
State-of-The-Art Formal
Property Verification

Technologies for IC Designs

Pei-Hsin Ho
Advanced Technology Group

Synopsys, Inc.

Outline
• Formal property verification basics
• Modern formal property verification engines
• Hybrid proof and disproof methods
• State-of-the-art formal property verification

tools

Outline
• Formal property verification basics

– Methodology
– Terminology
– Formalism

• Modern formal property verification engines
• Hybrid proof and disproof methods
• State-of-the-art formal property verification

tools

Formal Property Verification
• Inputs:

– Design under verification (DUV)
• IC design in RTL Verilog or VHDL
• Initial states or initialization sequences

– Assertion about the DUV
• Monitor in RTL Verilog or VHDL
• Property in property languages like OVA, PSL or SVA

– Assumption about the environment of the DUV
and/or the DUV

• Monitor in RTL Verilog or VHDL
• Property in property languages like OVA, PSL or SVA

OVA: Open Vera Assertion language; PSL: Property Specification Language; SVA: SystemVerilog
Assertion language

Formal Property Verification
(cont.)

• Outputs:
– Falsified (bug is found)

• Counter example
– Error trace for debugging
– Best outcome for verification engineers

• Simulator ready or artificial VCD file
– Proven

• DUV satisfies the assertion against all input stimuli
starting from the initial states under the assumptions

– Inconclusive
• Bounded proof of finite length
• Some coverage results

Design: RTL to Gate
a
b cp

g• Verilog or VHDL RTL

• input a,b; output c;
reg c; wire p, g;

assign g = a && b;
assign p = g || c;
always @ (posedge clk)

c <= p;

• Logic synthesis converts
RTL to gate-level netlist

Design: Gate to State Transition
Graph

a
b cp

g• State: assignment to the
inputs and registers
– (a=0, b=0, c=1), or (0,0,1)

• Transition: from state s1 to
state s2 iff the design can
go from state s1 to state s2
in 1 clock cycle
– (1,1,0) -> (0,0,1)

• Finite state machine
• State transition graph:

– Vertices: states
– Arcs: transitions

0,0,0

1,1,0 1,0,0

0,1,0

0,0,1

1,1,1 1,0,1

0,1,1

Design: Initial States and Traces
a
b cp

g

0

• Initial states I: set of states
from which the design start
normal execution
– Reset states

• User provides initialization
sequences (reset sequences)
or initial states in HDL, HVL
or VCD dump

• Semantics of design
– Set of traces
– All finite and infinite paths

(traces) from the initial states
in the state transition graph

Properties
• Property

– Statement about the design
• Example: Whenever there is a request, there will be a

grant in the next clock cycle
– Set of traces

• Design satisfies the property if
– Traces of design, T(D), is a subset of the traces of

the property, T(p)
• Counter example (error traces)

– Traces that are in T(D) but not in T(p)
– Minimal error traces: error trace t is minimal if no

prefix of t is an error trace

Properties (cont.)
• Safety properties

– Properties whose minimal error traces are finite
– Example: Whenever there is a request, there will

be a grant in the next clock cycle
• Liveness properties

– Properties whose minimal error traces are infinite
– Example: Whenever there is a request, there will

be a grant eventually
• Every property is a safety property, a liveness

property or a conjunction of the two
• Will focus on safety properties in this tutorial

Safety Properties
• Properties in property languages

– Temporal formulas
• if request then #1 grant

• Monitors in RTL Verilog or VHDL
– Designs that monitor the behavior of the DUV and assert a

“bad” signal if and only if the DUV violates the property
– always @(posedge clk or negedge rst)

if (!rst) begin pre_req <= 0;
bad <= 0;

end
else begin pre_req <= request;

bad <= pre_req && !grant;
end

• Safety properties can be automatically converted into
RTL monitors

Assertions and Assumptions
• Assertion

– Properties that we check to see if the DUV would
satisfy during the verification

• Assumption
– Properties that we want to assume to be true for

the DUV or the environment of the DUV during the
verification

FV Model Under Verification
• DUV, assumption and assertion constitute the model

under verification with an output that asserts iff the
assertion is violated under the assumption

DUV

assertion

assumption

Design
Inputs

Design
outputs

assertion bad

assumption bad

assumption
has been bad

assertion
violated under

assumptionfail

Reduction to Reachability Problem
• Formal property verification problem is reduced to a

reachability problem on the state transition graph:
– Are the fail states (F) reachable from the initial states (I)?

DUV

assertion

assumption

Design
Inputs

Design
outputs

assertion bad

assumption bad

assumption
has been bad

fail

Assume Guarantee Reasoning
• Properties can be used as either assertions or

assumptions
• Assume guarantee reasoning

– DUV is block A
• assert pA; assume pB

– DUV is block B
• assert pB; assume pA

BA
No combinational loops allowed

McMillan, CAV98

pA

pB

Bibliography (1/3)
• K.L. McMillan, "Verification of an implementation of Tomasulo's algorithm by

compositional model checking," CAV98
• OpenVera Assertions (OVA), http://www.open-vera.com/
• PSL/Sugar, http://www.haifa.il.ibm.com/projects/verification/sugar/psl.html
• SystemVerilog Assertions (SVA), http://www.eda.org/sv-ac/

Outline
• Formal property verification basics
• Modern formal property verification engines

– Random simulation
– Reachable state set approximation
– Symbolic simulation
– SAT
– ATPG and ATPG-SAT hybrid
– Inductive proof
– Structural subset-based abstraction

• Hybrid proof and disproof methods
• State-of-the-art formal property verification

tools

Random Simulation
• Most effective engine for “simple” assertions

– Quickly find mistakes in model under verification
• Assertions, assumptions, initialization

– Early design phase
• Assumption/assertion-based random simulation sometimes can be

built faster than conventional simulation testbenches in
HDL/HVL

• Random simulation with assumptions
– At each clock cycle, find an input vector that satisfies all

assumptions
– Combinational assumptions

• Yuan,Shultz,Pixley,Miller,Aziz, ICCAD99
– Sequential assumptions

• Paper WIP

I

F

Symbolic Reachability Analysis
• Fixpoint computation

– State transition graph
– Starting from the initial states I

Symbolic Reachability Analysis
• Fixpoint computation

– Compute all states that are reachable in 1 clock
cycle

– Image computation (forward)

I

F

Symbolic Reachability Analysis
• Fixpoint computation

– Compute all states that are reachable in 1 clock
cycle

– Image computation (forward)

I

F

Unreachable
states!

Symbolic Reachability Analysis
• Fixpoint computation

– Reached a fixpoint!
– Identified unreachable states

I

F

Reachable States in
Characteristic Representation

• Characteristic representation of sets of
states and the model under verification
– State set S is represented as a Boolean function

R: 2|V| -> B such that
• State s is in the set S iff R(s)==1
• V: variables (inputs and registers)

• Example:
– State set {(x=0,y=1,z=0), (0,1,1), (1,0,1), (1,0,0)}
– Characteristic representation: !(x && y) && (x||y)

Characteristic Reachability
Analysis Methods

• Methods
– BDD represents both the state set and model

• Burch,Clarke,McMillan,Dill,Hwang, LICS1990
– Clauses represent both the state set and model

• McMillan, CAV02 ? details in Ken’s session
– State set: interpolants; Model: clauses

• McMillan, CAV03 ? details in Ken’s session

w

x
y

z

1 1 1 1 1 10 0 0 0 0 0 0 0 0 0

0 1

Binary decision tree

w
x

y

0 1

BDD

0 1

Binary Decision Diagram (BDD)Binary Decision Diagram (BDD)

• Compact and canonical data structure for
manipulating Boolean functions
– Example: 4 variables w, x, y and z

Boolean function: w & (x | y) & (z | !z)
– Bryant, TCAD86

• Compact and canonical data structure for
manipulating Boolean functions
– Example: 4 variables w, x, y and z

Boolean function: w & (x | y) & (z | !z)
– Bryant, TCAD86

Characteristic Fixpoint
Computation

• Fixpoint computation
– C(V,V‘): set of state transitions
– R0 = I; Ri+1 = Ri ? Img(Ri,C)
– When Ri+1==Ri; F is unreachable iff (F ? Ri)==?

• Boolean operators for characteristic
representation
– Union == disjunction ?
– Intersection == conjunction ?
– Img(Ri,C) == ? V'. ? V. (Ri ? C(V,V‘))

• V: variables (registers and inputs)
• C(V,V’): the set of state transitions (transition relation)
• Ri(V): the set of states
• Existential quantification: ? V

Reachable States in Parametric
Representation

• Parametric representation of sets of states
– State set S is represented as an array of Boolean

functions (f0,… ,fn) such that
• Each fi: 2|u| -> B
• State s=(s0,… ,sn) is in the set S iff there exists an

assignment to the variables in U such that
(s0,… ,sn) == (f0,… ,fn)

– Example:
• State set {(x=0,y=1,z=0), (0,1,1), (1,0,1), (1,0,0)}
• Parametric representation: (a, !a, b)

Parametric Reachability Analysis
Methods

• Methods
– State set: BDD; Model: gate-level netlist

• Goel,Bryant, DATE03
• Parametric union, intersection, quantification

• Conventional (scalar) simulation
– Propagate constants

• Symbolic simulation
– Propagate parametric symbolic functions
a

b
a&b

0

1
0

Symbolic Simulation

• Initial state: !c & d & !e
• Bad states: fail ==1

0 1

0

a1

b1

Cycle 0

b

a

fail
(1&0)=0

Symbolic Simulation: Example

e

c d

• Symbolic simulation after 1st cycle
• Verified that the fail state not reachable in 1 cycle

a1 0

b1

(b1&0)=0a2

b2

Cycle 1

b

a

fail

Symbolic Simulation: Example

e

c d

• Hit the fail state (fail==1 iff a1&b2 is 1)!
– Generated input sequence

• @0, a=1
• @1, b=1

a2 a1

b2

a1&b2a3

b3

Cycle 2

b fail

Symbolic Simulation: Example

e

c d

• Applications
– Disproof
– Proof

• Recent work on disproof
– Set input variables to constants when BDD is getting too

big
• Which input variable to under-approximate?

– Re-parameterization (to make the BDD smaller)
• Bertacco,Olukotun, DAC02
• Kwak,Moon,Kukula,Shiple, ICCAD02

– Approximate values and case splitting
• Wilson,Dill,Bryant, FMCAD02

– Handle embedded memories efficiently
• KÖlbl,Kukula,Antreich,Damiano, DAC02

Symbolic Simulation

• Recent work on proof
– Parametric symbolic reachability analysis as

mentioned earlier
• Goel,Bryant, DATE03

– Generalized Symbolic Trajectory Evaluation
(STE)

• Yang,Seger, FMCAD02
• Manual approximation/refinement is required

Symbolic Simulation

• Given Boolean function f(x1,x2,… ,xn)
• If it is possible to find assignment

(a1,a2,… ,an) such that
– f(a1,a2,… ,an) = 1?

• Ken’s session will focus on this area of many
recent breakthroughs

SAT (Satisfiability)

• Initial state: !c & d & !e
• Bad (goal) states: fail ==1

– Convert problem into a function: fail
– Find input assignment so that fail is 1

• No BDDs

SAT: Example

a1
b1

Cycle 0

c
d
e fail

0
1
0

fail=(1&0)

Function

0

0 1

b

a c

fail

d

e

Design

• SAT after 1st unroll
• Verified goal state not

reachable in 1 cycle

fail=(0&b1)

a2
b2

Cycle 1

a1
b1

Cycle 0

c
d
e fail

0
1
0

0

0 1

b

a c
fail

d

e

SAT: Example

fail=(a1&b2)

a3
b3

Cycle 2

a2
b2

Cycle 1

a1
b1

Cycle 0

c
d
e fail

0
1
0

• SAT after 2nd unroll
• Find assignment to inputs

a1=1 and b2=1 make fail=1
• Find input sequence

SAT: Example

0

0 1

b

a c
fail

d

e

• Applications
– Proof
– Disproof
– Ken’s session

SAT (Satisfiability)

• Original problem statement
– Wire of a circuit is stuck at 0 or 1
– Generate test so that

• Outputs of the good circuit and the faulty circuit differ
– Justification

• Generate a test that causes an opposite value at stuck-at wire
– Propagation

• Propagate the difference at the stuck-at wire to the output

ATPG (Automatic Test Pattern
Generation)

h
d
f
e

a
b
c

jg

i

k

l
s-a-0

• Formal property verification only needs
justification of the bad value
– If it is possible to find assignment

(a1,a2,… ,an) to the inputs x1,x2,… ,xn such that y = 1?
• Sequential ATPG

– Does not explicitly unroll netlist
• Circuit topology determines decision-making

schedule

ATPG (cont.)

ATPG Justification: Example
• ATPG value systems

– FV 3 value: 0, 1, X

11111

cba

1X1

1

gfed

d
c

a
b

ge

f

h

s-a-0

Comparison of Conventional ATPG
and SAT technologies

ATPGLowHighNumber of sat. assignments
ATPGImplicitExplicitUnrolling for sequential

problems

SATNoYesEfficient implications
ATPGYesSomeStructural information
sat: ATPG
unsat: SAT

TopologyAppearance
in clauses

Decision strategy

SATHighLowAlgorithm complexity

SATMinimalYesConflict-based learning
WinnerATPGSATFeature

• Iyer,Parthasarathy,Cheng, ICCAD03:

• SATORI [Iyer,Parthasarathy,Cheng,
ICCAD03]
– ATPG decision strategy
– ATPG implicit unrolling
– ATPG partial assignments
– SAT conflict-based learning
– SAT implication

Hybrid ATPG-SAT Solver

• RACE [Mahesh Iyer, ITC03]
• Solves word-level arithmetic (datapath) and

Boolean constraints (control)

Word-Level ATPG Solver

Inductive Prover
• Induction proof

– Use SAT or ATPG
– Will be covered in Ken’s session

Bibliography (2/3)
• V. Bertacco, K. Olukotun, “Efficient state representation for symbolic simulation,” DAC2002,

pp.99-110
• R.E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE TCAD, C-

35(8), 1986
• J.R. Burch,E.M. Clarke,K.L. McMillan,D.L. Dill,J. Hwang, “Symbolic model checking:1020 states

and beyond,” LICS1990
• A. Goel, R.E. Bryant “Set manipulation with Boolean functional vectors for symbolic

reachability analysis,'' DATE2003
• M.K. Iyer, G. Parthasarathy, K.T. Cheng, “SATORI-a fast sequential SAT engine for circuits,”

ICCAD03
• M. Iyer, “RACE: a word-level ATPG-based constraint solver system for smart random

simulation,” ITC03
• A. KÖlbl, J. Kukula, K. Antreich, R. Damiano, “Handling special constructs in symbolic

simulation,” DAC2002, pp.105-110
• H.H. Kwak, I.-H. Moon, J. Kukula, T.R. Shiple, “Combinational equivalence checking through

function transformation,” ICCAD02, pp.526-533
• K.L. McMillan, “Interpolation and SAT-based Model Checking,” CAV2003
• K.L. McMillan, “Applying SAT methods in unbounded symbolic model checking,” CAV2003,

pp.250-264
• C. Wilson, D.L. Dill, R.E. Bryant, “Symbolic simulation with approximate values,” FMCAD 2000,

pp. 486-504
• J. Yuan,K. Shultz,C. Pixley, H.Miller, A. Aziz “Modeling design constraints and biasing in

simulation using BDDs,” ICCAD1999, pp.584-589
• J. Yang, C.-J. Seger, “Generalized symbolic trajectory evaluation – abstraction in action,”

FMCAD2002, pp. 70-87

Outline
• Formal property verification basics
• Modern formal property verification engines
• Hybrid proof and disproof methods

– Disproof
– Proof

• Key ingredients for practical formal property
verification tools

• Orchestrate simulation and multiple formal
disproof engines

• Iteratively run random simulation and formal
engines from “deep” states
– Ho,Shiple,Harer,Kukula,Damiano,Bertacco,Taylor,Lo

ng, ICCAD00

Hybrid Disproof Methods

Manually create input vectors to drive the
design --- SLOW, LOW COVERAGE, MISS
BUGS

Directed Simulation

Drive the design with random but legal input
vectors --- MISS HARD-TO-FIND BUGS

Random Simulation

Short range semi-exhaustive search --- MISS
DEEP BUGS

Formal Disproof

Collaborative simulation and formal engines
searching far and wide

Hybrid Disproof [ICCAD00]

Where to start
formal search?

Which formal
algorithm?
How deep?

How to bias
random simulation?

• Goal: Make the size of the design almost
irrelevant; Only proof complexity matters
– Model under verification with 10M gates
– Algorithm avoids building or analyzing whole design

• 3-value simulation
• ATPG in limited fashion

– ATPG model size is linear to the netlist, not depth*netlist
– Use hybrid engines to model check abstract model

• BDD-based symbolic reachability analysis
• ATPG

– Wang,Ho,Long,Kukula,Zhu,Ma,Damiano, DAC01

Hybrid Iterative Abstraction
Refinement

Counter Example Guided
Abstraction Refinement

2. Model check
abstract model C'

1. Choose initial abstract
model C'

3. Can extend Cex
from C'to C?

4. Refine (extend)
abstract model C'

true, done

Cex

yes, Cex

no

Step 1: Create Abstract Model
• Task

– Create an abstract model
• Abstract model

– A subset of registers
• Included registers, excluded registers

– Combinational fanin cones of included registers
• Included registers

– Initially include registers in the assertion
– Later refinement adds more registers

Abstract model

Inputs of the
registers of N

Primary inputs
of N but register
outputs of M
Primary inputs of N
and M

Outputs of the
registers of N

M: concrete model
N: abstract model

Rest of registers
and inputs of M

Step 2: Model Check Abstract
Model

• Task
– Find an abstract error trace to reach the fail state
– Or declare the fail state unreachable (assertion

proven)
• Find an error trace on the abstract model

– BDD based image computation
• Number of input variables is often an issue for backward

image computation
– ATPG based search

• Length of the error trace sometimes is an issue

Find Abstract Error Trace
• Hybrid BDD-ATPG algorithm for abstract

error trace:
– Forward image to reach the fail state

• Input variables are existentially quantified out, not an
issue

– Backward image to find an abstract error trace
• Computes a min-cut abstract model with less number of

inputs
• Backward image to get an assignment to the state

variables and min-cut inputs with as many dashes as
possible; e.g., (-,0,-,1,-,-,-)

• Use ATPG to generate an assignment to the original input
variables with as many dashes as possible

• ATPG alone as the fall-back solution

Min-Cut and Original Abstract
Models

Gates of N
and MC

Gates of N
but not in MC

Inputs of MC

Inputs of N

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

M: concrete model
N: original abstract model
MC: min-cut abstract model

Inputs of the
registers of N

Hybrid Algorithm

Inputs of the
registers of NGates of N

and MC
Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

M: concrete model
N: original abstract model
MC: min-cut abstract model

0
1
-
0 0

-

BDD-based backward image

ATPG

1
-
0

1

1
-

Prove Assertion
• If error trace cannot be found on the

abstract model (aborted after reaching
resource limit)
– Apply symbolic reachability analysis to prove the

assertion on the abstract model
• BDD
• Interpolant ? Ken’s session

• If proof is also aborted
– Increase the resource limit and resume error trace

finding

Step 3: Try to Concretize
Abstract Error Trace

• Task
– Check the validity of abstract error trace on

concrete model
– Discover concrete error trace

• Challenge
– Must analyze the whole design

• Solution
– Use 3-value simulation to quickly identify abstract

error traces that cannot be concretized
– Use guided ATPG to concretize the error trace

Check Abstract Error Trace
Using 3-Value Simulation

• 3-valued simulation
– Simulate the abstract error trace on concrete

model to see if there are conflicts on excluded
registers

– Conflicts ? candidates to be included in the
refined abstract model

– No conflicts ? Try to concretize the abstract
error trace using ATPG

Identify Conflicts Using 3-Value
Simulation

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

M: concrete model
N: abstract model

Rest of registers
and inputs of M

Abstract error trace

X
X
X
X

X
0
0
1
0

Conflict!

3-value simulation result

X
0

0

X
X
0
X

X

0
0
1
X
0

X
X
X
X

Step 3: Try to Concretize the
Abstract Error Trace

• Conflict
– Yes ? conflict variables are good candidates to be

included to refine the abstract model (in Step 4)
– No ? guided ATPG to find concrete error trace

• Guided ATPG
– Runs faster than unguided
– Gradually impose more constraints

• Increases the chance to find real error traces

Excluded
registers of M

Primary inputs
of M and N

Included
registers of N

Abstract Error Trace Guided
ATPG

Rest of
registers and
inputs of M

X
X
X
X

X
X
X
X

X
X
X
X

0
0

X
0

1
X

1
X

0
1

1
X

0 0 1

1
X

Step 4: Refinement
• Task

– Add “important” registers to refine the abstract
model

– Intuition: add registers that invalidate the spurious
error trace

• Key idea: 3-value simulation conflicts are good
candidates
– Assignments required by the spurious error trace

if the trace is minimal (true for BDD, not always
true for ATPG, SAT is bad for this)

– Concrete model does not permit the assignments
(conflicts)

Identify Conflicts Using 3-Value
Simulation (Recall)

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

M: concrete model
N: abstract model

Rest of registers
and inputs of M

Conflict!

Abstract error trace

X
0

0

X
X
X
X

X
0
0
1
0

3-value simulation result

X
X
0
X

X

0
0
1
X
0

X
X
X
X

Candidate Minimization
• Find a smaller set of registers to be included
• Greedy minimization algorithm using SAT

– Order all conflict registers according to heuristics
– Add one conflict register at a time to the abstract

model
• Until the augmented abstract model and the error trace

become unsatisfiable
– Try to remove previously added conflict registers

one at a time
• A register is removed if the minimized model is still

unsatisfiable

Minimization by SAT

Abstract
Circuit Satisfiable

Abstract error
trace

Minimization by SAT

Abstract error
trace

SatisfiableAbstract
Circuit

Minimization by SAT

Abstract
Circuit

Abstract error
trace

Unsat.

Related Work
• Clarke,Grumberg,Jha,Lu,Veith, CAV00

– Require building transition relation of whole design
in BDD

– Refinement based on investigation of deadend
states

• States in abstract error trace
– Can be reached by concrete error trace
– Cannot reach fail states by concrete error trace
– Closest to fail states

• Different than the deadend states that we mentioned
about random simulation with assumptions

• But some states before the deadend states might reveal
the key register

Related Work (cont.)
• Glusman,Kamhi,Mador-Haim,Fraer,Vardi,

TACAS03
– Consider a sequence of BDDs to find refinement

• More expensive backward image computation than a
sequence of cubes (multiple traces in both cases)

– Add gates or registers to refine the abstract
model

• More expensive refinement process

Related Work (cont.)
• Wang,Li,Jin,Hachtel,Somenzi, ICCAD03

– Build synchronous onion rings (SORs) to represent all
shortest error traces at once

– Score each input of the abstract model by the number of
transitions that the input can potentially kill (if it is on our
side) in the SORs

• Pick the register that drives the input with the highest score to
be included in the abstract model

• Register may not be on our side
• Register that can kill all shortest error traces may not get the

highest score
– Expensive computations are only done on the abstract model

• Scalable
• Many SAT-based abstraction refinement work

– Ken’s session

Bibliography (3/3)
• E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, “Counterexample-guided

abstraction refinement,” CAV2000, pp. 154-169
• M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, M. Vardi, “Multiple-

counterexample guided iterative abstraction refinement: an industrial evaluation,”
TACAS2003

• P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor, “Smart
simulation using collaborative formal and simulation engines,” ICCAD2000, pp.120-
126

• C. Wang, B. Li, H. Jin, G.D. Hachtel, F. Somenzi, “Improving Ariadne’s bundle by
following multiple threads in abstraction refinement,” ICCAD2003, pp.408-415

• D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, R. Damiano, “Formal property
verification by abstraction refinement with formal, simulation and hybrid
engines,” DAC 2001, pp. 35-40

Outline
• Formal property verification basics
• Modern formal property verification engines
• Hybrid proof and disproof methods
• State-of-the-art formal property verification

tools

Make Formal Property
Verification Main-Stream

• Higher return for the user
– Handle bigger designs more efficiently

• Never choke on it; always do something
– Produce definitive results on more designs

• Lower investment from the user
– Reduce the effort and turnaround time for setting

up the DUV, the assertions and assumptions
– Tool better be launch-and-forget
– Reduce debugging effort

Challenges
• Problem is intrinsically hard

– PSPACE complete, most likely exponentially harder
than NP complete problems (place&route and logic
synthesis)

• Assertions and assumptions have to be written
in RTL or property languages
– Cannot accept high-level verification languages like

Vera, e or C++
• Key ingredients that help

Key 1: Abstraction
• Goal: successful verification depends on the

complexity of the proof/disproof rather than
the size of the design
– Abstraction throughout
– Can produce definitive results for some assertions

of designs with 10M gates
• May fail to do so for some assertions of designs with 1K

gates (it’s all right)

Key 2: Tight Integration with
Simulation Environments

• Handle initialization sequences in HVL,
behavior HDL, C++ or VCD

• Help debugging and regression
• Most effective tool for refining the FV model

(DUV, assertions, assumptions and reset)
• Reuse assertions and assumptions between

simulation and formal property verification
• Identify and reduce synthesis-simulation

mismatches

Key 3: Multiple Formal
Technologies

• Already a must for main-stream formal
equivalence checking tools

• Different technologies/tricks excel at
– Different applications (proof vs. disproof)
– Different assertions (easy vs. hard)
– Different design constructs (control vs. data)

• No silver bullets
– The more technologies the more successes

Key 4: Proof vs. Disproof
• Prove and disprove deserve separate

considerations
– Prove:

• Most effective abstraction is over-approximation of the
model

– More traces than original model; no false positive
– False error traces

– Disprove:
• Most effective abstraction is under-approximation of the

input stimuli
– Less traces than original model; no false negative
– Cannot give valid (unbounded) proof
– Bounded proof

