
1.  ABSTRACT
We present an automated formal verification
method that can detect common pipeline-con-
trol bugs of logic-design components containing
thousands of registers. The method models
logic designs using controlled token nets. A con-
trolled token net consists of: a token net that
models the data flow in the datapath using
token semantics; a control logic that models the
control machines using traditional finite state
semantics. We provide algorithms to (1) extract
a controlled token net from a logic design, (2)
minimize the controlled token net, and (3) com-
pute an abstract interpretation of the controlled
token net for efficient model checking. We
implemented and applied the method to 6 Intel
logic-design components containing up to 4500
registers and successfully detected 8 pre-silicon
errata.

1.1  Keywords
Pipeline control verification, controlled token net,
abstract interpretation, processor verification, model
checking, formal verification, functional verification,
computer-aided design

2.  INTRODUCTION
As microprocessors use more and more complex
pipelining, bugs are more likely to arise in pipeline
control. Moreover, a subtle pipeline-control bug may
only manifest itself with one particular input sequence.
Given the low probability of exercising such an input
sequence among billions of possible input sequences,
pipeline-control bugs are usually hard to catch using
simulation. In contrast to the stimulus-based logic
simulation, formal verification (FV) tools do not
require test vectors, since they analyze all possible
input sequences. Thus formal verification is a good
candidate for validating pipeline control. 

Model checking [13] is the most widely used formal
verification technique for verifying properties of VLSI
designs. However, there are two basic issues with
model checking pipeline control today: capacity and

specification. For the capacity issue, existing model
checkers cannot consistently verify designs with more
than a few hundred registers, while real-life design
components contain more than a thousand registers. To
verify such a design component, we have to manually
simplify the design component into verifiable models.
From our experience, this manual abstraction process
can be both error-prone and time-consuming, not to
mention the level of FV expertise required by the
process.

Specification is also an issue as existing temporal
logics are interpreted by the evaluation of all state
variables. As a result it is hard to separate the pipeline-
control verification from the datapath verification. For
example, consider the following simple pipeline-
control property: given a “valid” input data a, the
corresponding output data will eventually be produced.
We may want to verify the above property to see if a
valid data can be mistakenly squashed in the pipeline
after some rare combinations of stalls. The pipeline
control property may be specified by the following
LTL formula:

where G and F represent the temporal operators
“always” and “eventually” respectively, input is the
input vector (for example, the combined input vector of
the two operands to a pipelined ALU), validin is a
control signal that indicates if the input data is valid,
output is the output vector, validout is a control signal
that indicates if the output data is valid, and f represents
the function that the datapath performs. If the function f
is very complex, specifying f in a temporal-logic
formula would be difficult since the formula can
become as complex as the design itself. This example
illustrates why we want to specify pipeline-control
properties without mentioning the exact function f of
the datapath. An exception may be arithmetic circuits
where the function of the datapath can be reasonably
specified in word-level temporal logic [3]. But even so,
verification of the pipeline control and the datapath
functionality at the same time may be unnecessarily
expensive.

G input a validin∧=( ) F output f a( )= validout∧( )→( )
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2.1  Previous Work
There are many approaches in the literature that utilize
data-abstraction techniques to verify pipelined
designs. Theorem-proving techniques, for example,
have been successfully adapted to verify pipelined
processors [6][16][17]. The disadvantage of these
approaches, however, is that they require a great deal
of user intervention, especially for verifying control-
intensive designs. 

Uninterpreted functions have been shown to be useful
in abstracting away datapath complexity for pipeline-
control verification. In particular, Burch and Dill
[1][2] introduced an automated method for verifying a
pipelined processor (modeled using uninterpreted
functions) against its architectural specification. Their
method guarantees a clean correctness criterion and
can verify larger designs than could previous
approaches. However, to apply this method to design
components at the micro-architecture level, one may
need to overcome two difficulties. First, since the
design components tend to perform low-level
functions and heavily interact with other components,
a clean formal specification of the design required by
the method is very difficult to obtain in practice.
Second, the verification capacity of the method is
limited by the capacity to construct an inductive
invariant of the abstract model, the validity checker
and the symbolic simulator. It is very difficult to
construct a verifiable abstracted model from a design
component with thousands of registers using
uninterpreted functions. 

Levitt and Olukotun introduced the un-pipelining
method [12] that also utilizes abstract models with
uninterpreted functions. The advantage of the method
is that it does not require a formal specification of the
model. But the design components that we
encountered often did not fit the pipeline topologies
that the un-pipelining method applies. 

The approaches of [4] and [10] perform symbolic state
exploration of abstracted models with uninterpreted
functions. The usage of uninterpreted functions in the
abstract model however makes the reachability
analysis undecidable [9]. 

The self-consistency method introduced in [11] also
does not require formal specification of the design.
But since the design components often exceed the
capacity limit of symbolic simulators, the method in
practice often becomes a simulation method rather
than a formal-verification method. 

In [8], Hojati and Brayton presented an automatic
data-abstraction technique to reduce the datapath

width to one or very few bits. However, their method
only works for datapaths where computations are not
performed on data.

The method in this paper does not require the user to
provide an abstracted model of the design component
with uninterpreted functions nor a complete formal
specification of the design component. The method
computes an abstract model of the design. Common
pipeline-control properties including liveness
properties of the design component can be efficiently
verified against the abstract model using an off-the-
shelf model checker.

2.2  Controlled Token Nets
We introduce controlled token net to model pipelined
logic designs. A controlled token net consists of two
parts: a token net that models the data flow in the
datapath using a Petri-net-like [14] token semantics,
and a control logic that models the control machines
using a traditional finite state semantics. The data in
the datapath are modeled as tokens in the token net. A
token is a symbol of an infinite alphabet. The
combinational functional blocks in the datapath are
modeled as token union gates that collect the input
tokens. As a result, the exact function of the
combinational logic block is abstracted away. The
tokens are staged in token latches and steered by token
muxes in the token net. The control logic controls the
token net through the mux selection signals generated
by the control machines. 

Controlled token nets enable us to specify pipeline-
control properties without having to specify the
functionalities of the datapath. We introduced
property-specification language Token Linear Time
Logic (TLTL) by extending Linear Time Logic (LTL)
with token propositions to refer to the set of tokens
that are present at a particular signal. For example, the
property in the previous example can now be specified
as:

where  and  are token propositions
specifying that the token a is a member of the set of
the tokens of the token variables input and output,
respectively. The variables validin and validout are
control variables in the control logic. Note that the
function f computed by the datapath is no longer
mentioned in the property.

We provide algorithms to (1) extract a controlled token
net from the logic design, (2) minimize the controlled
token net to reduce verification complexity, and (3)
compute a finite abstract interpretation [5] of the
controlled token net for efficient model checking with

G a input∈ validin∧( ) F a output∈ validout∧( )→( )

a input∈ a output∈



off-the-shelf model checkers. For a particular
controlled token net, the minimization and abstract
interpretation algorithms are both sound (no false
positive verification results) and complete (no false
negative verification results). However, the user needs
to provide hints to the extraction algorithm to obtain a
meaningful controlled token net model of the logic
design.

We applied this method to 6 Intel design components
and detected 8 pre-silicon errata in their pipeline
control. We found that our symbolic model checker
was able to verify the abstract models of design
components generated by the minimization and
abstraction techniques. The method allows the model
checking of general TLTL properties, which were
sufficient to specify most pipeline-control properties
that we had in mind during the experiments. However,
the specification issue is not completely resolved.
Without a formal specification of the design, although
we can verify many interesting TLTL properties of the
pipeline control, we do not know if the set of verified
TLTL properties actually “covers” all the functionality
of the pipeline control.

2.3  Outline
The rest of the paper is organized as follows. We
discuss in the next section the common pipeline-
control bugs found in practice. In Section 4 we
introduce the controlled token nets for modeling the
design and TLTL formulas for modeling the pipeline-
control properties. We present the minimization
algorithm and the abstract interpretation algorithm in
Section 5. The extraction algorithm is presented in
Section 6. We will show the results of the experiments
of this method on real-world logic designs in Section
7.

3.  Common Pipeline-Control Bugs
The motivation of developing the method in this paper
is to catch common pipeline-control bugs in design
components containing thousands of registers. In our
view, a pipeline consists of two parts, the datapath and
the control. The datapath contains complex
combinational logic to compute some function and
wide registers and muxes to store and steer the
intermediate data. The control controls the transfer of
the data in the datapath by controlling the enable,
clock and reset signals of the registers and the
selection signals of the muxes in the datapath. We
describe common bugs in the control of the pipeline in
the following section.

Pipeline control is complex due to pipeline hazards [7]
that include structural hazards (stalling due to resource

conflicts), control hazards (squashing and flushing due
to control dependencies) and data hazards (bypassing
due to data dependencies). Although the pipeline
control may be very different from design to design,
we can informally characterize the pipeline-control
bugs by their impact as follows.

1. Data that is not supposed to be lost in the pipeline
is lost in the datapath. If we analyze the bug at the
gate level, a valid data can be mistakenly lost if any
one of the following situations (and many others
not discussed here) happen. 

First, let u and v be two edge-triggered flip-flops
(each controlled by a clock signal and an enable
signal) such that u fanouts to the input signal of v. If
at the same triggering clock edge of both flip-flops,
the enable signal of u is (mistakenly) asserted while
the enable signal of v is (mistakenly) de-asserted,
then the data that was residing at the flip-flop u will
not be latched into v and will be over-written by
some new data. 

Second, let u and v be transparent latches (each
controlled only by an enable signal) and the enable
signals of u and v are mistakenly asserted at the
same time (race condition). 

Third, a selection signal of a mux is generated
incorrectly such that the valid data is not chosen to
become the mux output. 

Fourth, the reset signal of a register (flip-flop or
latch) is asserted by mistake. 

If we analyze these bugs at the micro-architecture
level, a valid data may be mistakenly destroyed if
the pipeline control (1) does bubble squashing dur-
ing the stall of the pipeline (structural hazard); (2)
destroy data in a portion of the pipeline during a
mispredicted branch (control hazard); or (3) picks
only one of several results of speculative computa-
tion and loses the rest (data hazard). 

2. Data that is supposed to be destroyed survived in
the datapath. The bug is the dual of the first one
and may occur because of the same set of pipeline
hazards. For example, let u and v be the two edge-
triggered flip-flops in the very first example. If at
the triggering clock edge of both flip-flops, the
enable signal of u is de-asserted while the enable
signal of v is asserted, then the data that was resid-
ing at the flip-flop u will also be latched into v and
thus there will be two copies of the same data.

3. FIFO (first in first out) property is violated. A bug



in the control of an array that implements an FIFO
queue can cause the problem.

4. Wrong source of data is used for some computation.
A bug in the bypassing logic or the selection logic
of some speculative computation can be the cause.

Note from the above bug descriptions, it is very
difficult to characterize the precise conditions of the
clock, enable, reset and mux selection signals that will
result in such pipeline-control bugs. So rather than
specifying pipeline-control properties with respect to
these low-level control signals, we should specify how
the data should be transferred in the pipeline. With the
controlled token nets introduced in this paper, we can
specify how the data should be transferred in the
pipeline without mentioning how the data should be
computed in the pipeline. Traditional state semantics
does not allow us to separate the above two tasks.

4.  Controlled Token Nets and TLTL 
We model data in the datapath as tokens. A token is a
symbol of an infinite alphabet A. At each execution
step, the data at each primary input of the design is
modeled as a set containing a single unique token. The
set of output tokens of arbitrary logic function is
defined to be the union of the sets of input tokens. The
output token set records the tokens that participate in
the computation but not the logic function performed
during the computation. We will see in later sections
that the information on the participants is sufficient for
verifying many pipeline-control properties and the
abstraction of the logic function in the datapath
enables the minimization of the model of the datapath.

4.1  Controlled Token Nets
Based on the notion of tokens, we use controlled token
nets to model pipelined designs. A controlled token
net consists of two parts: a token net modeling the
datapath of the design and a control logic modeling the
control of the design. 

Formally, a controlled token net  consists of
a token net N, and a control logic L. Both the token net
N and the control logic L are sets of tuples of the form

, where ν is a variable,  is the transition
relation and  is the initial condition of the variable
ν. Let the set  be the set of variables
of the controlled token net M. To specify the
characteristic function of a transition relation, we use
the set V of unprimed variables and the set

 of primed variables to denote the
current and next values of the variables. 

A variable ν of a controlled token net M is either (1) a
primary input if  (represented by its characteristic
function) is True, (2) a latch if  is of the form 

where the variable µ is called the input of the latch ν,
(3) a mux if  is of the form 
where the variable x is called the selection variable of
the mux ν and the variables  and  are called the
inputs of the mux ν, or (4) a gate if  is of the form

 where the variables  are called
the inputs of the gate ν and f is a function over the
inputs. Note that more complex registers such as edge-
triggered flip flops or registers with clock, enable,
reset and set signals can be modeled by latches, muxes
and primary inputs.

We say that the variable µ fanouts to the variable ν or
the variable µ is in the fanin of the variable ν if the
variable µ is an input of the variable ν. A variable is a
primary output if it does not fanout to any other
variables. Informally, combinational loops are not
allowed in controlled token nets. More precisely, for
any variables  such that  fanouts to

,...,  fanouts to , and  fanouts to , there
must exist a variable  that is a latch.

The variables v of the token net N are called token
variables. The token variables can be assigned to a set
of tokens, subset of the infinite alphabet A. The inputs
of token variables are also token variables. The
selection variables of token variables are variables
from the control logic. The transition relation  for
each gate v of the token net is of the form

 where the token variables 
are the inputs of the gate v. A gate in the token net is
called a token union gate. The initial condition of the
token net requires each latch be assigned the empty
token set . 

Variables of the control logic L are called control
variables. Control variables are Boolean variables.
The inputs of control variables are also control
variables.

4.2  Semantics
The transition relation  of the controlled token net
M is the conjunction of all the transition relations of
the variables of M. Similarly, the initial condition 
of the controlled token net M is the conjunction of all
the initial conditions of the variables of M. 

A state  of the controlled token net M is an
evaluation of all variables of M. Let  denote the
value of variable  in state . We define the successor
relation  of M such that  if  is True,
where  is the result of substituting each
variable ν of V by  and each primed variable of

 by  in the transition relation . A trace
 of M is an infinite sequence of states

such that (1) the initial state  satisfies the initial

M N L( , )=

ν Tν Iν, ,( ) Tν
Iν
V ν1 ν2 … νn, , ,{ }=

V′ ν′1 ν′2 … ν′n, , ,{ }=

Tν
Tν ν′ µ=

Tν ν′ x′ µ′1∧( ) x′ µ′2∧( )∨( )=

µ1 µ2
Tν

ν′ f µ′1 µ′2 … µ′k, , ,( )= µi

µ1 µ2 … µk, , , µ1
µ2 µk 1– µk µk µ1

µi

Tv

v′ u′1 u′2 … u′k∪ ∪ ∪= ui

∅

TM

IM

δ
δ ν( )

ν δ
→ δ0 δ1→ TM δ0 δ1,( )

TM δ0 δ1,( )
δ0 ν( ) ν′

V′ δ1 ν( ) TM
τ δ0 δ1 …, ,( )=

δ0



condition (  is True), (2) state  is a successor
of the state  ( ) for all i, and (3) token
primary inputs always get fresh tokens (for any token
primary inputs  and ,  implies that
both  and ). The semantics of M is the set of
all traces of M. 

4.3  Token Linear Time Logic
To specify properties of the controlled token nets, we
extend Linear Time Logic (LTL) to Token LTL (TLTL)
that includes token propositions. A TLTL proposition

 is:

where x is a variable of the control logic, v is a variable
of the token net, and a is a token. The syntax of TLTL
formulas is defined recursively as follows. 

where  is a TLTL proposition,  and  are
respectively the next and strong until temporal
operators. We also define  and

 to be the abbreviations for the formulas
 and ,

respectively. TLTL formulas are interpreted in the
usual way on the semantics of controlled token nets. 

4.4  Verification of Pipeline Control Using 
TLTL

Now we demonstrate how each type of pipeline-
control bugs mentioned in Section 3 can be verified by
model checking TLTL properties. 

First, consider bugs of Type 1. Suppose that for a
token primary input u and a token primary output v of
the datapath, we want to verify if each valid input data
at variable u will eventually results in a valid output
data at variable v, unless some exception occurs. In
other words, token will not be lost in the transfer from
token variable u to token variable v unless an
exception occurs. This property can be specified as the
following TLTL formula:

where validin (validout) is a TLTL formula that
specifies when the data residing at token variable u
(token variable v) is considered as valid input (output)
data, exception is a TLTL formula specifying when the
exception occurs. Informally the formula specifies that
it is always the case that a “valid input” token of u will
eventually result in a “valid output” token of v unless
the exception happens. This property also applies to
designs with multiple token primary inputs and
outputs. In those cases, we may want to verify this
property for each pair of token primary input u and

token primary output v such that the token at the
variable u should eventually reach the variable v. The
following is a possible formula for the TLTL formula
exception:

which says that the exception occurs when the reset
variable is asserted and the data (token) is residing at a
token variable w of the token net. Note that if the token
a is not at the token variable w when the reset occurs,
the token a is still supposed to eventually show up at
the token primary output variable v.

Second, consider bugs of Type 2. Suppose we want to
make sure that if the exception condition occurs then
the data originated from token variable u will always
be destroyed. Then we verify the following formula:

that basically specifies if the exception ever happens
(reset is asserted when the unique token resides at
variable w) then there will never be a valid output
token appearing at v.

Third, consider bugs of Type 3. Suppose that we want
to verify the FIFO property of a queue (maybe
implemented as an array with read and write pointers)
with input u and output v:

which says that it is always the case that if we send
token a and later the token b to the token variable u,
then we will not see the token b appearing at the token
variable v until we have seen the token a appearing at
the token variable v, and we will eventually also see
that the token b appears at the token variable v. 

Fourth, consider bugs of Type 4. The formula

is an example of a simple by-passing property that
says if the address fields  and  are the
same, then in the next cycle the token variable v gets
the token from token variable u.

Note that if we consider  and  as
datapath variables then they will be modeled as token
variables in the token net. However, TLTL formulas
do not allow for comparisons to be made between
token variables. But since the pipeline control only
“monitors” the datapath through feedback signals,
signals from the datapath to the control, we can
usually express the above property as a TLTL formula
by replacing datapath variables in the formula with

IM δ0( ) δi 1+
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i j= ν µ=

p
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feedback signals. For example, we can replace decoder
or comparator inputs (such as  and )
by decoder or comparator outputs (some feedback
signals). In the above example, the design is likely to
contain a comparator in the datapath that computes

 and asserts/de-asserts a feedback
signal match according to the result. The feedback
signal match should be a control variable. Thus we can
specify the property as:

which is a TLTL formula.

5.  Minimization and Abstract Interpretation
Since all the gates in the token net are token union
gates, many token latches are “equivalent” in the sense
that they are always assigned the same set of tokens.
We present an iterative algorithm that can identify
these equivalent latches and compute a minimized
token net that is easier to model check. We can obtain
sound and complete results of verifying TLTL
properties of a controlled token net by verifying the
minimized TLTL property of the minimized controlled
token net. Our minimization algorithm has a flavor of
the bisimulation partitioning algorithm --- given a
token net  and an initial partition of the variables, the
algorithm iteratively refines the partition until the
partition is “stable”.

5.1  Minimization of Token Nets
We say that variables  and  are control-compatible
if each variable does not fanout to the other variable
and any one of the following conditions holds: 

• token variables  and  are both latches, or

• token variables  and  are both muxes that have
the same selection variable and disjoint sets of
inputs, or

• token variables  and  are both token union gates.

The initial partition of the variables is the partition of
the token net into minimum number of classes such
that the variables in each class are control-compatible.
The variables  and  are control-equivalent with
respect to the current partition if

• the variables are control-compatible, and

• if  fanouts to  for some variable  in a class ,
then there is a variable  in the class  such that 
fanouts to , and

• if  fanouts to  for some variable  in a class ,
then there is a variable  in the class  such that 
fanouts to . 

A class is stable if and only if all the variables in that

class are control-equivalent. The algorithm continues
dividing the unstable classes into stable classes until
every existing class is stable. Then the set  of the
stable classes is called the quotient of the token net . 

In the second step, we compute a minimized token net
from the quotient  as follows. We define a
representative for each class  of the quotient . Let

 be the function that maps each control variable  to
 itself and maps each token variable  to the

representative of the class  that contains the variable
. Define  to be the result of substituting each

variable  in  by . Then the minimized token
net consists of the set of representatives:

The minimized controlled token net  is defined as
. For a TLTL property , we define the

minimized property  to be the TLTL property
obtained from the property  by replacing each
variable  with the variable . Theorem 1  says that
verifying the minimized controlled token net against
the minimized TLTL property is the same as verifying
the original controlled token net against the original
TLTL property.

Theorem 1  Controlled token net  satisfies TLTL
property  if and only if the minimized controlled
token net  satisfies the TLTL property .

5.2  Minimization of Token Primary Inputs
For a subset of TLTL formulas, the minimization
algorithm can achieve a greater reduction in the size of
the token net by first merging some of the primary
inputs of the token net into one primary input. In fact,
all the TLTL properties discussed in Section 4.4
belong to this subset.

We call this subset of TLTL properties the
transmission properties. Transmission properties are
of the form , where the antecedent 
is a conjunction of formulas of the form , ,

, or , where  is a proposition. In addition,
we require that the tokens appearing in the formula 
is a subset of the tokens appearing in . Note that
negation and disjunction are not allowed in the
formula .

Let M be a controlled token net and let the token
variables  be the set of token primary
inputs that are not in the transitive fanin of the token
variables that appear in the formula . The input-
minimized controlled token net M’  is obtained from M
by merging the token primary inputs  into
one token primary input. Note that the merged token
primary inputs can be in the transitive fanin of token
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variables that appear in the formula . We have the
following result.

Theorem 2  Controlled token net M satisfies
transmission property  if and only if the input-
minimized controlled token net M’ satisfies the same
transmission property .

Therefore, if we are verifying a transmission property,
we can first compute the input-minimized controlled
token net M’  and then apply the minimization
algorithm in Section 5.1 to compute the minimized
controlled token net from M’ .

5.3  Abstract Interpretation of Controlled 
Token Nets 

In order to verify a controlled token net  against a
TLTL formula  using an off-the-shelf model checker,
we construct an abstract controlled token net  of the
controlled token net  and an abstract property  of
the property . The abstract controlled token net  is
a control logic of Boolean variables and can be
verified against the abstract property  by an ordinary
model checker. The verification result is sound and
complete with respect to the original controlled token
net  and the original property .

Given a TLTL property , we define the finite
abstract alphabet  to be the union of all tokens
that appear in the property . The abstract
interpretation of a set of token is the intersection of the
set of tokens with the abstract alphabet . Suppose
that the size of the abstract alphabet  is n. The
abstract interpretation of each set of tokens can be
encoded by a bit vector of n bits. 

We now define the abstract token net . In the abstract
controlled token net , each token union gate of the
token net N is modeled as a bitwise-OR gate of n bits.
Each token latch and each token mux of the token net
N are modeled as n binary latches and muxes
respectively. Each token primary input of the token net
N is modeled as an n-bit input vector. The abstract
token net  also includes a state machine that
guarantees that all tokens in the abstract alphabet can
appear at most once at any input vectors at all time.

The abstract controlled token net  is the union of the
abstract token net  and the original control logic L.
The abstract property  is obtained by translating each
token proposition  into the binary variable that
represents the token a.

Note that for TLTL properties containing only one
token constant, The abstract token net can be obtained
by replacing token union gates by binary OR gates.
Since most TLTL properties contain only 1 or 2

tokens, the number of token latches of the abstract
token net is the same or twice as much as the number
of token latches in the original token net. In addition,
an abstract token net for an abstract alphabet of size k
work for all TLTL properties with k  tokens.

Theorem 3  says that verifying the abstract controlled
token net with respect to the abstract property is the
same as verifying the original controlled token net
with respect to the original property.

Theorem 3  Controlled token net  satisfies TLTL
property  if and only if the abstract token net 
satisfies the abstract TLTL property .

6.  Extraction of Controlled Token Nets from 
Logic Designs
We can extract a token net from a subset of a control
logic by converting each control input into a token
input, each control latch into a token latch, each
control mux to a token mux, and each control gate into
a token union gate. In addition, we also merge a token
union gate v with all the token union gates in the fanin
of the token union gate v to become a single token
union gate to facilitate the minimization process. 

A logic design is a controlled token net  with
control logic only. To verify the pipeline control of the
logic design, we want to extract a meaningful
controlled token net from the logic design so that the
datapath of logic design is modeled by the token net. If
there is a natural partition of the logic design into
datapath and control, we can easily extract a controlled
token net by translating the datapath into a token net
and make the control to be the control logic. 

If the logic design does not have separated datapath
and control, we can easily obtain a controlled token
net model of the logic design that consists of the token
net that is converted from the entire logic design and
the control logic that is the entire logic design. The
disadvantage of the this model is that the extracted
controlled token net is twice as complex as the logic
design.

6.1  Datapath and Control Separation
To compute a meaningful controlled token net of the
right size, we provide an automated separation
algorithm to partition the logic design into datapath
and control. Then a controlled token net can be
computed based on this partition. The separation
algorithm consists of three steps. The first step
identifies the seed control signals. The second step
separates the primary inputs and latches, and the third
step separates the remaining gates.

In the first step, all the mux selection variables are
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considered as seed control variables. The user may
also want to specify additional seed control variables
in order to fine-tune the partitioning. For example, if
there is a pipeline of valid bits, the entire valid-bit
pipeline should be specified as seed control variables.

Second, we mark the latches and the primary inputs as
data or control as follows. We first compute the data
transitive fan-in of the datapath primary outputs
specified by the user. The data transitive fan-in is
computed by not tracing back through seed control
variables while we compute the transitive fan-in of the
primary datapath outputs. All the variables in this data
transitive fan-in are marked as data variables. The
input variables and latches not in the transitive fan-in
are marked as control inputs and control latches. Note
that the gates not in the data transitive fan-in have not
been marked yet at this step.

In the last step we mark the remaining gates. An
unmarked gate ν is marked as control if any variable in
the fanin of the gate ν has been marked as control.
Otherwise the gate ν is marked as data. The marking
of the gates determines the set of feedback signals
from the datapath to the control. The feedback signals
are then cut to become primary inputs to the control.
This marking rule will usually identify the decoder
output variables or the comparator output variables as
feedback signals automatically. Note that all selection
variables of the muxes will be in the control.

7.  Experiments
The method was implemented as a tool in a functional
language that is very similar to standard ML. An
overview of the implemented tool is as follows. 

7.1  Overview of Implementation
If the given logic design does not have a natural
partition of the datapath and control, the tool applies
the separation algorithm in Section 6 to partition the
logic design into datapath and control, as illustrated in
Figure 1.

Figure 1.  Datapath and control separation

Second, the tool translates the datapath into a token
net, minimizes it, and computes from the minimized
token net an abstract token net for an abstract alphabet
of size one, as illustrated in Figure 2. Third, the tool

produces the abstract controlled token net by
reconnecting the control logic and the abstract token
net together. In the last step, the tool invokes a LTL
model checker to verify the abstract controlled token
net. 

Figure 2.  Minimization and Abstraction

We applied the tool on 6 Intel design components and
detected 8 pre-silicon design errata. The performance
figures are shown in Table 1.

7.2  Performance Figures

The experiments were performed on an HP
workstation with 256MB memory. The first column
shows aliases of Intel design components. The design
components were chosen to cover different portions of
microprocessor designs. The second column shows, to
the nearest multiple of 500, the rounded number of
registers in the original model. The third column
shows, to the nearest multiple of 5, the rounded
reduction ratio of the data abstraction techniques. The
average model reduction rate is about 40x. The fourth
column shows the time taken for computing the
abstract controlled token net. We verified four pipeline
control properties with one token constant for each
design component. The properties are sufficient to
detect 8 logic errata in these design components. The
fifth column shows the time that the model checker
took to verify these properties on the abstract
controlled token net. The verification time does not
include the time for generating tableaus from the
linear-time temporal logic formulas.

control
control

Table 1:  Experiment Figures

Design
Alias

No. Regis-
ters in Design

Reduction 
Ratio

Abstraction 
Time

Verification 
Time

C1 ~2500 ~70 5 mins 10 secs

C2 ~2000 ~70 6 mins 2 secs

C3 ~4500 ~40 12 mins 30 mins

C4 ~1000 ~20 6 mins 1 sec

C5 ~1000 ~35 2 mins 2 secs

C6 ~1500 ~15 5 mins 5 mins

control control



7.3  False Negatives
We did observe false-negative verification results
during the experiments. Our tool can associate error
traces found on the minimized extracted token model
to an error trace on the token model. These false
negatives were then avoided by strengthening the
antecedent of the properties. Overall, the false
negatives do not seem to be a major issue on the
examples that we ran.

8.  Summary
We have presented a domain-specific abstraction
technique for model checking pipeline control. We
implemented the method as an automatic tool and
successfully tested the tool by verifying real-world
logic designs that contain up to 4500 registers. 

To address the specification and capacity issue of
model checking pipeline control, we introduced the
controlled token nets to model the logic designs. For
the specification issue, controlled token nets enable the
verification of pipeline-control properties without
mentioning the functionality of the datapath.

For the capacity issue, we present algorithms that can
compute a minimized controlled token net from a logic
design. The techniques can reduce the number of
registers in the model by 40x on average. This
significant reduction in model size implies big
verification capacity improvement. In addition, the
techniques operate on the netlist of the logic design
and thus the techniques scale better than the
abstraction techniques that operate on the state space
of the design. Common bugs found in pipeline control
can be caught by verifying the abstract model. We
detected pre-silicon errata in real-world designs in our
experiments. 

Comparing with previous pipeline-control verification
techniques, we concluded that the key advantages to
this method are that it provides significantly higher
capacity, automation and usability. Although, this
method does not provide a guarantee of “total”
correctness of the pipeline control, it is an effective
and capable formal debugging tool for pipeline
control.
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