
Temporal Environmental Assumptions in Simulation,
Formal and Hybrid Verification

Ed Cerny†, Ashvin Dsouza†, Kevin Harer†, Pei-Hsin Ho‡
† Verification Group, Synopsys, Inc.; ‡ Advanced Technology Group, Synopsys, Inc.

We present a method that enables developing environment
models or assumptions using properties in property languages
like SVA, OVA and PSL, or using RTL monitors in design
languages like Verilog and VHDL, for pseudo-random
simulation, formal property verification and hybrid verification.
Our method also includes automatic dead-end avoidance and
enables assume-guarantee reasoning. We demonstrate the
effectiveness of the method on four real-world designs and
environment models.

1. INTRODUCTION

Functional verification verifies register-transfer-level (RTL)
designs against their functional specifications. Most designs
make certain assumptions about their environments. For
example, in Figure 1, the DUV may be designed with the
assumption that whenever it makes a grant to the environment
(grant=1), the environment will always remove the request in the
next clock cycle (req=0).

DUV

req

grant
Environm ent

Figure 1 DUV and its environment

During the verification of the DUV, if we drive it with input
stimuli that violate the assumption, then it needs no longer
adhere to its functional specification. In that case, a subsequent
erroneous behavior of the DUV is called a false negative, since it
does not indicate a real bug of the DUV. To avoid distracting the
user with false negatives, random simulation, formal property
verification and hybrid methods [6] all require a model of the
environment to verify the DUV.

Input clk, rst, req_input;
reg previous_grant; output req;

assign req = (previous_grant)? 0 : req_input;
always @ (posedge clk or negedge rst)
 if (!rst) previous_grant <= 0;
 else previous_grant <= grant;

Figure 2 Generator-style environment model

Traditionally, environment models are written as generator-style
testbenches that generate random legal stimuli to drive the DUV.
For the system in Figure 1, a generator-style testbench that drives

the input signal req of the DUV is shown in Figure 2. The
register previous_grant asserts if and only if the input grant
asserted in the previous clock cycle. If previous_grant asserts,
the signal req will be driven by the value 0; otherwise it will be
driven by the random input req_input.

An alternative way to describe environment models is via
checker-style constraints that specify the legal input stimuli for
the DUV. Checker-style environment models can be written as
properties in property languages like OVA [9], PSL [1] and SVA
[15]. For example, the environment in Figure 1 can be specified
as a property as follows.

if grant then #1 ! req;

Figure 3 Checker-style environment model as a property

The temporal operator “#1” means “one clock cycle later.”
Checker-style environment models can also be written as
monitors in RTL Verilog or VHDL. A monitor is basically a
design with an output signal that asserts if and only if the
property is violated. A monitor for the environment in Figure 1 is
shown in Figure 4. The output signal fail asserts if and only if the
environmental assumption is violated. Note that the monitor does
not drive the input req of the DUV (signal req is an input of the
monitor) as in Figure 2. Verification tools have to understand the
sequential monitor and drive the input req of the DUV in a way
that does not assert the fail signal.

Today most simulators only support generator-style and most
formal property verification tools only support checker-style
environment models. As a result, verification engineers must
specify the environment model twice in order to utilize both
verification techniques. Therefore, supporting checker-style
environment models for both random simulation and formal
property verification will enable the user to specify the
environment model once and use it “everywhere”.

Furthermore, supporting checker-style environment models for
both random simulation and formal property verification enables
hybrid verification methods to orchestrate random simulation
and formal property verification to achieve better verification
coverage.

Input clk, rst, req, grant;
reg previous_grant; output fail;

assign fail = (previous_grant && req)? 1 : 0;
always @ (posedge clk or negedge rst)
 if (!rst) previous_grant <= 0;
 else previous_grant <= grant;

Figure 4 Checker-style environment model as a monitor

ABSTRACT

One major advantage of checker-style environment models over
generator-style environment models is that the properties and
monitors can be used as either assumptions to model the
environment or assertions to check the behavior of the DUV,
which enables the re-use of verification IPs. For example,
suppose that we have a system of two blocks A and B that
interact with each other; i.e., each block is the other block’s
environment. During the hierarchical verification of the system,
the assumptions that we made about block A during the
verification of block B should be used as assertions for verifying
block A (to guarantee that the assumptions are valid), which is
called assume-guarantee reasoning[10].

Recent result in [21] shows that generator-style environment
models can also be made to support assume-guarantee reasoning
but would require new verification techniques that no existing
commercial formal property verification or random simulation
tools support today.

The rest of the paper is organized as follows. In Section 2 we
discuss the related work. We go through the terminology in
Section 3 before we describe our method. In Section 4 and
Section 5 we introduce the method for handling temporal
properties and sequential monitors in formal property
verification and random simulation, respectively. In Section 6,
we discuss the dead-end state problem and an automatic method
to avoid dead-end states. We present experimental results in
Section 7 and conclude the paper in Section 8.

2. RELATED WORK
The Simgen framework was first presented in
[11][17][18][19][20] for handling environment models specified
as combinational properties (constraints) for random simulation.
Simgen utilizes a Binary Decision Diagram (BDD)[4] based
constraint solver that effectively converts the combinational
properties into a BDD at compile time before random simulation.
Each path from the root to the leaf node 1 of the BDD
corresponds to a valid input vector for the DUV. At each clock
cycle of random simulation, according to the current value of
design output signals, Simgen randomly walks in the BDD to
generate a valid input vector for the DUV. The random walk also
respects user-specified biasing constraints for input signals of the
DUV. In [13], the BDD is rebuilt at each cycle of random
simulation. In our experience, this method greatly slows down
random simulation and should be used only if the method in
[11][17][18][19][20] cannot complete the buildup of the BDD at
compile time. The above methods however do not directly
support sequential checkers (temporal properties as in Figure 3
and sequential monitors as in Figure 4). To handle sequential
checkers using the above methods, the user has to manually
separate the combinational constraints from the state machines
and feed the combinational constraints to the BDD-based
constraint solver. Our method automates this process for
sequential checkers for not only random simulation but also
formal property verification and hybrid methods and uses a
combinational constraint solver [8] that is an enhancement of the
Simgen technology.

The methods in [7][10][16] convert combinational checkers into
BDDs and then convert the BDDs into gate-level combinational
generators for both random simulation and formal property

verification. In our experience, the combinational generators
converted from the BDDs usually are much more complex than
the original combinational checkers, which makes formal
property verification highly inefficient. Our method supports not
only combinational checkers but also sequential checkers in
formal property verification without suffering the same
complexity blowup problem.

One can also build environment models that consist of both
checker and generator style constraints. Commercial testbench
automation tools Vera [5] and Specman [12] enable the users to
write combinational checker-style environment models to
supplement their sequential generator-style environment models.
Our method should enable these commercial tools to support
sequential checker-style environment models.

3. PRELIMINARIES
We introduce in this section the high-level flow and formalism
that are required for describing our method in later sections.

3.1 High level flow that converts checkers
into gate-level networks

Checker-style environment models can be specified as temporal
properties in property languages like OVA [9] and PSL [1] or
sequential monitors in RTL languages like Verilog [3] and
VHDL. Each RTL monitor has an output signal that asserts if
and only if the corresponding property is violated. The properties
and monitors can be used as either assumptions or assertions.

We apply the following process to obtain the gate-level networks
from the assertions and assumptions. We first convert OVA or
PSL properties into RTL monitors using OVA or PSL compilers
[1]. For example, the property in Figure 3 will be automatically
converted into the monitor in Figure 4.

previous_grant
fail

grant

req

Figure 5 Gate-level monitor

Second we convert all the user-specified and automatically
generated RTL monitors into gate-level networks using logic
synthesis techniques. Figure 5 shows the gate-level network
converted from the monitor in Figure 4, where the box represents
a register with clock signal clk and reset signal rst. The register
stores the last value of the signal grant. We will use this gate-
level netlist to extract BDDs for random simulation. In addition,
the gate-level networks of the assertions and the assumptions will
be assembled to form a gate-level model for formal property
verification.

3.2 Finite State Automata
The semantics of the gate-level network of a checker is a Finite
State Automaton (FSA) that recognizes the sequences
characterized by the checker. The automaton enters a rejecting
state when the observed sequence becomes invalid. The rejecting

state for the example in Figure 5 represents the state where the
fail signal asserts.

The FSA is a 6-tuple A = (X, Y, S, T, s0, Sr), where

1. X is the set of values of the input signals of the DUV that
are to be constrained,

2. Y is the set of values of the signals of the DUV,
3. S is the set of states of the FSA,
4. T is the state transition relation T ⊆ S × (X × Y) × S,
5. s0 ∈ S is the initial state, and
6. Sr ⊂ S is the set of rejecting states (indicating the violation

of the checker).

Both X and Y are input values of the FSA. Also, we shall refer to
T by its characteristic function:
T(s, (x, y), s’): S × (X × Y) × S → {0, 1}.

To use the FSA as an assumption means that the DUV input
values x of X are to be restricted in such a way that the DUV
never enters a rejecting state sr. This means that if the FSA is in
state s that is not a rejecting state, then the input values of X that
make the FSA transition to a rejecting state at the next clock tick
must be prohibited. In other words, the input value x of X must
satisfy the constraint ¬T(s, x, y, sr). A combinational constraint
solver based on the Simgen technology [18] can randomly
generate an input value x of X that satisfies the above condition.

More specifically, given the current value of s and y, the
combinational constraint that has to be solved for the design
input value x at each clock tick is obtained as

 ∏
∈−∈

∧=¬=
rrr SsSS

rsyxTsyxsC
,

)]),,(,()[(),,(
σ

σσ

where Π stands for Boolean product over all values σ in S-Sr and
rejecting states sr in Sr. For gate-level networks, the above
constraint is actually the negation of the combinational transitive
fan-in cone of the fail signal. For the gate-level network in
Figure 5, the combinational constraint C for the constraint solver
is the logic inside the dotted box in Figure 6; i.e.

)._(reqgrantpreviousC ∧¬=

DUV
previous_grant

fail
grant

req

req

Figure 6 Checker-style assumption for random simulation

During simulation, the DUV and the sequential checker are
simulated together as shown in Figure 6. The DUV signal value y
is sampled sometime after the clock tick when y has stabilized.
The input value x must then be applied so that the DUV has
enough time to stabilize before the next clock tick. The sampled
values of x and y by the FSA force it to make a transition. If there
is no combinational loop created by the assumption monitors and
the DUV, then it is sufficient to execute the combinational
constraint solver and drive the input value x only once per clock
cycle, because the value y cannot change as function of the value
x before the next clock tick.

4. FORMAL PROPERTY
VERIFICATION

Given the DUV, a set of assertions and a set of assumptions, we
can build a formal verification model as follows. First, we feed
all outputs of the assertion monitors to an OR gate called
assert_fail and feed all outputs of the assumption monitors to
another OR gate called assume_fail. As a result, the signal
assert_fail (assume_fail) asserts if and only if an assertion
(assumption) is violated. Second, we connect the assert_fail and
assume_fail signals in the way shown in Figure 7 to generate the
output signal fail.

assertions

DUV

assumptions

assert_fail

assume_fail

fail

r
q

X Y

Figure 7 Formal verification model

In Figure 7 the signals X are DUV inputs and the signals Y are
DUV signals. The assertions and assumptions monitor both the X
and Y signals. The register output r latches the output q of the
OR gate and thus will stay high once it goes high; i.e., the output
q asserts if and only if an assumption has been violated. The fail
signal is the conjunction of assert_fail and the negation of q, so
it asserts if and only if an assertion is violated and no
assumptions has been violated. Therefore, the assertions are
formally proven if and only if the fail signal is formally proven to
be a constant zero.

We simply present the formal verification model to formal
property verification or hybrid verification tools. Formal
property verification engines will try to either prove that the fail
signal will never assert (all assertions are proven) or find a
counter example that asserts the fail signal (some assertions are
violated).

5. RANDOM SIMULATION
As indicated in Section 3, when the DUV stabilizes after the
most recent active clock edge, we (1) sample the value y of the
DUV signals and the value s of the assumption FSA, (2) solve
the constraint C with the values y and s to obtain a random value
x, and (3) drive the DUV inputs with the random value x.

For example, suppose that the active clock edge for all registers
is “posedge clk” and the DUV stabilizes after P/4 where P is the
clock period. First, we can sample the values of y and s at P/4
after each “posedge clk.” Second, if there exists a solution that
satisfies the constraint C, we can obtain a random solution x from
the constraint solver. Third, we can drive the value x to DUV
inputs any time that leaves enough time for DUV to stabilize
after the input stimulus and before the arrival of the next
“posedge clk.” For example, we can drive the inputs of the DUV
at “negedge clk.”

At the following posedge clk, the values of y and s are again
sampled, and the assumption FSA advances to the next state as
determined by the state transition relation T. Since we solved for
x using the stable values of y and s, the assumption FSA cannot
be in a rejecting state. This process repeats until the random
simulation is complete.

Notice that although we are dealing with sequential checkers, we
only need to solve a combinational constraint system C at every
active clock edge. But because the combinational constraint
solver cannot predict the future, there is a possibility that at a
given active clock edge, the constraint system C does not have
any solution. In that case we say that the simulation is in a dead-
end state. We address this problem in the next section.

6. DEAD-END STATES
To illustrate the problem of dead-end states in sequential
checkers, consider the following set of assumptions defined in
OVA, where p, q and r are inputs to a DUV clocked by clk.

clock posedge clk {
 event evA: if p then #2 ~r;
 event evB: if q then #1 r;
}

Figure 8 Assumption with dead-end states

The assumptions say that if signal p is set to 1 then two cycles
later signal r must be set to 0, and if signal q is set to 1, then one
cycle later signal r must be set to 1.

Now, given the assumptions, the combinational constraint solver
can legitimately set p to 1 in a certain cycle, and then set q to 1 in
the next cycle. However, in the following cycle, the solver is
unable to solve for r, and the system has reached a dead-end
state. In that case, we can generate a warning message, reset the
design and resume random simulation from the reset state. If we
get into dead-end states very often during the random simulation,
the verification coverage and simulation time may suffer due to
repeated resets.

The interesting aspect of this dead-end state is that it occurs
because of the solutions chosen by the solver in earlier cycles. If
the solver chose different solutions earlier, the dead-end state
would not have occurred. For example, after setting p to 1, the
solver had not set q to 1 in the next cycle, it would have avoided
the dead-end states described.

It is possible for the constraint solver to look ahead some number
of cycles when solving the constraints. In this case, if the solver
always looked ahead one cycle, then it would know not to set q
to 1 one cycle after setting p to 1. However, this slows down
simulation by making the solver slower, and is also susceptible
to the horizon effect: no matter what look-ahead was used, a
dead-end state might occur just outside the limit.

A better solution is to consider strengthening the assumptions
themselves to prevent solutions that lead to a dead-end state. For
example, we can add an assumption to the assumptions in Figure
8 to produce the assumptions in Figure 9:

clock posedge clk {
 event evA: if p then #2 ~r;
 event evB: if q then #1 r;
 event enC: if p then #1 ~q;
}

Figure 9 Assumptions without dead-end states

The extra assumption says that if p is set to 1 then q must not be
set to 1 in the next cycle. This prevents the dead-end states from
occurring. In fact, there are no dead-end states possible with the
assumptions in Figure 9.

The technique that we developed for dead-end state avoidance
builds on this observation to automatically compute the weakest
assumption necessary to avoid dead-end states due to the
assumptions.

We also extend our technique to avoid, where possible, dead-end
states due to the DUV. To illustrate this, consider what might
happen if p and r in Figure 8 were DUV inputs, but q was a
DUV output. Then we could not prevent the DUV from setting q
to 1 one cycle after the constraint solver set p to 1. The only way
for the constraint solver to guarantee no dead-end states in this
case would be to never set p to 1. The assumptions of Figure 8
augmented with this assumption are shown in Figure 10. This is
a stronger set of assumptions than that generated in Figure 9.

 clock posedge clk {
 event evA: if p then #2 ~r;
 event evB: if q then #1 r;
 event evC: p==0;
 }

Figure 10 Strong assumptions without dead-end states

The danger of using knowledge of future design output values in
the dead-end avoidance procedure is that it could avoid detecting
real design errors. Therefore, this feature has to be used with care
as explained in Section 6.3.

6.1 Avoidance algorithm for deadend states
in assumptions

Let A = (X, Y, S, T, s0, Sr) be an assumption checker FSA.

We first compute a fixed point that will represent all states that
inevitably lead to a dead-end state in later cycles. Since this is a
fixed-point computation, there is no bound on how much later
the dead-end state may occur.

{ }
*i i

kkk

r

DD

DssyxsTsxysDD

SD

=
∈→∀∀∀∪=

=

+ ’)’),,(,(’...1

0

Since X, Y and S are finite, the sequence must converge in a
finite number of iterations to some D.

We next compute the set of reachable states, R, of A using a
fixed-point calculation:

{ }
*i i

kkk

RR

RssyxsTsyxsRR

sR

=
∈∧∃∃∃∪=

=

+ ’)),,(,’(’...

}{

1

00

Finally, we define a new FSA, A’ = (X, Y, S, T, s0, R∩D), and
use A’ in place of A as the assumption. If D includes s0, then
there is no way to avoid dead-end states. If R∩D is a subset of Sr,
then the assumption is free of reachable dead-end states. Both of
the above algorithms are implemented using the CUDD BDD
package [14]. All the set-theoretic operators in the above
algorithms can be implemented as Boolean operators in BDDs.
Given the set of assumptions in Figure 8, this algorithm would
automatically extend it to produce the assumptions in Figure 9.

6.2 Avoidance algorithm for deadend states
in assumptions and DUV

The algorithm we have described in the previous section is
guaranteed to avoid any dead-end states inherent in the
assumptions. However, as described earlier, the DUV can also
interact with the assumptions to cause dead-end states. We can
add an even stronger assumption to prevent this from happening
by using the following fixed-point computation for D:

We assume that there is no combinational path from any of the
DUV inputs to any of the DUV outputs. In this case, the
computation of the fixed point, D, is modified as follows:

rSD =0

{ }kkk DssyxsTsxysDD ∈→∀∀∃∪=+ ’)’),,(,(’...1

The rest of the procedure remains the same. However, this may
result in the dead-end-state voidance assumption being too
strong. For example, given the assumptions in Figure 8, where q
was a DUV output, this algorithm would produce the set of
assumptions in Figure 10. Again, the above algorithm is
implemented using the BDD data structure.

6.3 Methodology
Note that dead-end states might be the result of a bug in the
design. In addition, the input stimuli that lead the design into
dead-end states might be the only input stimuli that can reveal
some tough bugs of the design. In both cases, we may miss the
detection of the bug if we always turn on automatic dead-end
avoidance during random simulation.

Therefore, we propose the methodology that the user should first
try random simulation without automatic dead-end avoidance.
When dead-end state happens, the user should examine the cause
of the dead-end states. If the cause is most likely due to
incomplete assumptions, the user has the option to manually
strengthen the assumptions to remove the dead-end states or turn
on the automatic dead-end avoidance feature to save engineer’s
time. Note that formal property verification does not require
dead-end avoidance and is not impacted by dead-end states.

7. EXPERIMENTAL RESULTS
For formal property verification, our method builds a formal
verification model by simply hooking up the assumptions, the
assertions and the DUV together with a few extra logic gates. As
a result, check-style environment model introduces little
overhead to formal property verification engines.

The more interesting question is whether our method’s constraint
solving and automatic dead-end avoidance operations would
introduce great overhead to random simulation. To answer this
question, we performed experiments on four real-world designs
and environment models: USB2, PCI Express, and two other
designs with coded names. Table 1 shows the statistics of the
designs.

Table 1 Design statistics

Design #gates #registers #inputs #outputs

USB2 262K 7000 284 329

PCIE 60K 2352 250 28

C-1 39K 1784 252 355

C-2 64K 1452 319 232

The environment models were specified in both checker and
generator styles. For the checker-style environment model, we
performed the experiments with and without automatic dead-end
avoidance. The sizes of the environment models were measured
in terms of the sizes of the gate-level networks as well as the
numbers of the BDD nodes in the combinational constraint
solver. Simulation run time was measured for 250K clock cycles
of random simulation with a commercial simulator on a 750MHz
SPARC processor.

Table 2 Comparison of the run times

Design Env.
models

#BDD
nodes

#registers #gates CPU
Time

generator N.A. 303 62K 624

checker 3423 281 52K 745

USB2

dead-end 4040 281 52K 550

generator N.A. 252 1.6K 351 PCIE

checker 207 32 600 349

generator N.A. 14 6135 1567 C-1

checker 250 17 6163 1548

generator N.A. 20 641 2173

checker 353 12 922 1894

C-2

dead-end 380 12 922 2005

Table 2 presents the experimental results. The second column
shows the number of BDD nodes in the combinational constraint
solver. With dead-end avoidance, extra constraints may result in
an increase on the number of BDD nodes in the constraint solver.
The checker-style environment models for PCIE and C-1 are
dead-end free, so we do not report their dead-end avoidance data.

The fifth column shows the CPU seconds for running 250K
cycles of random simulation. For the USB2 design, with dead-
end avoidance, the checker-style environment model becomes
faster than the generator-style environment model. This is
possible because the time for the constraint solver to generate a
random solution is proportional to the average path length in the
BDD and not the total number of nodes in the BDD. We believe,
however, that the performance improvement achieved here by
dead-end avoidance is more accidental than normal. The compile
time for building the BDDs in the constraint solver and deadend
avoidance computation is less than 1 CPU minute for these four
examples with the exception that the deadend avoidance
computation took approximately 10 CPU minutes for the USB2
design.

We would like to draw the conclusion that for these four
examples our method of handling checker-style environment
models, with and without automatic dead-end state avoidance,
does not incur much performance overhead over generator-style
environment models in random simulation.

8. CONCLUSIONS
We have described a method for handling checker-style
environment models specified as either sequential RTL monitors
or temporal assumptions for random simulation, formal property
verification and hybrid verification. This method therefore
enables the user to (1) specify the environment model once and
use it with multiple verification techniques, (2) reuse temporal
properties as both assertions and assumptions and (3) employ
assume-guarantee based verification methodology.

Unlike the previous work, our method can automatically handle
sequential RTL monitors or temporal assumptions; the user does
not need to manually extract combinational constraints for the
combinational constraint solver. In addition, we also present a
method that automatically avoids dead-end states during random
simulation.

We tested the implemented algorithm on four real-world designs
and environment models. The experimental results show that our
method of handling checker-style environment models does not
incur much performance overhead over generator-style
environment models in random simulation. In the future, the
dead-end avoidance algorithm can be improved in many ways,
including partitioning the assumptions, using BDD
approximation techniques, and exploiting don’t-care
optimizations during the computation of the fixpoints D and R.

9. ACKNOWLEDGEMENTS
We would like to thank William H. Nicholls and Carl Pixley for
providing us the combinational constraint solver used in our
method; Steven R. McMaster and Yunshan Zhu for providing us
the test cases; Oliver Kozber, Vishwa Raman and Jerry Taylor

for implementing the working prototype of this method; and
Stephen Meier for his support of this work.

10. REFERENCES
[1] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, Y.

Wolfsthal. FoCs – Automatic generation of simulation
checkers from formal specifications, In Proceedings of
CAV, 2000.

[2] Accellera Property Specification Language (PSL),
Reference Manual, Version 1.01, April 2003.

[3] Accellera Open Verification Library (OVL), Assertion
Monitor Reference Manual v 03.06.06, June 2003.

[4] R.E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transaction on Computers, C-
35(8):677-691, 1986.

[5] F.I. Haque, K.A. Khan and J. Michelson. The art of
verification with VERA. Verification Central, 2001.

[6] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V.
Bertacco, J. Taylor and J. Long. Smart Simulation Using
Collaborative Formal and Simulation Engines. In
Proceedings of ICCAD 2000.

[7] J.H. Kukula and T.R. Shiple. Building circuits from
relations. In Proceedings of CAV 2000, pp.112-123.

[8] W.H. Nicholls and C. Pixley. SoCKit combinational
constraint solver, private communication, 2003.

[9] Open Vera Assertions (OVA), v1.3, Synopsys, January
2003.

[10] C. Pixley. Integrating model checking into the
semiconductor design flow. Computer Design’s Electronic
System Journal, pp.67-74, March, 1999.

[11] C. Pixley, K. Shultz, J. Yuan. Integrated formal and
informal design verification of commercial circuits.
Proceedings of the international conference on parallel and
distributed processing techniques and applications
(PDPTA), pp. 1061-1067, 1999.

[12] S. Regimbal, J.-F. Lemire, Y. Savaria, G. Bois, E.-M.
Aboulhamid, and A. Baron. Applying aspect-oriented
programming to hardware verification with e. Proceedings
of HDLCON, 2002.

[13] K. Shimizu and D. Dill. Deriving a simulation input
generator and a coverage metric from a formal specification.
In Proceedings of DAC 2002, pp.801-806.

[14] F. Somenzi. CUDD: CU Decision Diagram Package.
ftp://vlsi.colorado.edu/pub/.

[15] SystemVerilog 3.1, Accellera’s Extensions to Verilog, June
2003.

[16] J. Yuan, A. Aziz, K. Albin, and C. Pixley. Constraint
synthesis for environment modeling in functional
verification. In Proceedings of DAC 2003.

[17] J. Yuan, A. Aziz, K. Albin, and C. Pixley. Simplifying
Boolean constraint solving for random simulation-vector
generation. In Proceedings of ICCAD 2002, pp.123-127.

[18] J. Yuan, C. Pixley, A. Aziz, K. Albin. A framework for
constrained functional verification. In Proceedings of
ICCAD 2003, pp.142-145.

[19] J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz.
Modeling design constraints and biasing in simulation using
BDDs. In Proceedings of ICCAD 1999, pp. 584-589.

[20] J. Yuan, K. Shultz, C. Pixley, and H. Miller. SimGen: A
tool for automatically generating simulation environments
from constraints. Proceedings of the ITC Microprocessor
Test and Verification Workshop, 1998.

[21] Y. Zhu and J.H. Kukula, Generator-based verification, In
Proceedings of ICCAD 2003, pp.146-153.

