
Power-Aware Placement

Yongseok Cheon∗, Pei-Hsin Ho∗, Andrew B. Kahng†, Sherief Reda†, Qinke Wang†

∗Advanced Technology Group, Synopsys, Inc.
†CSE Department, University of California at San Diego

{cheon,pho}@synopsys.com, {abk,sreda,qiwang}@cs.ucsd.edu

ABSTRACT
Lowering power is one of the greatest challenges facing the
IC industry today. We present a power-aware placement
method that simultaneously performs (1) activity-based reg-
ister clustering that reduces clock power by placing registers
in the same leaf cluster of the clock trees in a smaller area
and (2) activity-based net weighting that reduces net switch-
ing power by assigning a combination of activity and timing
weights to the nets with higher switching rates or more crit-
ical timing. The method applies to designs with multiple
clocks and gated clocks. We implemented the method and
obtained experimental results on 8 real-world designs after
placement, routing, extraction and analysis. The power-
aware placement method achieved on average 25.3% and
11.4% reduction in net switching power and total power
respectively, with 2.0% timing, 1.2% cell area and 11.5%
runtime impact. This method has been incorporated into a
commercial physical design tool.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS—Design Aids;
J.6 [Computer Applications]: COMPUTER-AIDED EN-
GINEERING

General Terms
Algorithms, Design, Performance

Keywords
Net Switching Power, Clock Tree, Dynamic Power

1. INTRODUCTION
Temperature profile and battery life requirements for teth-

ered and un-tethered systems have made power consumption
a primary optimization target for IC designs. IC power con-
sumption consists of three basic components: short circuit
power, leakage power and net switching power [12]. Short
circuit power is the power dissipation that happens briefly
during the switching of a logic gate and leakage power is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

the power dissipation due to spurious currents in the non-
conducting state of the transistor.

Net switching power is often the largest source of the to-
tal power dissipation. Net switching power dissipation of a
net can be modeled as kCV 2α, where k is a constant, C is
the total capacitance that is to be charged and discharged
(including both wire capacitance and gate input pin capac-
itance), V is the supply voltage and α is the switching rate;
i.e., the number of switching events per unit time. There-
fore, net switching power is proportional to the product Cα
of the total capacitance and the switching rate. The power-
aware placement method in this paper aims at reducing net
switching power by reducing the product Cα.

Clocks switch much more frequently and drive much larger
capacitances then most signal nets. Hence it is not surpris-
ing that the clock networks typically consume up to 40% of
the total power across a variety of design types [6, 8, 13, 18].

Despite the fact that the placement of the registers di-
rectly impacts the overall clock-tree power, virtually all con-
ventional placement methodologies treat registers no differ-
ently than combinational cells. We believe that this leads to
sub-optimal placements in terms of power. To our knowl-
edge there is no work in the literature that proposes a reg-
ister placement technique for the purpose of low power.

In this paper, we present a power-aware placement method
that performs both activity-based register clustering and
activity-based net weighting to simultaneously reduce the
clock and signal net switching power.

Activity-Based Register Clustering The goal of activity-
based register clustering is to reduce the capacitance of clock
nets. Assigning larger net weights to some nets in the placer
is a well-known method for reducing the lengths of these
nets. However, simply assigning a very large weight to a
clock net (to combat the total weight of all nets connecting
to all driven registers) during placement is not a good idea
for reducing clock-tree capacitance since placing all the reg-
isters close to the clock source may introduce hot spots and
highly congested areas on the chip.

Figure 1 shows the distribution of clock-tree capacitance
on an industrial design. The level of a segment of the clock
tree is the minimum number of buffers between the segment
of the clock tree and a clock sink. For example, level 0 in-
cludes all the clock sinks and the wires connecting them and
the driving buffers. The figure shows the total wire capac-
itance and pin capacitance for each level of the clock tree.
Since most of the clock tree capacitance (about 80% for this
specific design) is at the leaf level, an effective way of re-
ducing clock tree capacitance is to reduce the capacitance

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0 1 2 3 4 5 6 7 8 9

Level

C
a
p
a
c
it
a
n
c
e
 (
p
f)

wire cap

pin cap

Figure 1: Distribution of clock tree capacitance on
a customer design.

at the leaf level. The register clustering technique clumps
the registers within the same leaf cluster of the clock tree
into a smaller area, which reduces the leaf-level wire capac-
itance and potentially the skew. Note that clock skew may
introduce extra clock buffers and thus extra capacitance.

We have observed that register clustering can effectively
reduce the capacitance of the leaf-level clock tree, but it
often increases the length of some signal nets and thus the
net switching power of the signal nets. This may cancel out
the power reduction attained by register clustering. Figure
2(a) shows a conceptual layout of a clock tree and the nets
incidental to the two registers driven by a clock buffer. In
Figure 2(b), we apply the technique of register clustering
and placed the two registers closer to each other. As a result,
the two nets incidental to the registers become longer.

Activity-Based Net Weighting Assigning a large weight
to the signal nets with higher switching rates reduces the to-
tal net switching power. As shown in Figure 2(c), we assign
a larger weight to the net incidental to the left register than
the one incidental to the right register based on their switch-
ing rates. As a result, the register cluster is placed closer
to left and thus the total net switching power is reduced.
We have found that combining activity-based register clus-
tering and activity-based net weighting further reduces the
total net switching power.

We implemented the power-aware placement method on the
framework of Synopsys IC Compiler and tested the imple-
mentation on eight real-world designs in terms of power,
timing, cell area and runtime. The experimental data are
obtained after running the designs through a complete phys-
ical design flow including physical synthesis, clock-tree syn-
thesis, global route, detailed route, extraction and timing
and power analysis. We have observed that the power-
aware placement method on average achieved 25.3% reduc-
tion in total net-switching power and 11.4% reduction in
total power, with 2.0% timing, 1.2% cell area and 11.5%
runtime degradation.

The organization of this paper is as follows. Section 2 sum-
marizes known approaches to net switching power minimiza-
tion. Sections 3 and 4 describe the techniques of activity-
based register clustering and activity-based net weighting.
Experimental results are reported in Section 5 using a com-
plete industrial flow. The paper concludes in Section 6.

2. PREVIOUS WORK
Assigning net weights according to switching activities is

commonly applied to reduce total net switching power [3, 14,

17, 19, 21]. For example, in a recent paper on temperature-
aware placement [14], net weights are assigned proportional
to the product of switching rate and pin count, in order to
reduce net switching power.

Traditional clock-tree construction methods [4, 10, 11] fo-
cus on minimizing clock-tree wirelength or clock skew. On
the other hand, more recent studies [6, 13, 8, 18] agree that
clock trees are the largest consumers of power in micropro-
cessors, and a number of techniques have been proposed to
reduce clock-tree power including clock gating [2, 6, 7, 15],
buffer sizing [1, 20], and multiple-supply voltage [9, 16].

Clock power can be saved by disabling clock signals from
inactive flip-flops in idle circuit parts. Through the inser-
tion of control gates and control signals in the clock tree,
one can shut down the clock in selected subtrees, and save
a substantial amount of power. Work in this area focuses
on calculating the active/idle periods of different flip-flops
and inserting the gating logic into the netlist [2, 6]. Since
flip-flops that should be gated together may be placed far
apart, it is possible that gating control signals will end up
increasing routing and power demands of the clock tree. To
overcome this, Farrahi et al. [7] suggest tying commonly-
gated flip-flops together by fake nets; this biases the placer
to place such flip-flops closer together, hence reducing the
wiring overhead of gating logic. However, the possible in-
crease of signal wire length (not counting the fake nets) is not
mentioned in [7], and no empirical data on realistic bench-
marks are given. Another line of research seeks to save clock
power through several simultaneous optimizations, e.g., wire
and buffer sizing [5], as well as simultaneous clock tree con-
struction and buffer insertion [20].

Our work aims at reducing the net switching power of not
only clock nets but also signal nets at the placement stage
without modifying the netlist or supply voltages in any way.

3. REGISTER CLUSTERING
In this section, we present a register placement method

that reduces the capacitance of the leaf level of the clock
tree by clumping the registers in each leaf cluster of the
clock tree closer.

3.1 The Quick Clock-Tree Synthesis Algorithm
Given an existing coarse placement of the design, the first

step of register clustering is to group registers into clusters
such that each cluster can become a leaf cluster of the actual
clock tree. We designed the Quick CTS algorithm in Figure
3 for this purpose.

First of all, the Quick CTS algorithm decides a scope of
target cluster size heuristically according to the size of the
clock net, the DRCs (Design Rule Constraints) such as max
fanout and max load constraints, and user configuration.
The clustering algorithm is performed for each clustering
direction (as explained in the following paragraph); among
all the clustering results returned, the one with the best CTS
objective (minimum clock skew, at default) is selected.

Basically, the clustering algorithm starts with the leftmost
(rightmost, highest or lowest) clock pin and regards it as the
current cluster. The algorithm adds to the current cluster
the clock pin with the shortest Manhattan distance to the
capacitance weighted centroid of the current cluster.1 The

1Capacitance weighted centroid is the geometric centroid of
the clock pins in a cluster, weighted by pin capacitance.

(a) Before register clustering (b) After register clustering (c) After register clustering
and net weighting

Figure 2: An example layout (a) before register clustering, (b) after register clustering, and (c) after register
clustering and net weighting.

Quick CTS
Input:

A set of N clock pins {si} with pin capacitance {pi}
Placement of clock pins {(xi, yi)}
DRC constraints: max load L and max fanout M
User-specified cluster size Ku

Output:
A set of clusters {Cj}

Algorithm:
01. Decide a target cluster size K

according to N , M and Ku

02. For each clustering direction d
in {Leftmost, Rightmost, Highest, Lowest}

03. Un-clustered pins U = {si}
04. While U �= ∅
05. Find the outermost pin s ∈ U along direction d
06. The current cluster C = {s} and U = U − {s}
07. While |C| < K and total pin cap(C) < L
08. Find pin s ∈ U to min. distance(s, C)
09. C = C + {s} and U = U − {s}
10. Generate a cluster C
11. Generate a clustering result {Cj}
12. Compute the skew of {Cj}
13. Keep the best clustering result till now
14. Output the best clustering result {Cj}

Figure 3: Quick CTS

current cluster grows until it reaches the target cluster size
or the max load limit. Then the next cluster starts with the
leftmost (rightmost, highest or lowest) clock pin among all
un-clustered ones and grows. The algorithm repeats growing
clusters until all registers are clustered.

Note that the clustering result of the Quick CTS algorithm
may be different from the result of any particular CTS al-
gorithm. The idea is that after register clustering, since the
registers in each cluster would be placed close to each other,
most CTS algorithms would identify similar leaf clusters.

3.2 Group Bounds
After registers are grouped into clusters, the second step

of register clustering is to place registers of the same cluster
closer to each other. A naive method is to add a pseudo
net to connect the registers and assign it a large weight.
However, this does not reduce the wire length effectively for
large nets like the clock nets

All industrial placers and some academic placers have the
capability to constrain the placement of specified groups
of objects within specified bounding boxes. These group
bounds control the bounding box of the cluster and reduce
it as much as desired while still fitting the registers. In
our approach, we define a group bound for each cluster and
transfer it to the actual placer, so that it constrains the reg-
isters inside the specified bounding box. We first determine
each group’s bounding box based on registers’ current loca-
tions. Then we shrink the bounding box proportionally by
a factor of p and use it as the group bound.

A design may have multiple clock nets. Not all of them
have the same switching rate. It is also possible that part of

the clock net is gated and has a lower switching rate. The
shrink ratio of a group of registers should be decided based
on the switching rate of the clock net: if the switching rate
SR is relatively small compared to the Maximum Switching
Rate MSR, the bounding box of the cluster should shrink
less or not shrink at all. We determine the actual shrink
ratio p according to the following formula:

p =

{
1 − (1 − p0)(SR/MSR) if SR > 0.3 MSR
1 otherwise

(1)

where p0 is a user specified shrink ratio or a heuristically
determined parameter based on the size of the design. Ac-
cording to the formula, a clock net with the maximum clock
switching rate has the minimum shrink ratio p0, and a clock
net with a switching rate less than 30% of the maximum
clock switching rate does not shrink (p = 1).

When the shrink ratio p is close to 1, the new bounding
box should have an aspect ratio near to the original one, so
that the wire length of signal nets are not affected seriously
without much reduction of the clock wire length. However,
with a small shrink ratio, it does not matter so much for
the new bounding box to keep the original aspect ratio. We
would like the bounding box to have an aspect ratio close
to 1 in order to reduce the clock skew. Therefore, we use a
linear function to decide the aspect ratio ARnew of the new
bounding box based on the original aspect ratio ARold and
the shrink ratio p.

ARnew = 1 − p + p · ARold (2)

We implement the activity-based register clustering method
on the framework of Synopsys IC Compiler. IC Compiler
placer encompasses multiple passes. During each pass, the
clustering algorithm is performed to group registers into
clusters based on the current layout, and then group bounds
are generated for each cluster. The placer adjusts the layout
of registers accordingly by clumping registers more closely.
After each pass, a new placement is obtained with a further
reduced clock tree and the old group bounds are discarded.

4. ACTIVITY-BASED NET WEIGHTING
Register clustering can be applied to effectively reduce

clock capacitance and thus clock power dissipation, with a
sacrifice of signal net wire length and switching power. In
this section, we assign a combination of activity and timing
based weights to signal nets to reduce the capacitance of
nets with higher switching rates or more critical timing, so
that the impact of register clustering on signal net switching
power and design performance is alleviated and switching
power of the design is further reduced.

We assign power weights to nets as shown in Figure 4.
For a signal net with switching rate SR, the power weight

T MSSR MSR SR

Wp

1

1 + W

Figure 4: Power weight as function of net switching
rate.

wp is

wp =

1 + W · SR−T
MSSR−T

if MSSR > SR > T

1 if SR ≤ T
1 + W SR ≥ MSSR

(3)

where T is a switching rate threshold for selecting high ac-
tivity nets, MSSR is the maximum signal net switching rate
of the design, and W controls the scope of power weights:
the maximum power weight is 1 + W . The clock net has
the largest switching rate, much larger than the switching
rates of most signal nets. Since register clustering is applied
to reduce clock power and here our focus is common signal
nets, we assign the maximum power weight to the nets with
the highest switching activities among signal nets, as well as
clock nets with higher switching activities.

Besides activity-based power weights, nets are also as-
signed weights according to their timing criticality in com-
mercial placers. A linear combination of power weight wp

and timing weight wt is applied and the final weight w is:

w = α · wp + (1 − α) · wt (4)

where the power ratio α is value between 0 and 1. It con-
trols the ratio of power weight to the final net weight, and
provides a knob to trade-off between timing and power ob-
jectives for the placer.

We analyze power consumption using IC Compiler that
approximates the switching rate for each net from the tim-
ing constraints for the design (that include the specification
of all clocks behaviors) plus any one of the following three
sources: (1) a VCD file that records the waveform of the
design during the simulation of the gate-level design, (2) a
SAIF file that profiles the switching rates of the nets during
the simulation of the gate-level design or (3) the switch-
ing rates of all primary input signals of the design. Given
the simulation models of the technology libraries, during
the simulation-based functional verification, all commercial
Verilog simulators can create the VCD file and some can
produce the SAIF file. If the source is the specification of
the input switching rates, IC Compiler performs a proba-
bilistic simulation internally to estimate the switching rates
for all nets based on the clock definitions and the switching
rates of the primary inputs.

5. EXPERIMENTS
In this section, we empirically test our approach on eight

real designs within a complete IC implementation flow and
measure its impacts on power, timing, cell area and runtime.

5.1 Experimental Setup

CTS

Route
Extract RC

STA

Timing

Place

Design

Power Analysis

Power

Figure 5: Flow for evaluating power-aware place-
ment techniques.

We use eight industry circuits as our test cases, with the
number of cells (including registers) ranging from 20k to
186k and the number of registers ranging from 2.3k to 44.2k.
Clock power occupies 31.9% (ranging from 22.0% to 75.0%)
of total power on average; and net switching power occu-
pies 38.9% (ranging from 28.9% to 96.0%) of total power on
average.

The experimental flow is shown in Figure 5. The in-
puts for each design include the synthesized netlist, tech-
nology libraries, timing constraints (including all clock def-
initions) and floorplan. To enable IC Compiler to estimate
the switching rates of all nets (see the previous section),
we specify the switching rate for each primary input of the
design.

For each design, the placer is applied to perform two place-
ment runs: with and without power-aware placement. For
the power-aware placement run, register clustering is per-
formed with a shrink ratio, and activity-based net weight-
ing is applied with a power ratio (Both the shrink ratio and
the power ratio were tuned around 0.8). After each place-
ment, we perform clock tree synthesis, timing and conges-
tion driven (global and detailed) routing, RC extraction and
power analysis using IC Compiler and finally timing analysis
using PrimeTime.

5.2 Results
Table 1 summarizes the low power results after complet-

ing the physical design flow for eight industrial test cases,
and compares them with the results from normal timing-
driven placement. The number of cells (including registers)
and registers of each design are shown in the second and
third columns. For each design, Table 1 shows the results of
reference run and power-aware placement run, and the per-
centage improvements in a variety of metrics. Note that the
improvements in clock skew and WNS are computed relative
to the correspondent clock periods.

Clock net switching power, net switching power and total
power are shown in the fifth to seventh columns. The low
power flow achieves an average improvement of 11.3% (rang-
ing from 1.6% to 34.5%) in clock switching power, an average
improvement of 25.3% (ranging from 10.5% to 47.1%) in to-
tal switching power, and an average improvement of 11.4%
(ranging from 6.5% to 18.8%) in total power.

Clock wire length is reduced by 10.1% on average, mainly
because of register clustering. The clock skew of the syn-

Design Cells Regs Method Clock Total Net Total Clock Clock WNS Cell CPU
Switching Switching Power WL Skew Area

Power Power
(mw) (mw) (mw) (ns) (ns) (%)

D1 186K 44244 Reference 153.29 319.86 908.51 879529 0.156 0.34 4619435
Low Power 100.43 182.59 737.71 843626 0.110 0.13 5041092
Imp (%) 34.48% 42.92% 18.80% 4.08% 1.38% 6.31% -9.13% -25.22%

D2 49K 5621 Reference 542.03 710.63 739.97 85192 0.029 2.18 1114383
Low Power 493.14 636.25 664.63 77569 0.032 2.61 1161019
Imp (%) 9.02% 10.47% 10.18% 8.95% -0.10% -14.33% -4.18% -18.22%

D3 134K 43528 Reference 168.61 302.57 1127.23 1492789 1.180 4.61 42612408
Low Power 150.87 224.95 1054.08 1266024 0.427 3.78 43121730
Imp (%) 10.52% 25.65% 6.49% 15.19% 5.02% 5.53% -1.20% -51.29%

D4 172K 23372 Reference 102.32 258.53 789.27 484661 0.095 0.46 4871915
Low Power 100.65 218.94 717.80 482264 0.088 0.54 4646738
Imp (%) 1.63% 15.31% 9.06% 0.49% 0.18% -2.00% 4.62% 21.32%

D5 116K 9071 Reference 20.74 37.74 127.27 173554 0.169 3.73 2444381
Low Power 18.49 32.42 117.92 143063 0.174 4.10 2433401
Imp (%) 10.85% 14.10% 7.35% 17.57% -0.03% -2.47% 0.45% 6.96%

D6 20K 2315 Reference 1.64 3.00 10.64 46130 0.031 0.00 535949
Low Power 1.54 2.44 9.58 39254 0.030 0.00 447993
Imp (%) 6.10% 18.67% 10.03% 14.91% 0.00% 0.00% 16.41% -32.57%

D7 126K 12864 Reference 21.54 46.87 133.28 260509 0.222 0.15 3136603
Low Power 19.31 33.52 113.58 252242 0.249 0.48 3471139
Imp (%) 10.35% 28.48% 14.78% 3.17% -0.68% -8.25% -10.67% -9.02%

D8 138K 8727 Reference 3.18 6.35 21.97 114542 0.178 3.26 1603950
Low Power 2.94 3.36 18.84 95760 0.285 3.38 1701496
Imp (%) 7.55% 47.09% 14.24% 16.40% -0.54% -0.60% -6.08% 16.23%

AVG Imp (%) 11.31% 25.34% 11.37% 10.09% 0.65% -1.98% -1.22% -11.48%

Table 1: Comparison of low power flow against traditional timing-driven flow for eight real designs. Note
that the improvements in clock skew and WNS are computed relative to the design clock period.

thesized clock tree is shown in the ninth column. Although
register clustering reduces the wire capacitance in the clock
tree, its impact on the clock-tree skew after clock tree syn-
thesis is random in our experiments.

The impact of power optimization on design performance
in terms of WNS (worst negative slack) is shown in the
tenth column. Comparing to the timing-driven flow, the
low-power flow increases the WNS by 2.0% on average. Out
of the eight test cases, the low power flow made significantly
negative impact to WNS (14.3% to 8.3%) on two of them
(designs D2 and D7). In Section 5.3 and 5.4 we show how
we can trade off power for timing and vice versa by tuning
the power ratio and shrink ratio.

The last two columns in Table 1 show total cell areas and
increases in total runtime of the power-aware placement run.
Upsizing and buffering are usually performed to improve de-
sign performance. According to the results, total cell areas
are increased to improve performance for some designs. No-
tice that the total cell area increase here makes no impact
to the final chip area (or cost) since the floorplan did not
change and both placement and route completed in spite of
the total cell area increase. Runtime is also increased due
to more timing optimization after power-aware placement.
The average increase in total cell area and runtime are 1.2%
and 11.5%, respectively.

5.3 Power-Timing Trade-Off with Power Ra-
tio

The power weighting ratio (α) can be used to trade-off
power dissipation and design performance. In this experi-
ment, the power-aware placement flow is run with varying
power ratios (α’s, from 0.2 to 1.0) for circuit D2 (for which
meeting performance constraints is difficult). The results
are summarized in Table 2. Figure 6 shows the curves of to-
tal switching power and WNS as functions of power weight
ratio. We see that total switching power generally decreases
with the power ratio increasing; routed wire length, WNS,

α Total Total WNS TNS Cell
Switching Power WL Area

(mw) (ns) (ns)

0.2 707.12 3729885 2.02 5415 1154655
0.4 693.76 3632845 2.33 5345 1152080
0.7 667.29 3769301 2.35 5976 1163974
0.75 654.78 3860067 2.68 6029 1169672
0.8 652.23 3808004 2.31 5823 1168550
0.85 636.25 3813674 2.61 5911 1161019
0.9 650.55 4168253 2.39 6112 1187515
0.95 655.20 4197984 2.56 6226 1189243
1 635.35 4244201 2.85 6691 1186044

Table 2: Results with varying power weighting ra-
tios (α’s) for circuit D2.

TNS (total negative slack) and total cell area generally in-
crease with the power ratio.

5.4 Power-Timing Trade-Off with Shrink Ra-
tio

p0 Clock Clock WNS TNS Cell
WL Switching Power Area

(mw) (ns) (ns)

0.6 79555 513.68 2.51 9087 1181792
0.7 78229 503.37 2.67 14780 1160205
0.75 81958 522.87 2.52 11021 1190133
0.8 83790 534.74 2.16 5428 1161576
0.85 83386 531.16 2.27 6123 1154991
0.9 84987 544.01 2.11 5767 1152562
0.95 84768 545.65 2.15 5438 1152437

Table 3: Results with varying cluster shrink ratios
(p0’s) for circuit D2.

Shrink ratio (p0) controls how much the clock tree shrinks.
A smaller shrink ratio often leads to a smaller clock switch-
ing power, but a worse design performance. In this experi-
ment, the low power flow is run with varying cluster shrink
ratios (p0’s, from 0.6 to 0.95) for circuit D2. The results are
summarized in Table 3. Figure 7 shows the curves of clock

580

600

620

640

660

680

700

720

0.2 0.4 0.7 0.75 0.8 0.85 0.9 0.95 1

Power Net Weighting Ratio

T
o

ta
l S

w
it

ch
in

g
 P

o
w

er

0

0.5

1

1.5

2

2.5

3

W
N

S

Power

Timing

Figure 6: Total switching power and WNS as func-
tions of power ratio (α) for circuit D2.

460.00

480.00

500.00

520.00

540.00

560.00

0.95 0.9 0.85 0.8 0.75 0.7 0.6

Shrink Ratio

C
lo

ck
 S

w
it

ch
in

g
 P

o
w

er

0

1

2

3

W
N

S

Power

Timing

Figure 7: Clock switching power and WNS as func-
tions of shrink ratio (p0) for Circuit D2.

switching power and WNS as functions of register clustering
shrink ratio. We see that clock wire length and switching
power generally decrease with the shrink ratio decreasing.
However, WNS, TNS, and total cell area generally increase
with the shrink ratio decreasing.

6. CONCLUSIONS
We have presented a power-aware placement method that

performs activity-based net weighting and register clustering
to reduce the capacitance of signal and clock nets that switch
more frequently during placement without modifying the
netlist. We have experimented the method on eight real
designs through a complete industrial physical design flow.
Our approach achieved average 25.3% and 11.4% reduction
in net switching and total power, with 2.0% timing, 1.2%
total cell area and 11.5% runtime degradation.

We have also demonstrated that the power-aware place-
ment method can be applied to trade-off between timing and
power, which may be useful for designing chips with both
low-power and performance versions targeting both tethered
and un-tethered systems.

7. REFERENCES
[1] V. Adler and E. G. Friedman, “Repeater Insertion to Reduce

Delay and Power in RC Tree Structures,” IEEE Asilomar
COnf. on Signals, Systems and Computers, 1997, pp. 749-752.

[2] L. Benini, P. Siefel, and G. D. Micheli, “Automatic Synthesis of
Gated Clocks for Power Reduction in Sequential Circuits,”
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 15(6) (1996), pp. 630-643.

[3] K.-Y. Chao and D.-F. Wong, “Floorplanning for Low Power
Designs,” Proc. IEEE Int. Symp. Circuits and Systems, 1(28)
(1995), pp. 45-48.

[4] T. Chao, Y. Hsu, J. Ho, K. Boese, and A. Kahng, “Zero Skew
Clock Routing with Minimum Wirelength,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
39(11) (1992), pp. 799-814.

[5] J. Cong, C. K. Koh, and K. S. Leung, “Simultaneous Buffer
and Wire Sizing for Performance and Power Optimization,”
ACM/IEEE Int. Symp. Low-Power Electronics and Design,
1996, pp. 271-276.

[6] M. Donno, E. Macci, and L. Mazzoni, “Power-Aware Clock
Tree Planning,” Proc. ACM/IEEE Int. Symp. Physical
Design, 2004, pp. 138-147.

[7] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, and
M. Sarrafzadeh, “Activity-Driven Clock Design,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, 20(6) (2001), pp. 705-714.

[8] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan,
and R. L. Allmon, “High-Performance Microproccesor Design,”
IEEE Journal of Solid-State Circuits, 33(5) (1998), pp.
676-686.

[9] M. Igarashi et al., “A Low-Power Design Method Using
Multiple Supply Voltages,” ACM/IEEE Int. Symp.
Low-Power Electronics and Design, 1999, pp. 145-150.

[10] M. Jackson, A. Srinivason, and E. Kuh, “Clock Routing for
High-Perfomance ICs,” Proc. ACM/IEEE Design Automation
Conf., 1990, pp. 573-579.

[11] A. Kahng, J. Cong, and G. Robins, “High-Perfomance Clock
Routing Based on Recursive Geometric Matching,” Proc.
ACM/IEEE Design Automation Conf., 1991, pp. 322-327.

[12] A. Krishnamoorthy, “Minimize IC Power without Sacrificing
Performance,” EEdesign, July 15, 2004. Available at
http://www.eedesign.com/article/
showArticle.jhtml?articleId=23901143.

[13] N. Magen, A. Kolodny, U. Weiser, and N. Shamir,
“Interconnect-power Dissipation in a Microprocessor,” Proc.
Workshop on System Level Interconnect Prediction, 2004, pp.
7-13.

[14] B. Obermeier and F. M. Johannes, “Temperature-Aware Global
Placement,” Proc. Asia and South Pacific Design Automation
Conf., 2004, pp. 143-148.

[15] J. Oh and M. Pedram, “Gated Clock Routing for Low-Power
Microprocessor Design,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 20(6) (2001), pp.
715-714.

[16] J. Pangjun and S. Sapatnekar, “Clock Distribution Using
Multiple Voltages,” Proc. ACM/IEEE Int. Symp. Low-Power
Electronics and Design, 1999, pp. 145-150.

[17] S. M. Sait, M. R. Minhas and J. A. Khan, “Performance and
Low Power Driven VLSI Standard Cell Placement Using Tabu
Search,” Proc. Congress on Evolutionary Computation, 2002,
pp. 372-377.

[18] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and
F. Baez, “Reducing Power in High-Performance
Microprocessors,” Proc. ACM/IEEE Design Automation
Conf., 1998, pp. 732-737.

[19] N. Togawa, K. Ukai, M. Yanagisawa and T. Ohtsuki, “A
Simultaneous Placement and Global Routing Algorithm for
FPGAs with Power Optimization,” Proc. IEEE Asia-Pacific
Conf. Circuits and Systems, 1998, pp. 125-128.

[20] A. Vittal and M. Marek-Sadowska, “Low-Power Buffered Clock
Tree Design,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 16(9) (1997), pp. 965-975.

[21] H. Vaishnav and M. Pedram, “PCUBE: A Performance Driven
Placement Algorithm for Low Power Designs”, Proc. Design
Automation Conf. with EURO-VHDL, 1993, pp. 72-77.

