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Abstract 
 Design verification has become a bottleneck of modern 
designs. Recently, simulation-based random verification has 
attracted a lot of interests due to its effectiveness in uncovering 
obscure bugs. Designers are often required to provide the input 
probabilities while conducting the random verification. However, 
it is extremely difficult for designers to provide accurate input 
probabilities.  In this paper, we propose an iterative algorithm 
that derives good input probabilities so that the design intent can 
be exercised effectively for functional verification. We conduct 
extensive experiments on both benchmark circuit and industrial 
designs. The experimental results are very promising. 

 

1. Introduction 
With the exponential growth of design complexity, 

verification has become a bottleneck of modern designs. About 
70% of project effort for complex ICs is spent on verification [5]. 
Among verification techniques, simulation-based verification 
remains one of the most important techniques to uncover design 
errors. Normally, verification engineers need to manually write 
testbenches. However, the manually-writing process is not only 
time-consuming but also error-prone. Recently, random 
verification has attracted a lot of interests because randomly 
generated vectors may uncover some obscure bugs which are not 
easy to be discovered by designers. It was reported that there are 
more than three-quarters of the bugs were found using 
pseudo-random techniques [8]. Many industrial companies 
[11][14][15] and researches [1][4][7] have demonstrated the 
success of applying biased random verification.  

The random verification requires careful implementation of a 
simulation environment. First, proper input probabilities must be 
provided to generate quality random vectors. Ineffective input 
probabilities may cause long simulation time with poor coverage. 
Secondly, because inputs to a design are often correlated, some 
impossible or illegal input sequences should not be applied at a 
circuit’s inputs; otherwise, the design under verification (DUV) 
may enter an unexpected situation. Normally, to prevent illegal 
vectors, constraint equations are provided by designers and 
randomly generated vectors must satisfy those equations. Several 
previous works [2][3][6][12][13] attempt to solve the constraint 
problem. 

Since the effectiveness of random verification is directly 

affected by the input probabilities applied at inputs, as far as we 
know, most previous works assume that input probabilities are 
provided by designers. In this paper, we propose a novel way to 
automatically determine effective input probabilities so that as 
many states as possible are visited. Our method backward 
calculates from outputs as an initial input probability assignment 
and iteratively refines this assignment to a better one based on the 
input/output relations of probabilities. First, we propose efficient 
methods for a combinational circuit so that many combinational 
outputs can be reached by few random input patterns. Then, we 
extend these methods to sequential circuits by generating good 
state-dependent probabilities of inputs. We have performed our 
methods on a large set of MCNC and ISCAS-89 benchmarks, a 
public domain TV80 microprocessor core, and an industrial AES 
design. The experimental results show that our results are 
significantly better than the random verification. 

We would like to mention that although ATPG has provided 
an effective method to generate vectors for combinational circuits, 
it is still considered to be difficult for sequential circuits. The 
difficulty is relevant to the huge state space, which causes the 
explosion problem when employing the timeframe expansion 
technique. Therefore, it may not easily generate input vectors to 
reach all possible states or state transitions. An alternative to 
ATPG is the random verification, which serves as the important 
role to compensate the insufficiency problems. 

The remainder of this paper is organized as follows. Section 
2 discusses the overview of our approach. Section 3 provides the 
cost function for determining input probabilities of combinational 
circuits and describes the algorithm for combinational circuits. 
Section 4 augments the discussion on dealing with sequential 
circuits. Section 5 shows the experimental results. Section 6 
concludes this paper. 

2. An Example of Effective Input Probabilities 
In this section, we illustrate how input probability can affect 

the efficiency of random verification. Throughout this paper, we 
use the upper-case symbol (character) to represent a gate/wire and 
use the lower-case symbol (character) to represent the 1’s 
probability of the gate/wire. Consider the example of applying 
probabilities at inputs in Figure 1. A random verification is said to 
be uniform random if the probability of each primary input is 0.5 
as in Figure 1(a). Given the uniform random as input probabilities, 
One can find that we have output probabilities o1 = 0.22, and o2 = 
0.81. On the other hand, if input probabilities are re-assigned to 
the values as in Figure 1(b), we have output probabilities o1 = 0.49, 



 

and o2 = 0.50. If our objective is to reach as many output 
combinations as possible using random verification in a given 
period of time, it is very likely that the probability assignments of 
inputs in Figure 1(b) are superior to those in Figure 1(a). This is 
due to the fact that the probabilities of all outputs are close to 0.5 
in Figure 1(b) so the chances of reaching all output combinations 
are balanced. Therefore, by smartly biasing input probabilities, it 
is possible to improve the effectiveness of random verification. 

 

3. Generation of Input Probabilities for 
Combinational Circuits 

Remember that our goal is to derive input probabilities to 
reach as many states as possible in a short period of time for a 
sequential circuit. In this section, we first show a technique to find 
input probabilities to reach many output combinations for a 
combinational circuit and later extend the technique to sequential 
circuits. 

 
3.1 Evaluation of Input Probabilities 

To derive a good input probability, it is important to 
determine whether a set of input probabilities is better than another 
set.  Intuitively, if all output probabilities are close to 0.5, the 
effectiveness of random verification is better as that in Figure 1. 
Given a set of output probabilities, we use a cost function called 
random_quality to evaluate effectiveness. 
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Consider Figure 1(a). The random_quality of the output 
probabilities is (o1–0.5)2 + (o2–0.5)2 = 0.1745. Similarly, the 
random_quality of the output probabilities in Figure 1(b) is 0.0001. 
As a result, we conclude that output probabilities in Figure 1(b) 
are more effective than those in Figure 1(a).  
 With this cost function in mind, our new objective is to find 
input probabilities which derive output probabilities that minimize 

the cost value. We would like to mention that it can be difficult to 
compute exact output probabilities given a set of input 
probabilities. However, there exist fast estimation techniques 
[9][10] which obtain the output probabilities with bounded signal 
relations of the circuit.  
 In the following, we describe two heuristics to achieve as 
small random_quality as possible. The algorithm in Section 3.2 
attempts to find a good initial solution while the algorithm in 
Section 3.3 iteratively improves the previous solution.  
 
3.2 Backward Method 

Let us first consider a tree-structure circuit where all 
internal signals are independent. Our algorithm starts with the 
probability of 0.5 for each output and attempts to propagate the 
value from outputs to inputs. During the propagation, there are 
many possible ways to assign input probabilities. The assignments 
attempt to balance probabilities among all its direct inputs. This 
avoids the situation that certain nodes with extremely low or high 
input probabilities. We use the rules described below for 
probability assignments. Given the output signal probability po, we 
would like to find its input probabilities pi. We assign pi=(po)1/k for 
a k-input AND gate, pi=1–(1–po)1/k for a k-input OR gate, and 
pi=1–po for an INV gate. The assignments can be easily verified 
assuming inputs are uncorrelated. For example in Figure 2, assume 
OUT has a probability of 0.5.  Using the above rules, we assign 
the probabilities of node A and node B to be a = b = 1–(1–0.5)1/2 = 
0.71. With the probability of a = 0.71, we can have i1 = i2 = 
(0.71)1/2 = 0.46 and similarly, we have i3 = i4 = 0.84. 

 
We now consider a general structure circuit where internal 

nodes may have multiple fanouts. We estimate the probability of a 
multi-path input by averaging the probabilities from all its fanouts. 
Consider the example in Figure 3 which is similar to the one in 
Figure 2 except that input I2 has two fanout edges I2→A and I2→B. 
The probability of I2, i2, is computed to be (0.46 + 0.84) / 2 = 0.65. 

 

i1=0.46 

i3=0.84 
Figure 3: Backward propagation of probability on a 
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Figure 2: Backward propagation of probability on a 
tree-structure circuit 
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Figure 1: Example of the probability assignments 
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The backward_assignment method attempts to derive input 
probabilities so that output probabilities are 0.5. However, the 
method may not result in good output probabilities for some cases. 
For the example in Figure 4, one can find the output probability is 
0.45. This mismatch mainly comes from the averaging heuristic at 
multi-fanout node. 

 
 

The above procedure is referred as the 
backward_assignment method and its procedure is summarized in 
Figure 5.  

 
 

3.3 Refinement Method 
In this section, we discuss a method called 

iterative_refinement method to iteratively refine input probabilities. 
First, we give a formulation which describes how a minor change 
in an input probability may affect its output probabilities. With this 
formulation, we then derive efficient algorithms to gradually 
modify input probabilities for better random_quality of output 
probabilities.  

Let us consider a 2-input AND gate whose output is OUT 
and whose inputs are X and Y. Assume input probabilities are x 
and y respectively. The output probability is out = x×y. If the 
probability x changes to x+ x△  where x△  indicates a minor 
change of x, we can obtain the probability of OUT,  

       out = (x+ x△ )×y = x×y+ x△ ×y. 
From this equation, we can find that the difference of x△  in X will 
cause the difference of x△ ×y in OUT. We call the value of x△ ×y 
to be the delta_adjustment of OUT. Similarly for a 2-input OR 
gate, assume input probabilities are x and y. We have out = 
1–(1–x)×(1–y) = x+y–x×y. If we increase probability x△  to X, we 
can get  

              out = 1– (1 – (x + x△ )) × (1 – y) 
= x+ y–x×y+(1–y)× x△ . 

That is, the difference of x△  in X will cause the difference of 
(1-y)× x△  in OUT.  

We now extend to the case when a set of gates are in series. 
We illustrate our basic idea by using the example in Figure 6. Let 
us consider the bold path {X, A, C} in Figure 6(a). Suppose we 
would like to know how a change of probability in input X may 
affect the output probabilities. We can find a△  = (1–y)× x△  and 
△c = b×△a. Since we have b = y×z, the difference of c is equal to 
△c = y×z×(1–y)× x△ . In other words, if there are gates in series, 
the modification of output probability is equal to the multiplication 
of delta_adjustment of gates along the path.  

In general, there are many paths from an input to an output. 
We use the superposition to sum up all the delta_adjustments of 
paths. Let us consider the same example in Figure 6(b). There are 
two paths P1={Y, A, C} and P2={Y, B, C} from Y to OUT. From 
path P1, the delta_adjustment is △y×(1–x)×y×z and from path P2, 
the delta_adjustment is △y×(x+y–x×y)×z. Using the superposition 
on these two paths, we obtain a first-order approximation of the 
delta_adjustment which is  

out △ ≅ △y × {(1–x)×y×z + (x+y –x×y)×z}. 
In fact, the above approximation ignores the effect of higher order 
terms of △y. 

 
Consider the example in Figure 7. There are two paths from 

Y to OUT and the delta_adjustment of path P1 is (1–x)×y×z =  
(1–0.46)×0.65×0.84 = 0.30 and the delta_adjustment of path P2 is 
(x+y–x×y)×z = (0.46+0.65–0.46×0.65)×0.84 = 0.81×0.84 = 0.68. 
Because Y has two paths, the resulting delta_adjustment of Y is 
0.30+0.68 = 0.98. Therefore, if △y is small, we can re-write the 
equation to be out△  ≅ △y×0.98. In Figure 7, to raise the 
probability out to 0.5, we must have out△  to be 0.05. From this 
equation, we know that if we want to increase out△  by 0.05, the 
△y must be equal to 0.05 / 0.98 ~ 0.05. After the refinement, the 
new y becomes 0.701 (= 0.65+0.05). One can find that the new 
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Figure 4: Disadvantage of backward method of which is  
    caused by probability averaging 

I2 

a=0.81 

b=0.55 

A 

B 

C 
i2=0.65 

For each primary output { 
Set target probability of this primary output, 0.5; 
Propagate probability inversely from the primary output to   
primary inputs; 
Record the signal probability assignments computed 
 for the primary inputs; 

} 
For each primary input, we assign a probability which is the average 
of all signal probability assignments. 

 

Figure 5: Pseudo code of the backward_assignment method 
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a = x+ y–x×y+(1–x)×△y 



 

input probabilities allow us to have the probability of OUT to 
become 0.5.   

 
 
The iterative_refinement method is summarized in Figure 8. 

 
 
The iterative_refinement method first derives the 

delta_adjustments between inputs and outputs. Given a target 
output probability to be modified, we greedily select an 
appropriate input whose probability adjustment can result in a 
better result.  The process iterates until there is no improvement. 
In our experiments, we limit each probability adjustment to be less 
than 0.05. 
 
4. Generation of Input Probabilities for 
Sequential Circuits 

We extend our approach to sequential circuits which can be 
decomposed into combinational circuits and storage elements like 
Flip Flops (FFs). Note that given a current state, the next state 
function is a Boolean function of inputs. Our basic idea is to 
iteratively derive a set of input probabilities for the next 
exploration for a current state. If a new state is reached, we save it 
in a state queue, and derive another set of input probabilities for 
the next state exploration. Otherwise, a state in the state queue is 
brought back to the design for further state exploration. The 
pseudo code is shown in Figure 9.  

We now describe how to obtain a set of input probabilities 
given a current state. Depending on the current state, it is possible 
that some state variables (representing some FFs) are already 
determined by the current state. We say that such a state variable is 
input-noncontrollable under the current state; otherwise, the state 
variable is input-controllable.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 For example in Figure 10, assuming the current state value 
(Q1 = 1, Q2 = 1). The next state of the state variable D1 can be 
immediately evaluated to 1 by the current state. The state variable 
D1 is therefore input-noncontrollable under the current state (Q1 = 
1, Q2 = 1). On the contrary, the next state value of the state 
variable D2 is not determined solely by the current state. Therefore, 
the state variable D2 is input-controllable under the current state, 
(Q1 = 1, Q2 = 1). Given a current state, since different input 
assignments cannot affect input-noncontrollable state variables, we 
should neglect those state variables during state exploration of the 
current state. 
 Our objective is then to find a set of input probabilities so 
that the probabilities of input-controllable state variables can be as 
close to 0.5 as possible. We then treat the circuit as a 
combinational circuit and obtain the input probability assignments 
using the methods described in Section 3. Once the input 
probabilities of a current state are obtained, we will use these 
probabilities for next state exploration. 

Figure 10: Example with an input-noncontrollable state variable
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Figure 7: Probabilities after refinement 
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While (1) { 
Calculate the original random_quality as target cost, 
Choose one of the primary outputs whose probability is farthest 

away from 0.5; 
For each input { 

Calculate the delta_adjustment; 
Determine the correction; 

} 
If all costs after doing corrections are worse than target cost 

Break; 
else  

Choose the best cost value and do the correction; 
}  

Figure 8: Pseudo code of the iterative_refinement method 

Current state   initial state; 
While (simulation cycles < predefined cycle limit) {  
   Generate input probabilities at the current state by our method; 

Performing random verification;  
Simulation cycle incremented; 
If (new state is reached) { 

     Store reached new states in the state queue; 
     Current state  new state; 
     } 
   else { 
     Current state  Current state;  
     if (lock times > predefined limit) { 
       Current state  retrieve a state from the state queue; 
       lock times = 0; 
     } 
     lock times incremented; 
  } 
} 

Figure 9: Pseudo code for handling sequential circuits 



 

5. Experimental Results 
We conduct experiments over a set of benchmark circuits, a 

public domain TV80 microprocessor core and an industrial AES 
design. Table 1 shows the results for combinational benchmarks 
and Table 2 for sequential circuits. In the experiments, we record 
the number of reached output combinations for a combinational 
circuit by simulating 100 seconds and record the number of visited 
states for a sequential circuit by simulating 10,000 seconds. The 
first four columns show the name, number of inputs, number of 
outputs, and number of literals, respectively. Column five and six 
show the number of input vectors, and number of reached output 
combinations by uniform random approach (uniform). Column 
seven and eight show the number of input vectors, and number of 
reached output combinations by our approach (our). For example, 
after 100 seconds, 603,929 output combinations of circuit apex7 
are reached in our approach while uniform random approach only 
reaches 458,857 output combinations.  

Table 2 summaries the experimental results on sequential 
benchmarks. The run time of random verifications are set to 
10,000 seconds. Take circuit s344 as an example. The results are 
shown in Figure 11. After running 10,000 seconds our approach 
can reach 2,625 states while uniform random approach can reach 
1,489 states. The experimental results show on average, we obtain 
31% more output combinations and 295% more sequential states 
than uniform random approach. The number of input vectors 

applied by our approach is less than that of uniform random 
approach because of the computation overhead to find good 
probabilities. 

 
We also apply our algorithms to the microprocessor TV80 

core [16] from the OPENCORES.ORG. TV80 is an 8-bit 
microprocessor compatible with 8080/Z80 instruction set. In the 
experiments, we restrict the CPU time to 100,000 seconds. The 
results are shown in Figure 12. Our approach generates 952,186 
vectors to cover 254,267 states but uniform random approach 
generates 1,857,071 vectors to cover only 57,084 states. We use 
half vectors of uniform random to reach five times of state 
coverage.  

Figure 11: State coverage comparison of s344

states 

patterns x 106 

s344 

uniform our circuit |PI| |PO| literals vectors outputs vectors outputs 
apex6 135 99 854 435521 254666 434177 340286
apex7 49 37 274 906785 458857 884129 603929

b9 41 21 140 1946305 8619 1714433 10475
C880 60 26 473 656609 173124 483105 311300
dalu 75 16 1159 389025 35106 385889 37497
i1 25 16 51 4076129 2236 4032033 2418
k2 45 45 1092 408225 283 402721 300

pair 173 137 1964 170113 138608 169441 167615
term1 34 10 258 1302369 649 1299457 666

x1 51 35 357 968289 520482 961153 609529
x3 135 99 890 362817 213357 355754 292073
x4 94 71 412 659809 462432 658337 599116

total   12281996 2268419 11780620 2975201
ratio   1 1 0.95 1.31

Table 1: Experimental results of combinational circuits 

Table 2: Experimental results of sequential circuits 
uniform our circuit |PI| |latch| literals vectors states vectors states 

s344 9 15 269 15890495 1489 14072425 2625
s349 9 15 273 15380933 1488 13720774 2625
s382 3 21 306 12865699 432 7822741 8865
s400 3 21 320 12264698 448 7453164 8865
s444 3 21 352 12460643 446 7765588 8865
s526 3 21 445 8035827 423 5958576 8868
s641 35 19 539 6003471 1226 4419548 1544
s713 35 19 591 5181231 1207 2093128 1544
s1196 14 18 1009 2124653 2614 1602308 2614
s1238 14 18 1041 1923065 2613 1483571 2615
total   92120715 12386 66391823 49030
ratio   1 1 0.72 3.95



 

 
 
We also perform an experiment on an industrial AES 

(Advanced Encryption Standard) encryption processor which is a 
4-stage pipeline design. Our algorithm chooses the last stage FFs 
as the target FFs and lets all the FFs in the previous stages become 
transparent. Then, we can use the same set of equations to derive 
"good" input probabilities. In this way, we are able to reach many 
states in a pipeline design. We limit the CPU time to 100,000 
seconds. Our approach generates 299,810 vectors to cover 231,315 
states and the uniform random approach generates 450,121 vectors 
to cover only 227,771 states. In fact, if we focus on the target FFs, 
our approach covers 231,315 states but the uniform random 
approach covers only 120,073 states.  

We would like to mention that these experiments are done 
on the signal on bit level without considering relations between 
input signals. The same algorithm can be further extended to word 
level by restricting the same distribution of all bits of the same 
word. 

 
6. Conclusions 

In this paper, we proposed algorithms to analyze the circuit 
structure to guide the probability assignment of inputs for random 
verification with the aim at higher coverage. The experimental 
results have shown that on average our approach can obtain 31% 
more output combinations and 295% more states than those from 
the uniform random approach for combinational circuits and 
sequential circuits, respectively.  
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