to only 
consider the set of counter examples that can be represented by a 
single sequence of cubes, or a partial input trace. The method in 
this paper is basically an improvement of RFN by controllability 
and cooperativeness analysis. We compare our algorithm against 
RFN in Section 5. 

The work in [8] enhanced RFN by (1) considering multiple 
counter examples represented by a sequence of BDDs instead of 
cubes to identify refinement candidates and (2) performing 
refinement at a finer granularity --- in terms of logic gates rather 
than registers with their whole combinational transitive fan-ins. 

The method GRAB in [19] picks the refinement variables by 
analyzing all shortest counter examples represented as a sequence 
of BDDs called synchronous onion rings (SORs). GRAB scores 
each design register that is an input of the abstract model based on 
a game-theoretic formula that estimates how many transitions 
within the SOR the variable can invalidate if it was under the 
control of player 2. The abstract model is then augmented with the 
variables with the highest scores until the whole set of SORs is 
invalidated. The controllable predecessor predicate used in our k-
controllability analysis is similar to the game-theoretic formula of 
GRAB. The major differences between the two methods are: (1) a 
k-controlling variable may not get the highest score from the 
game-theoretic formula of GRAB and the variable getting the 
highest score may not be a k-controlling variable, (2) the k-
controllability analysis is independent of the SORs and (3) GRAB 
does not try to analyze the rest of the design as what k-
cooperativeness analysis does using 3-value simulation. We 
implemented this method for the experiments in Section 5. 



In [1] and [2] a predicate similar to the controllability predecessor 
predicate is used for the purpose of compositional verification but 
not abstraction refinement. 

Refinement is selected based on proofs rather than counter 
examples in [9] and [17]. The abstract models consist of the 
clauses that are involved in refutation proofs generated by the 
SAT solvers. Our method does not rely on running SAT solvers 
on the whole design to identify refinement candidates. 

Interpolation-based reachability analysis [14] is an automatic 
abstraction method that is not based on abstraction refinement. It 
has drawn lots of interests lately because of its promising results 
on verifying some large designs. We compare the performance of 
an implementation [4] of this method in the next section. 

5. EXPERIMENTAL RESULTS 
We compared an implementation of our method, CNTL, against 
(1) RFN, an implementation of the algorithm in [20], (2) mGrab, 
an implementation of the GRAB algorithm in [19], and (3) INT, 
an implementation [4] of the interpolation method in [14]. Note 
that our implementations may not be as effective as the original 
implementations. 

The comparison is based on 7 properties specified for 6 real-world 
designs. All properties are True, as we are more interested in 
comparing the property verification capabilities of the four 
methods. All experiments were done on SUN workstations with 
750MHz SPARC processors and 4G-byte main memory running 
Solaris 5.8 OS. We set a time limit of 10 CPU hours. The 
experimental results are shown in Table 1. 

 Table 1 Runtime comparison on 7 industrial properties 

 #gates 

/#rgstrs 

CNTL RFN mGrab INT 

p1 481 

/60 

2246.3s 3826.6s 3333.9s >10hr 

p2 8372 

/697 

1091.9s 13555.6s >10hr 65.1s 

p3 61552 

/4986 

737.0s 310.2s >10hr 194.2s 

p4 77545 

/2122 

202.8s 1049.0s >10hr >10hr 

p5 127229 

/4891 

10004.9s 10027.2s >10hr >10hr 

p6 127261 

/4895 

8311.6s 10920.5s >10hr >10hr 

p7 137365 

/4494 

230.3s 340.7s >10hr >10hr 

 

The first column of Table 1 shows the names of the properties. 
The second column shows the numbers of gates and registers in 
the cone of influence (COI) of each property (the sequential 
transitive fan-in cone of the fail variable). The third through the 

sixth columns show the runtimes of the four methods on those 
properties. 

On average our method CNTL is 3.4x faster than RFN. Both 
methods however managed to prove all properties. The mGrab 
program completed one proof within the time limit. We make the 
following observations. First, the time taken for input scoring is 
directly proportional to the number of inputs in the abstract model 
as well as the length of the SORs.  Both quantities can grow 
rapidly as the abstract models grow. In our experiments, an 
abstract model with 10 registers could have 60 to 760 inputs - 
while the length of SORs ranged from 16 to 100. The mGrab 
program spent a lot of time scoring these inputs. Second, mGrab 
spent a significant amount of time computing the SORs. 

INT is on average 10.3x faster than CNTL on the properties p2 
and p3, but did not complete the proofs for the other 5 properties. 
Our impression is that since the interpolation method uses SAT 
engines that make decisions for each gate of the COI, its 
effectiveness tend to be impacted by the number of gates in the 
COI (INT did not terminate on COI with more than 70K gates). 
On the other hand, the complexity of the abstract models impacts 
the effectiveness of CNTL and RFN more than the size of the COI 
(only 3-value simulation and limited sequential ATPG were 
performed on the COI). Thus we think that the abstraction 
refinement methods may be more scalable than the interpolation 
method. INT proved the properties p2 and p3 with COI of 697 
and 4986 registers respectively, which clearly outperformed any 
BDD-based methods. Thus we think that INT could serve as a 
powerful alternative proof engine for verifying the abstract model 
during abstraction refinement. 

Table 2 shows the number of registers in the abstract models 
generated by the three abstraction refinement methods. The first 
column shows the names of the properties. The second column 
shows the number of registers in the abstract models generated by 
CNTL. The third column shows the number of k-controllable 
variables found during abstraction refinement. The fourth and 
fifth columns show the number of registers in the abstract models 
generated by RFN and mGrab respectively. 

Table 2 Number of registers in the abstract models 

 CNTL k-controllable & 
k-cooperative 

RFN mGrab 

p1 51 38 57 52 
p2 62 28 75 > 66 
p3 21 7 17 > 27 
p4 10 10 34 > 9 
p5 51 34 51 > 45 
p6 54 32 60 > 50 
p7 13 13 23 > 8 

 

RFN on average uses about 49% more registers than CNTL to 
prove the properties, which means that CNTL provides better 
abstraction efficiency. In general mGrab selected fewer registers 
than CNTL before the time out. As mentioned above, the scoring 
of each input of the abstract models and the construction of the 
SORs bogged down the performance of mGrab. 

Table 2 also shows that between 33 and 100 percent of the 
variables that CNTL included in the abstract models are both k-
controllable and k-cooperative. The rest of the variables are k-



cooperative only. The abstract model that CNTL built for property 
p3 has the lowest percentage of k-controllable variables (33 
percent); property p3 is also the only property that CNTL built a 
bigger abstract model and took more time to prove than RFN.  
Our conjecture is that the more k-controllable variables can be 
found, the more efficient CNTL is compared to RFN.  

6. CONCLUSIONS 
We introduce k-controllability analysis, a counter-example 
independent analysis that identifies variables that have the 
potential to invalidate all shortest counter examples; and k-
cooperativeness analysis, a counter-example dependent analysis 
that identifies variables whose transition functions invalidate 
some counter examples. The k-controllability is computed by 
BDD operations on the abstract models and k-cooperativeness is 
computed by 3-value simulation on the whole design. We present 
an abstraction refinement algorithm that utilizes both k-
controllability and k-cooperativeness analysis to better refine the 
abstract model for formally verifying safety properties.  

We compared the algorithm against three automatic abstraction 
methods, RFN [20], GRAB [19] and the interpolation method 
[14], on 7 real-world properties. We found that the new method is 
on average 3.4x faster in runtime and 49% better in abstraction 
efficiency than RFN. The new method proved more properties 
than our implementations of the GRAB and the interpolation 
method. Since automatic abstraction is the key for verifying large 
designs, we believe that this method will make a positive impact 
to formal property verification. 

This method may be improved by (1) more efficient k-
controllability analysis and more accurate k-cooperativeness 
analysis and (2) using GRAB’ s game-theoretic formula to rank a 
subset of the k-cooperative variables in the priority queue when 
no k-controllable variable was found. 
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