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ABSTRACT 
We present two techniques, (1) placement-based timing-driven 
partitioner (PTP) and (2) virtual physical synthesis based budgeter 
(VSB), that support effective distributed physical synthesis.  

Categories and Subject Descriptors 
J.6 [Computer-aided engineering]  

General Terms 
Algorithms, Design, Theory. 

Keywords 
Distributed physical synthesis, partitioning, time budgeting. 

1. INTRODUCTION 
Physical synthesis performs placement and placement based logic 
optimization to the design, which is expensive in terms of both 
CPU and memory usage and has become the runtime and capacity 
bottleneck of the IC implementation flow. An obvious solution for 
reducing the runtime and memory usage of physical synthesis is 
divide-and-conquer; i.e., automatically partitioning the design into 
blocks and distributing the computation for these blocks over a 
network of servers. Traditionally this divide-and-conquer process 
is manually carried out by engineers using a floorplanner that 
requires intensive user intervention and often incurs great impact 
to the timing of the design due to suboptimal partitioning and time 
budgeting. To enable effective distributed physical synthesis, we 
present two techniques, (1) placement-based timing-driven 
partitioner (PTP) and (2) virtual physical synthesis based budgeter 
(VSB) that support fully automatic distributed physical synthesis 
and minimize the impact of divide-and-conquer to design timing. 

Placement-based timing-driven partitioner (PTP) utilizes a 
placement of the design to estimate the timing of and the 
proximities between the cells to make partitioning decisions, 
while conventional partitioners are based on the netlist not the 
placement of the design. In comparison, PTP greatly reduces the 
impact of partitioning to timing. On 7 industrial designs PTP 
improved design timing by 24.4% on average. PTP does not 
support distributed initial placement but supports distributed 
placement-based logic optimization. With modern placement 
techniques [3][7][11], placement based logic optimization, not 
placement itself, is the runtime and capacity bottleneck of 

physical synthesis, so we believe that PTP provides a good trade 
off between the performance of the design and the performance of 
distributed physical synthesis for designs that can be effectively 
handled by a modern placer. 

To enable distributed placement based logic optimization, we 
need timing and load constraints for the ports of the blocks of the 
partition. For example, in Figure 1, we partitioned the design into 
two blocks on the left and right. To optimize the two blocks 
concurrently, timing and load constraints are required for both 
sides of the port P. Conventional time budgeters allocate times 
that are proportional to the current delays of the timing paths on 
both sides of the port. For example, suppose that the clock period 
is 9 ns and the current delays of the timing paths AP and PB are 
10 and 5 ns respectively. Then a conventional time budgeter 
would assign the budgets of 6 and 3 ns to the timing paths AP and 
PB respectively. But it may turn out that the delay of the timing 
path AP can be easily reduced to 4 ns, but to save cell area and 
power the optimization engine stopped at 6 ns once the timing 
constraint of 6 ns is met. The delay of timing path PB may stay at 
5 ns because no trick can be done to reduce the delay. As a result, 
when we merge the optimized left and right blocks at the end of 
distributed physical synthesis, the delay of the timing path AB 
becomes 11=6+5 ns and violates the timing constraint of 9 ns by 
2 ns. If the budgeter had assigned 4 and 5 ns to the timing paths 
AP and PB respectively, the delay of the merged timing path AB 
would have become 9 ns and satisfied the timing constraint. 

 

Therefore, ideally a time budgeter should consider the “potential 
for timing optimization”  during time budgeting. For example, the 
potentials for timing optimization of the timing paths AP and PB 
are 6 and 0 ns respectively. Virtual physical synthesis based 
budgeter (VSB) employs virtual physical synthesis (VPS) to 
estimate the potential for timing optimization. On 7 industrial 
designs, VSB improved design timing by 23.4% on average.  

The rest of the paper is organized as follows. We present PTP and 
the related work in Section 2. In Section 3 we describe VSB and 
the related work. Section 4 shows the experimental results of PTP 
and VSB and Section 5 concludes the paper. 

2. Placement-Based Timing-Driven 
Partitioning (PTP) 
Large industrial designs are hierarchical; i.e., the top-level design 
instantiates some logical modules and each logical module may 
instantiate some other logical modules. To facilitate formal 
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Figure 1 Timing path from the flop A to flop B is broken by 
the port P after the design is partitioned into two blocks. 
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equivalence checking and ECO (Engineering Change Order), 
industrial partitioners respect the logical module boundaries as 
much as possible. Figure 2 shows an example of a design before 
and after partitioning by an industrial partitioner. On the left is the 
logical hierarchy of the design before partitioning, in which each 
circle represents a logical module and rectangle represents a 
standard cell. The root, the level-1 node, of the tree, represents the 
top-level design. A logical module M is the parent of another 
logical module or standard cell N if logical module M instantiates 
the logical module or standard cell N. Only the first three levels of 
the logical hierarchy of the design are shown in the figure.  

On the right is the physical hierarchy of the design after 
partitioning. Each level-2 circle represents a block of the partition. 
Again, only the top 3 levels of the physical hierarchy are shown. 

 

Logical hierarchy Physical hierarchy 

 

Figure 2 Partitioning introduces physical hierarchy 

After partitioning, conventional floorplanners assign each block a 
non-overlapping rectilinear area in the floorplan. All cells of each 
block will be placed and optimized inside the assigned rectilinear 
area, including the new cells introduced by logic optimization. A 
placement before partitioning can be used to guide the division of 
the floorplan into the rectilinear areas. The disadvantage of this 
rectilinear-block approach is that the rigid block boundaries may 
require cells to be moved away from their ideal locations and thus 
lead to suboptimal design timing. The advantage is that there 
would be no overlapping cells after merging the block-level 
results of distributed physical synthesis. 

 

Alternatively, based on a placement of the entire design, we can 
assign each block a non-exclusive “ameba-shaped” area. Figure 3 
is an example of this ameba-block approach. The advantage of 
this approach is that the flexible block boundaries may lead to 
better design timing. The disadvantage of this approach is that due 
to the potentially overlapped block areas, we must legalize the 
placement after merging the distributed physical synthesis results, 
which may lead to timing degradation. PTP and VSB support both 
the rectilinear-block and ameba-block approaches. We used the 
ameba-block approach in our experimental flow to obtain the 
experimental results. 

2.1 PTP high-level algorithm 
At a high level, we solve the partitioning problem using a 
clustering algorithm. First, the user specifies the ideal number k of 
blocks that the partition should contain. Based on the total 
number n of standard and hard-macro cells of the design, we 

compute the average number 
� �

knm =  of cells in each block of 

the partition. Let u be the total number of cells with negative 
slacks after placement-based timing estimation. We also compute 

the average number of � �kuv =  of negative-slack cells in each 

block of the partition. 

Second, we create a clustering priority queue by traversing the 
logical hierarchy tree starting from the root, the top-level design, 
in a breadth-first traversal. Let ε  be a constant between 0 and 1 
(we pick 07.0=ε for all experiments). Whenever we encounter a 
logical module, if it contains more than m⋅− )1( ε  cells or 

v⋅− )1( ε  negative-slack cells, we continue traversing all of its 
children. Otherwise we do not traverse beyond this logical 
module. When the traversal terminates, each logical module and 
standard cell at which we stopped the traversal becomes a cluster 
in the initial clustering priority queue.  

Third, we perform a greedy best-first clustering algorithm on the 
clustering priority queue. We iteratively delete the two clusters 
whose merger provides the highest clustering gain (to be defined 

later) and each contains fewer than � �)1( −kn cells and � �
)1( −ku  negative-slack cells from the clustering priority 

queue and insert the union of the two clusters back into the 
clustering priority queue, until we have between k-1 and k+1 
candidates left in the clustering priority queue or there are no 
clusters that can be merged. Then each remaining cluster of the 
clustering priority queue becomes a block of the partition. In 
subsequent sections, we define the clustering gain to encourage 
the blocks to assume more integral areas in the placement and 
reduce the number of inter-block critical timing paths. 

2.2 Closeness indicator 
The PTP clustering algorithm is based on an initial placement of 
the design. In the partition we prefer each block to occupy a more 
integral rather than dispersed area in the initial placement, since 
an integral block area implies (1) less total cell displacement from 
the initial placement for the rectilinear-block approach and (2) 
less total cell displacement from the block-level results of 
distributed physical synthesis for the ameba-block approach. Less 
total cell displacement usually means better design timing. 

To achieve more integral block areas, we want to cluster clusters 
whose cells are mingled or close in the initial placement. We 
define a closeness indicator that measures how mingled and close 
the cells of two clusters are. Denote by ab(C) the area of the 
bounding box of the cluster C. We define the closeness indicator 
closeness(C,D) for two clusters C and D as follows. 

1
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The closeness indicator is a number between -1 and 1. The more 
overlapped the two clusters are the greater the number is. We use 
the two examples in Figure 4 to illustrate how to calculate the 
closeness indicator. For the two clusters on the left and right, the 
closeness indicator closeness(C,D) are (12+9)/30-1 = -0.3 and 
(12+9)/20-1 = 0.05 respectively. 

Figure 3 Ameba blocks for distributed physical synthesis 
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2.3 Criticality indicator 
Even with an ideal time and load budgeting, optimizing a segment 
of a timing path in separation may reduce applicable optimization 
tricks and thus may negatively impact the timing of the entire 
timing path. Therefore we want to include the entire critical 
timing path inside a block of the partition as much as possible.  

Given two candidate clusters C and D in the clustering priority 
queue, we call a port a canceled interface port of the clusters C 
and D if the port is only at the boundaries of C and D; i.e., 
properly contained in the union of C and D. Denote by 
ci_port(C,D) the set of canceled internal ports of the clusters C 
and D. Denote by WNS the worst negative slack of the entire 
design and WNS(p) the worst negative slack of all timing paths 
through the port p. To achieve the goal of making a critical timing 
paths “ intra-block” , we define the criticality indicator for two 
clustering candidates C and D as follows.  

           	 
��
 �
∈= ),(_:

)(
max),( DCportcip

WNS

pWNS
DCycriticalit  

The timing indicator is a number between 0 and 1. The more 
critical a timing path is between the two clustering candidates the 
greater the criticality indicator is.  

2.4 Clustering gain 
The clustering gain of two clusters is a linear combination of the 
closeness and the criticality indicators of the two clusters. Given a 
constant coefficient α  between 0 and 1, the linear combination 
gain(C,D) is defined as follows. 

( ) ),(1),(),( DCycriticalitDCclosenessDCgain ⋅−+⋅= αα  

The smaller the constant α  is the larger the influence of timing 
criticality is to the greedy clustering algorithm in Section 2.1. We 
used the constant 2.0=α  for all of our experiments, which gave 
the best timing results comparing to other constants that we tried. 

2.5 PTP related work  
Classic netlist-based partitioning methods like Kernighan-Lin 
[10], Fiduccia-Mattheyses [5] and hMetis [9] do not consider the 
logical hierarchy, placement or timing of the design. The method 
DHML [4] considers the logical hierarchy but not placement or 
timing. Placement-based clustering algorithms discussed in [2] 
and [6] do not consider logical hierarchy or timing. Since 
considering logical hierarchy is a key prerequisite for industrial 
partitioners we compare PTP against DHML in our experiments. 

3. Virtual physical synthesis budgeter (VSB) 
To concurrently optimize each block of the partition we need time 
and load budgets for the ports of each block before distributed 
physical synthesis. In Section 1 we use Figure 1 to illustrate the 
importance of considering the “potential of timing optimization” 

during time budgeting. Virtual physical synthesis based budgeter 
(VSB) does that by (Step 1) quickly estimating the delay of the 
design after physical synthesis by virtual physical synthesis (VPS) 
and (Step 2) generating the budgets based on the time and load 
estimated by VPS. In this section we first introduce the 
proportional time budgeting algorithm that is used by both VSB 
(based on the estimated timing) and a conventional budgeter 
(based on the current timing); i.e., Step 2 of the VSB algorithm. 
Then we introduce the virtual physical synthesis (VPS) technique; 
i.e., Step 1 of the VSB algorithm. 

3.1 Proportional time budgeting algorithm 
We again use the timing path in Figure 1 to illustrate the 
proportional budgeting algorithm. Suppose that the worst slack 

ar −  at the port P is given by the arrival time a and the required 
time r.  Note that the arrival time a is the delay from the startpoint 
of the worst timing path to the port P. Let c be the required time at 
the endpoint of the same worst timing path through the port P. 
Then rc −  is the delay from the port P to the endpoint of the 
same worst timing path. The proportional time budgeting 
algorithm assigns the input delay of )/( rcaca −+⋅ to the port P 
if P is an input port of the block, or an output delay of 

)/()( rcacrc −+⋅−  to the port P if P is an output port of the 
block. 

3.2 Virtual physical synthesis (VPS) 
Virtual physical synthesis (VPS) takes in a placed netlist and 
estimates the timing of the design after physical synthesis without 
actually modifying the placement or the netlist. VPS does that 
using the analytical models that we developed for the most 
commonly used placement-based logic optimization tricks: (1) 
buffer chain insertion, (2) gate sizing and (3) repeater insertion. In 
the subsequent subsections we describe the modeling for each one 
of the above three tricks in detail. 

3.2.1 Buffer Chain Insertion 
To drive a large load, physical synthesis inserts a buffer chain in 
front of the original driver. We call the total delay of a buffer 
chain the insertion delay of the buffer chain. We assume that the 
library contains buffers of so many different sizes that the buffers 
are approximately continuously sizable. Note that the purpose of 
VPS is for VSB, not for really optimizing the design, so we 
believe that making the above assumption is not unreasonable.  

For a buffer B driving a load L with input transition time t, let 
),( LtBtransition and ),( LtdelayB  be the output transition 

time at the output of the buffer B and the delay through B 

respectively.  We also define the gain g of the buffer as ,CL  

where C is the input capacitance of the buffer B. According to the 
logical effort theory [12], to minimize insertion delay, each buffer 
in a buffer chain should have the same gain g. We model a buffer 
chain as a buffer tree that (1) is rooted at the same leftmost buffer 
as the buffer chain, (2) has g times as many buffers in the next 
level as in the current level, and (3) has the same number of levels 
as the buffer chain (see Figure 5).  

We can see that the buffer tree has the same insertion delay as the 
original buffer chain. In addition, each level of the buffer tree has 
the same delay, so the insertion delay of the buffer tree is the 
delay of one level multiplied by the number of levels. We have 

Figure 4 Closeness indicator 



thus reduced the buffer chain insertion problem to the following 
problem: given a load L, we want to compute the buffer B and the 
level N for the buffer tree rooted at the buffer B such that the 
insertion delay of the buffer tree is minimized.  

For a buffer B with input capacitance C and a gain g, we select a 
transition delay t such that both the input and output transition 
times of B equal to t, i.e., ).,( gCtBtransitiont =  For a buffer 

chain driving a load L, the number of levels N of buffers required 
is ),log(/)/log( gCLN =  and the insertion delay is therefore 

).,(),( gCtdelayNgLBinsDelay B⋅=  

 

Figure 5 Buffer chain modeled as buffer tree with gain = 2 

Since the delay function of the buffer B is convex in the parameter 
g, the insertion delay function insDelayB is also convex in g.  
Hence a minimum value for the insertion delay exists.  We iterate 
through all the buffers in the buffer library and choose the buffer 
B*  that gives the minimum insertion delay and let g*  be the 
associated gain. Note that the buffer B*  and gain g*  are 
independent of the size of the load L, and as a result, we can use 
the same buffer and gain for all different loads.  

We pick the nominal transition delay t*  so that 
*).**,(* * Cgttransitiont B=  This nominal transition delay will 

be used for modeling the gate sizing and repeater insertion tricks.  

 

  

3.2.2 Gate Sizing 
We use an analytical model to estimate the impact of gate sizing 
to delay. We assume that the input transition delay is the nominal 
input transition delay t*  calculated in Section 3.2.1. We also 
assume that all input pins of a cell are symmetric; i.e., they are of 
the same input-to-output delay and capacitance. Then for each 
class of cells of the same logic function f in the library, say, all 2-
input AND cells, we compute two piecewise linear functions: (1) 
given a load, the load-delay function returns the minimum delay 
for the logic function f and (2) the load-capacitance function 
returns the input capacitance of the cell that realizes the minimum 
delay. Note that in the logical effort theory [12], both of these two 
functions are linear. Our analytical model can be considered as a 
generalization of the logical effort theory. Now we show how to 
compute the load-delay function. For each cell of the same logical 
function f, we plot the load-delay curve as in Figure 6. Then for 
each output load, we record the minimum delay among all cells of 
the same logical function f and fit the data points by a bilinear 
function as follows.  

�� �
>+×
≤+×

=
eloadifdloadc

eloadifbloada
loadDelay )(min   

The load-capacitance function can be similarly computed. For 
each output load, we record the input capacitance of the cell that 
realizes the minimum delay and again fit the data points by a 
piecewise linear function (see Figure 7 for an example): 

���� �
>
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≤
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cloadifC

loadinCap  

3.2.3 Macro-aware Repeater Insertion 
It is a well-known fact that the delay of an un-buffered wire is 
quadratic to the length of the wire. Physical synthesis inserts 
repeaters (buffers or inverters) to the wire and makes the wire 
delay linear in length. In VPS, we first choose a repeater for the 
repeater insertion.  We assume that repeaters are inserted at equal 
distance in the wire.. 

Given a repeater B with output resistance R, input capacitance C, 
and inter-repeater distance l, the inter-repeater delay is: 

),*,()2/()( ClctBdelayClcrlClcRd +⋅++⋅++⋅=  

where r and c are the wire resistance and capacitance per unit 
length respectively, t* is the nominal delay computed in Section 
3.2.1, and ),( loadtdelayB  is the delay of the repeater B given 

input transition time t and output load load.   

For a long wire of length L, the delay lLdBlLD /),,( ⋅=  is 
simply the number of repeaters times the inter-repeater delay. 
Since the delay function is convex in l, a minimum delay 

)*,,( BlLD exists, where l*  is the optimal inter-repeater distance.  

Since the optimal delay )*,,( BlLD  is linear in L, we can then 
iterate through the buffers and inverters in the library to search for 
the repeater B*  such that the delay per unit wire length 

LBlLD /*)*,,(*  is minimum.  

Figure 6 Load-delay model for all two-input AND cells.  
There are 5 different cell sizes. The function )(min loadDelay  

is depicted as the thick bilinear function at the bottom. 

Figure 7 Load-capacitance model for all two-input AND. 
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In practice, the repeaters along a long wire should be of 
progressively increasing sizes.  We assume that each successive 
repeater is h times larger in area than the previous one (Figure 8).  
The first repeater in the repeater chain is the optimal repeater B* .  
For a long wire of length L and a load load at the sink, 

1*/ −= lLk  repeaters are inserted, and we assign k Cloadh /= . 
Assuming that the repeater that is h times larger than B*  has an 
input capacitance hC ⋅  and output resistance R/h, the delay for 
the i-th repeater-to-repeater segment is:  

)).* ,(*)2/*()*(/ C
i

hcltBdelayC
i

hclrlC
i

hcl
i

hRid +++++=

The delay for the buffered wire is therefore  
≤≤ ki id

0
. 

 

 

3.3 VPS high-level algorithm 
Given a placed design and a cell library, we first estimate the 
input capacitances of the cells in design. This is done by 
backward traversal, starting from the timing endpoints.  For a cell, 
we first obtain an estimate of the load. Then the input capacitance 
of this cell is obtained from its load-capacitance model in Section 
3.2.2. The load of a cell is given by the input capacitance of the 
buffer used for buffer chain insertion if buffer chain insertion was 
done, or that of the optimal repeater if repeaters were inserted to 
the driven net, or  simply the current total load of the cell, i.e. sum 
of the capacitance of the net and the load of the sink pins. 

For short nets in the design, we assume that the net delay is 
negligible. If the current total load of the driving cell of the net is 
larger than the input capacitance of the buffer chosen in Section 
3.2.1, we employ buffer chain insertion to drive the load. We 
assume that the delays from the source pin to all the sink pins are 
the same for multi-pin nets. 

For a long net in the design, we first generate a Steiner route for 
the net. If the route goes through a large hard macro where 
placement of repeaters is prohibited, we add the pre-calculated 
repeater B*  obtained in Section 3.2.3 after the hard macro. This 
models what physical synthesis would typically do in the presence 
of hard macros. For segments of the net that are not inside the 
hard macros,  repeaters of increasing sizes are added at optimal 
inter-repeater distances.  Finally, we calculate the delay from the 

driver of the net to a sink by adding up the Elmore delay of 
different segments of the path. An example is given in Figure 9.  

VSB performs load budgeting as follows: for an output port P of a 
block, we assign a load budget equal to the estimated load seen by 
the driving cell of the net N to which the port P belongs. For an 
input port P, we set an input resistance equal to the estimated 
output resistance of the driving cell, which is '/ CRC , where R 
and C are the current output resistance and average input 
capacitance of the current driving cell, and C’  is the estimated 
input capacitance of the resized driving cell.  

3.4 VPS experimental results 
We compare VPS with a commercial physical synthesis tool on 13 
industrial designs. For each design, we compare the worst 
negative slacks (WNS) predicted by VPS versus the result of the 
actual physical synthesis. Prediction error is the absolute 
difference between the WNS as a fraction of the clock period. We 
also compare the runtimes. The results are shown in Table 1. On 
average VPS is 78x faster than the actual physical synthesis and 
within 11% error in WNS. 

Table 1 VPS vs. physical synthesis: WNS and runtime 

 
#cells 

Clock 
Period 

(ns) 

Original 
WNS 
(ns) 

VPS 
WNS 
(ns) 

P-SYN 
WNS 
(ns) 

Error 
(%) 

Spee
dup 
(X) 

D1 22K 10 -107.48 0.79 -2.93 37.26 193 
D2 23K 11 -6.31 -6.18 -5.10 9.81 207 
D3 24K 5.2 -15.93 -7.42 -6.01 26.97 149 
D4 57K 288 -4.23 -0.01 -0.46 0.15 62 
D5 65K 10 -881.24 0.43 0.00 4.33 32 
D6 86K 3.63 -3.14 -0.28 -0.13 4.16 59 
D7 161K 5.8 -8.82 -3.51 -2.37 19.69 69 
D8 292K 5.4 -8.77 -1.01 -1.98 17.97 34 
D9 330K 200 -8.43 -1.57 -2.21 0.32 30 
D10 395K 21.6 -14.83 -8.19 -8.61 1.96 31 
D11 396K 13 -86.02 -2.55 -3.01 3.54 51 
D12 504K 60 -4.40 -1.53 -2.65 1.87 18 
D13 613K 100 -285.43 -264.35 -268.29 3.94 72 
Average     10.15 78 

 
 

3.5 VSB related work 
The authors in [8] described a method to estimate the minimum 
achievable delay of a design. Like VPS, their method is based on 
a form of logical effort model for the cell library. However, they 
only consider the gate-sizing trick and do not consider the 
placement of the cells nor wire delay. Our repeater insertion 
technique was inspired by [1]. However, their choice of repeaters 
is based on previous runs of similar designs on the same 
technology, and they only consider one type of repeaters.  

4. Experimental Results 
We implemented both placement-based timing-driven partitioner 
(PTP) and virtual physical synthesis based budgeter (VSB) on the 
top of a state-of-the-art commercial physical synthesis tool. To 
measure the timing improvements that PTP and VSB can achieve, 
we developed an experimental physical synthesis flow that: (1) 
perform timing-driven placement for the entire design, (2) run 
PTP, (3) run VSB, (4) run distributed placement-based logic 
optimization using the ameba-block approach, (5) merge the 
block-level results and legalize, and (6) quick touch-up to fix 
electrical DRC violations caused by legalization. We ran the 

Figure 8 Repeaters of progressively increasing sizes are 
inserted at equal distance into a long wire. 

Figure 9 Example of macro-aware repeater insertion.  
Repeaters of increasing sizes are inserted right before and 
after the macro, and at equal distance on the segments of the 
net that are not blocked. 
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experimental physical synthesis flow on 7 industrial designs with 
between 300K and 2.5M cells on a network of 64-bit AMD 
servers with 2.2GHz CPUs and 16G main memories.  

Table 2 shows the comparison between the experimental 
distributed physical synthesis flow and the standard physical 
synthesis (flat) flow. The first three columns show the design code 
names, the cell numbers and the number of blocks in the partitions 
of the designs. The last two columns show the runtime speedup 
and timing degradation. On average the experimental flow 
achieved a 1.7x runtime speedup with 4.8% timing degradation. 
The range of timing degradation is less than ideal. The main 
purpose of this experimental distributed physical synthesis flow is 
to measure the capabilities of PTP and VSB. We believe that this 
experimental flow can be refined to achieve more runtime 
speedup and less timing degradation. 

Table 2 Experimental distributed synthesis flow vs. flat flow 
Design 
name 

# 
cells 

# 
blocks 

Speedup WNS comp. 
(negative=improved) 

V 305K 9 1.4x 4.80% 

T 629K 8 1.6x 4.10% 

H 850K 3 1.4x -9.10% 

W 1.1M 8 2.2x 1.20% 

L 730K 8 1.7x 9.70% 

A 1.3M 5 1.5x 15.40% 

S 2.4M 7 2.1x 7.30% 

Average    1.7x 4.8% 

Table 3 compares the partitioning methods PTP and DHML [4] 
by running the step (2) of the experimental flow with “ run PTP” 
vs. “ run DHML”.  On average the experimental flow with PTP 
spent 1.2% more CPU time but achieved 24.4% better timing. For 
designs W and A, both PTP and DHML quickly decided to use 
the level-2 logical modules as the blocks of the partitions. Table 4 
compares the budgeting methods VSB and the proportional time 
budgeter based on the current design timing by running the step 
(3) of the experimental flow with “ run VSB” vs. “ run proportional 
time budgeter” . On average the experimental flow with VSB spent 
1.2% more CPU time but achieved 23.4% better timing. 

Table 3 PTP vs. DHML 
Design 
Name 

CPU time  (negative = 
improved) 

WNS (negative = 
improved) 

V -3.78% -19.47% 

T 5.27% -6.72% 

H 8.55% -58.74% 

W 0.00% 0.00% 

L -1.79% -84.24% 

A 0.00% 0.00% 

S -2.50% -1.69% 

Average 1.15% -24.41% 

5. Conclusions and Future Work 
Distributed physical synthesis improves runtime and capacity, but 
may incur negative impact to timing. We introduced placement-
based timing-driven partitioner (PTP) and virtual physical 
synthesis based budgeter (VSB) to enable high-quality distributed 
physical synthesis. PTP considers logical hierarchy, placement 

and timing during partitioning and VSB performs a fast virtual 
physical synthesis algorithm to produce more realizable time and 
load budgets. On 7 real-world designs an experimental distributed 
physical synthesis flow with PTP and VSB on average achieved 
respectively 24.4% and 23.4% timing improvements with 
negligible runtime overhead. Both PTP and VSB are also useful 
techniques in conventional floorplanners. Indeed, VSB has been 
productized in a commercial floorplanner. 

Table 4 VSB vs. proportional time budgeter 
Design 
Name 

CPU time (negative = 
improved) 

WNS (negative = 
improved) 

V 0.07% -9.00% 

T 10.98% -3.10% 

H 6.94% -47.53% 

W -3.62% -27.27% 

L -4.30% -71.41% 

A 9.50% -7.19% 

S -11.49% 1.75% 

Average 1.16% -23.39% 
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