
Techniques for Effective Distributed Physical Synthesis
Freddy Y.C. Mang

Synopsys, Inc.

fmang@synopsys.com

Wenting Hou
Synopsys, Inc.

wthou@synopsys.com

Pei-Hsin Ho
Synopsys, Inc.

pho@synopsys.com

ABSTRACT
We present two techniques, (1) placement-based timing-driven
partitioner (PTP) and (2) virtual physical synthesis based budgeter
(VSB), that support effective distributed physical synthesis.

Categories and Subject Descriptors
J.6 [Computer-aided engineering]

General Terms
Algorithms, Design, Theory.

Keywords
Distributed physical synthesis, partitioning, time budgeting.

1. INTRODUCTION
Physical synthesis performs placement and placement based logic
optimization to the design, which is expensive in terms of both
CPU and memory usage and has become the runtime and capacity
bottleneck of the IC implementation flow. An obvious solution for
reducing the runtime and memory usage of physical synthesis is
divide-and-conquer; i.e., automatically partitioning the design into
blocks and distributing the computation for these blocks over a
network of servers. Traditionally this divide-and-conquer process
is manually carried out by engineers using a floorplanner that
requires intensive user intervention and often incurs great impact
to the timing of the design due to suboptimal partitioning and time
budgeting. To enable effective distributed physical synthesis, we
present two techniques, (1) placement-based timing-driven
partitioner (PTP) and (2) virtual physical synthesis based budgeter
(VSB) that support fully automatic distributed physical synthesis
and minimize the impact of divide-and-conquer to design timing.

Placement-based timing-driven partitioner (PTP) utilizes a
placement of the design to estimate the timing of and the
proximities between the cells to make partitioning decisions,
while conventional partitioners are based on the netlist not the
placement of the design. In comparison, PTP greatly reduces the
impact of partitioning to timing. On 7 industrial designs PTP
improved design timing by 24.4% on average. PTP does not
support distributed initial placement but supports distributed
placement-based logic optimization. With modern placement
techniques [3][7][11], placement based logic optimization, not
placement itself, is the runtime and capacity bottleneck of

physical synthesis, so we believe that PTP provides a good trade
off between the performance of the design and the performance of
distributed physical synthesis for designs that can be effectively
handled by a modern placer.

To enable distributed placement based logic optimization, we
need timing and load constraints for the ports of the blocks of the
partition. For example, in Figure 1, we partitioned the design into
two blocks on the left and right. To optimize the two blocks
concurrently, timing and load constraints are required for both
sides of the port P. Conventional time budgeters allocate times
that are proportional to the current delays of the timing paths on
both sides of the port. For example, suppose that the clock period
is 9 ns and the current delays of the timing paths AP and PB are
10 and 5 ns respectively. Then a conventional time budgeter
would assign the budgets of 6 and 3 ns to the timing paths AP and
PB respectively. But it may turn out that the delay of the timing
path AP can be easily reduced to 4 ns, but to save cell area and
power the optimization engine stopped at 6 ns once the timing
constraint of 6 ns is met. The delay of timing path PB may stay at
5 ns because no trick can be done to reduce the delay. As a result,
when we merge the optimized left and right blocks at the end of
distributed physical synthesis, the delay of the timing path AB
becomes 11=6+5 ns and violates the timing constraint of 9 ns by
2 ns. If the budgeter had assigned 4 and 5 ns to the timing paths
AP and PB respectively, the delay of the merged timing path AB
would have become 9 ns and satisfied the timing constraint.

Therefore, ideally a time budgeter should consider the “potential
for timing optimization” during time budgeting. For example, the
potentials for timing optimization of the timing paths AP and PB
are 6 and 0 ns respectively. Virtual physical synthesis based
budgeter (VSB) employs virtual physical synthesis (VPS) to
estimate the potential for timing optimization. On 7 industrial
designs, VSB improved design timing by 23.4% on average.

The rest of the paper is organized as follows. We present PTP and
the related work in Section 2. In Section 3 we describe VSB and
the related work. Section 4 shows the experimental results of PTP
and VSB and Section 5 concludes the paper.

2. Placement-Based Timing-Driven
Partitioning (PTP)
Large industrial designs are hierarchical; i.e., the top-level design
instantiates some logical modules and each logical module may
instantiate some other logical modules. To facilitate formal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2007, June 4–8, 2007, San Diego, California, USA

Copyright 2007 ACM 978-1-59593-627-1/07/0006…5.00

Figure 1 Timing path from the flop A to flop B is broken by
the port P after the design is partitioned into two blocks.

P A B

equivalence checking and ECO (Engineering Change Order),
industrial partitioners respect the logical module boundaries as
much as possible. Figure 2 shows an example of a design before
and after partitioning by an industrial partitioner. On the left is the
logical hierarchy of the design before partitioning, in which each
circle represents a logical module and rectangle represents a
standard cell. The root, the level-1 node, of the tree, represents the
top-level design. A logical module M is the parent of another
logical module or standard cell N if logical module M instantiates
the logical module or standard cell N. Only the first three levels of
the logical hierarchy of the design are shown in the figure.

On the right is the physical hierarchy of the design after
partitioning. Each level-2 circle represents a block of the partition.
Again, only the top 3 levels of the physical hierarchy are shown.

Logical hierarchy Physical hierarchy

Figure 2 Partitioning introduces physical hierarchy

After partitioning, conventional floorplanners assign each block a
non-overlapping rectilinear area in the floorplan. All cells of each
block will be placed and optimized inside the assigned rectilinear
area, including the new cells introduced by logic optimization. A
placement before partitioning can be used to guide the division of
the floorplan into the rectilinear areas. The disadvantage of this
rectilinear-block approach is that the rigid block boundaries may
require cells to be moved away from their ideal locations and thus
lead to suboptimal design timing. The advantage is that there
would be no overlapping cells after merging the block-level
results of distributed physical synthesis.

Alternatively, based on a placement of the entire design, we can
assign each block a non-exclusive “ameba-shaped” area. Figure 3
is an example of this ameba-block approach. The advantage of
this approach is that the flexible block boundaries may lead to
better design timing. The disadvantage of this approach is that due
to the potentially overlapped block areas, we must legalize the
placement after merging the distributed physical synthesis results,
which may lead to timing degradation. PTP and VSB support both
the rectilinear-block and ameba-block approaches. We used the
ameba-block approach in our experimental flow to obtain the
experimental results.

2.1 PTP high-level algorithm
At a high level, we solve the partitioning problem using a
clustering algorithm. First, the user specifies the ideal number k of
blocks that the partition should contain. Based on the total
number n of standard and hard-macro cells of the design, we

compute the average number
� �

knm = of cells in each block of

the partition. Let u be the total number of cells with negative
slacks after placement-based timing estimation. We also compute

the average number of � �kuv = of negative-slack cells in each

block of the partition.

Second, we create a clustering priority queue by traversing the
logical hierarchy tree starting from the root, the top-level design,
in a breadth-first traversal. Let ε be a constant between 0 and 1
(we pick 07.0=ε for all experiments). Whenever we encounter a
logical module, if it contains more than m⋅−)1(ε cells or

v⋅−)1(ε negative-slack cells, we continue traversing all of its
children. Otherwise we do not traverse beyond this logical
module. When the traversal terminates, each logical module and
standard cell at which we stopped the traversal becomes a cluster
in the initial clustering priority queue.

Third, we perform a greedy best-first clustering algorithm on the
clustering priority queue. We iteratively delete the two clusters
whose merger provides the highest clustering gain (to be defined

later) and each contains fewer than � �)1(−kn cells and � �
)1(−ku negative-slack cells from the clustering priority

queue and insert the union of the two clusters back into the
clustering priority queue, until we have between k-1 and k+1
candidates left in the clustering priority queue or there are no
clusters that can be merged. Then each remaining cluster of the
clustering priority queue becomes a block of the partition. In
subsequent sections, we define the clustering gain to encourage
the blocks to assume more integral areas in the placement and
reduce the number of inter-block critical timing paths.

2.2 Closeness indicator
The PTP clustering algorithm is based on an initial placement of
the design. In the partition we prefer each block to occupy a more
integral rather than dispersed area in the initial placement, since
an integral block area implies (1) less total cell displacement from
the initial placement for the rectilinear-block approach and (2)
less total cell displacement from the block-level results of
distributed physical synthesis for the ameba-block approach. Less
total cell displacement usually means better design timing.

To achieve more integral block areas, we want to cluster clusters
whose cells are mingled or close in the initial placement. We
define a closeness indicator that measures how mingled and close
the cells of two clusters are. Denote by ab(C) the area of the
bounding box of the cluster C. We define the closeness indicator
closeness(C,D) for two clusters C and D as follows.

1
)(

)()(
),(−

+
=

DCab

DabCab
DCcloseness �

The closeness indicator is a number between -1 and 1. The more
overlapped the two clusters are the greater the number is. We use
the two examples in Figure 4 to illustrate how to calculate the
closeness indicator. For the two clusters on the left and right, the
closeness indicator closeness(C,D) are (12+9)/30-1 = -0.3 and
(12+9)/20-1 = 0.05 respectively.

Figure 3 Ameba blocks for distributed physical synthesis

 D
C

 D

C

2.3 Criticality indicator
Even with an ideal time and load budgeting, optimizing a segment
of a timing path in separation may reduce applicable optimization
tricks and thus may negatively impact the timing of the entire
timing path. Therefore we want to include the entire critical
timing path inside a block of the partition as much as possible.

Given two candidate clusters C and D in the clustering priority
queue, we call a port a canceled interface port of the clusters C
and D if the port is only at the boundaries of C and D; i.e.,
properly contained in the union of C and D. Denote by
ci_port(C,D) the set of canceled internal ports of the clusters C
and D. Denote by WNS the worst negative slack of the entire
design and WNS(p) the worst negative slack of all timing paths
through the port p. To achieve the goal of making a critical timing
paths “ intra-block” , we define the criticality indicator for two
clustering candidates C and D as follows.

 	
��
 �
∈=),(_:

)(
max),(DCportcip

WNS

pWNS
DCycriticalit

The timing indicator is a number between 0 and 1. The more
critical a timing path is between the two clustering candidates the
greater the criticality indicator is.

2.4 Clustering gain
The clustering gain of two clusters is a linear combination of the
closeness and the criticality indicators of the two clusters. Given a
constant coefficient α between 0 and 1, the linear combination
gain(C,D) is defined as follows.

()),(1),(),(DCycriticalitDCclosenessDCgain ⋅−+⋅= αα

The smaller the constant α is the larger the influence of timing
criticality is to the greedy clustering algorithm in Section 2.1. We
used the constant 2.0=α for all of our experiments, which gave
the best timing results comparing to other constants that we tried.

2.5 PTP related work
Classic netlist-based partitioning methods like Kernighan-Lin
[10], Fiduccia-Mattheyses [5] and hMetis [9] do not consider the
logical hierarchy, placement or timing of the design. The method
DHML [4] considers the logical hierarchy but not placement or
timing. Placement-based clustering algorithms discussed in [2]
and [6] do not consider logical hierarchy or timing. Since
considering logical hierarchy is a key prerequisite for industrial
partitioners we compare PTP against DHML in our experiments.

3. Virtual physical synthesis budgeter (VSB)
To concurrently optimize each block of the partition we need time
and load budgets for the ports of each block before distributed
physical synthesis. In Section 1 we use Figure 1 to illustrate the
importance of considering the “potential of timing optimization”

during time budgeting. Virtual physical synthesis based budgeter
(VSB) does that by (Step 1) quickly estimating the delay of the
design after physical synthesis by virtual physical synthesis (VPS)
and (Step 2) generating the budgets based on the time and load
estimated by VPS. In this section we first introduce the
proportional time budgeting algorithm that is used by both VSB
(based on the estimated timing) and a conventional budgeter
(based on the current timing); i.e., Step 2 of the VSB algorithm.
Then we introduce the virtual physical synthesis (VPS) technique;
i.e., Step 1 of the VSB algorithm.

3.1 Proportional time budgeting algorithm
We again use the timing path in Figure 1 to illustrate the
proportional budgeting algorithm. Suppose that the worst slack

ar − at the port P is given by the arrival time a and the required
time r. Note that the arrival time a is the delay from the startpoint
of the worst timing path to the port P. Let c be the required time at
the endpoint of the same worst timing path through the port P.
Then rc − is the delay from the port P to the endpoint of the
same worst timing path. The proportional time budgeting
algorithm assigns the input delay of)/(rcaca −+⋅ to the port P
if P is an input port of the block, or an output delay of

)/()(rcacrc −+⋅− to the port P if P is an output port of the
block.

3.2 Virtual physical synthesis (VPS)
Virtual physical synthesis (VPS) takes in a placed netlist and
estimates the timing of the design after physical synthesis without
actually modifying the placement or the netlist. VPS does that
using the analytical models that we developed for the most
commonly used placement-based logic optimization tricks: (1)
buffer chain insertion, (2) gate sizing and (3) repeater insertion. In
the subsequent subsections we describe the modeling for each one
of the above three tricks in detail.

3.2.1 Buffer Chain Insertion
To drive a large load, physical synthesis inserts a buffer chain in
front of the original driver. We call the total delay of a buffer
chain the insertion delay of the buffer chain. We assume that the
library contains buffers of so many different sizes that the buffers
are approximately continuously sizable. Note that the purpose of
VPS is for VSB, not for really optimizing the design, so we
believe that making the above assumption is not unreasonable.

For a buffer B driving a load L with input transition time t, let
),(LtBtransition and),(LtdelayB be the output transition

time at the output of the buffer B and the delay through B

respectively. We also define the gain g of the buffer as ,CL

where C is the input capacitance of the buffer B. According to the
logical effort theory [12], to minimize insertion delay, each buffer
in a buffer chain should have the same gain g. We model a buffer
chain as a buffer tree that (1) is rooted at the same leftmost buffer
as the buffer chain, (2) has g times as many buffers in the next
level as in the current level, and (3) has the same number of levels
as the buffer chain (see Figure 5).

We can see that the buffer tree has the same insertion delay as the
original buffer chain. In addition, each level of the buffer tree has
the same delay, so the insertion delay of the buffer tree is the
delay of one level multiplied by the number of levels. We have

Figure 4 Closeness indicator

thus reduced the buffer chain insertion problem to the following
problem: given a load L, we want to compute the buffer B and the
level N for the buffer tree rooted at the buffer B such that the
insertion delay of the buffer tree is minimized.

For a buffer B with input capacitance C and a gain g, we select a
transition delay t such that both the input and output transition
times of B equal to t, i.e.,).,(gCtBtransitiont = For a buffer

chain driving a load L, the number of levels N of buffers required
is),log(/)/log(gCLN = and the insertion delay is therefore

).,(),(gCtdelayNgLBinsDelay B⋅=

Figure 5 Buffer chain modeled as buffer tree with gain = 2

Since the delay function of the buffer B is convex in the parameter
g, the insertion delay function insDelayB is also convex in g.
Hence a minimum value for the insertion delay exists. We iterate
through all the buffers in the buffer library and choose the buffer
B* that gives the minimum insertion delay and let g* be the
associated gain. Note that the buffer B* and gain g* are
independent of the size of the load L, and as a result, we can use
the same buffer and gain for all different loads.

We pick the nominal transition delay t* so that
*).**,(* * Cgttransitiont B= This nominal transition delay will

be used for modeling the gate sizing and repeater insertion tricks.

3.2.2 Gate Sizing
We use an analytical model to estimate the impact of gate sizing
to delay. We assume that the input transition delay is the nominal
input transition delay t* calculated in Section 3.2.1. We also
assume that all input pins of a cell are symmetric; i.e., they are of
the same input-to-output delay and capacitance. Then for each
class of cells of the same logic function f in the library, say, all 2-
input AND cells, we compute two piecewise linear functions: (1)
given a load, the load-delay function returns the minimum delay
for the logic function f and (2) the load-capacitance function
returns the input capacitance of the cell that realizes the minimum
delay. Note that in the logical effort theory [12], both of these two
functions are linear. Our analytical model can be considered as a
generalization of the logical effort theory. Now we show how to
compute the load-delay function. For each cell of the same logical
function f, we plot the load-delay curve as in Figure 6. Then for
each output load, we record the minimum delay among all cells of
the same logical function f and fit the data points by a bilinear
function as follows.

�� �
>+×
≤+×

=
eloadifdloadc

eloadifbloada
loadDelay)(min

The load-capacitance function can be similarly computed. For
each output load, we record the input capacitance of the cell that
realizes the minimum delay and again fit the data points by a
piecewise linear function (see Figure 7 for an example):

���� �
>

≤<+×
≤

=
2

21

1

)(

max

min

cloadifC

cloadcifbloada

cloadifC

loadinCap

3.2.3 Macro-aware Repeater Insertion
It is a well-known fact that the delay of an un-buffered wire is
quadratic to the length of the wire. Physical synthesis inserts
repeaters (buffers or inverters) to the wire and makes the wire
delay linear in length. In VPS, we first choose a repeater for the
repeater insertion. We assume that repeaters are inserted at equal
distance in the wire..

Given a repeater B with output resistance R, input capacitance C,
and inter-repeater distance l, the inter-repeater delay is:

),*,()2/()(ClctBdelayClcrlClcRd +⋅++⋅++⋅=

where r and c are the wire resistance and capacitance per unit
length respectively, t* is the nominal delay computed in Section
3.2.1, and),(loadtdelayB is the delay of the repeater B given

input transition time t and output load load.

For a long wire of length L, the delay lLdBlLD /),,(⋅= is
simply the number of repeaters times the inter-repeater delay.
Since the delay function is convex in l, a minimum delay

)*,,(BlLD exists, where l* is the optimal inter-repeater distance.

Since the optimal delay)*,,(BlLD is linear in L, we can then
iterate through the buffers and inverters in the library to search for
the repeater B* such that the delay per unit wire length

LBlLD /*)*,,(* is minimum.

Figure 6 Load-delay model for all two-input AND cells.
There are 5 different cell sizes. The function)(min loadDelay

is depicted as the thick bilinear function at the bottom.

Figure 7 Load-capacitance model for all two-input AND.

load

input cap

delay

load

load

load

In practice, the repeaters along a long wire should be of
progressively increasing sizes. We assume that each successive
repeater is h times larger in area than the previous one (Figure 8).
The first repeater in the repeater chain is the optimal repeater B* .
For a long wire of length L and a load load at the sink,

1*/ −= lLk repeaters are inserted, and we assign k Cloadh /= .
Assuming that the repeater that is h times larger than B* has an
input capacitance hC ⋅ and output resistance R/h, the delay for
the i-th repeater-to-repeater segment is:

)).* ,(*)2/*()*(/ C
i

hcltBdelayC
i

hclrlC
i

hcl
i

hRid +++++=

The delay for the buffered wire is therefore
≤≤ ki id

0
.

3.3 VPS high-level algorithm
Given a placed design and a cell library, we first estimate the
input capacitances of the cells in design. This is done by
backward traversal, starting from the timing endpoints. For a cell,
we first obtain an estimate of the load. Then the input capacitance
of this cell is obtained from its load-capacitance model in Section
3.2.2. The load of a cell is given by the input capacitance of the
buffer used for buffer chain insertion if buffer chain insertion was
done, or that of the optimal repeater if repeaters were inserted to
the driven net, or simply the current total load of the cell, i.e. sum
of the capacitance of the net and the load of the sink pins.

For short nets in the design, we assume that the net delay is
negligible. If the current total load of the driving cell of the net is
larger than the input capacitance of the buffer chosen in Section
3.2.1, we employ buffer chain insertion to drive the load. We
assume that the delays from the source pin to all the sink pins are
the same for multi-pin nets.

For a long net in the design, we first generate a Steiner route for
the net. If the route goes through a large hard macro where
placement of repeaters is prohibited, we add the pre-calculated
repeater B* obtained in Section 3.2.3 after the hard macro. This
models what physical synthesis would typically do in the presence
of hard macros. For segments of the net that are not inside the
hard macros, repeaters of increasing sizes are added at optimal
inter-repeater distances. Finally, we calculate the delay from the

driver of the net to a sink by adding up the Elmore delay of
different segments of the path. An example is given in Figure 9.

VSB performs load budgeting as follows: for an output port P of a
block, we assign a load budget equal to the estimated load seen by
the driving cell of the net N to which the port P belongs. For an
input port P, we set an input resistance equal to the estimated
output resistance of the driving cell, which is '/ CRC , where R
and C are the current output resistance and average input
capacitance of the current driving cell, and C’ is the estimated
input capacitance of the resized driving cell.

3.4 VPS experimental results
We compare VPS with a commercial physical synthesis tool on 13
industrial designs. For each design, we compare the worst
negative slacks (WNS) predicted by VPS versus the result of the
actual physical synthesis. Prediction error is the absolute
difference between the WNS as a fraction of the clock period. We
also compare the runtimes. The results are shown in Table 1. On
average VPS is 78x faster than the actual physical synthesis and
within 11% error in WNS.

Table 1 VPS vs. physical synthesis: WNS and runtime

#cells

Clock
Period

(ns)

Original
WNS
(ns)

VPS
WNS
(ns)

P-SYN
WNS
(ns)

Error
(%)

Spee
dup
(X)

D1 22K 10 -107.48 0.79 -2.93 37.26 193
D2 23K 11 -6.31 -6.18 -5.10 9.81 207
D3 24K 5.2 -15.93 -7.42 -6.01 26.97 149
D4 57K 288 -4.23 -0.01 -0.46 0.15 62
D5 65K 10 -881.24 0.43 0.00 4.33 32
D6 86K 3.63 -3.14 -0.28 -0.13 4.16 59
D7 161K 5.8 -8.82 -3.51 -2.37 19.69 69
D8 292K 5.4 -8.77 -1.01 -1.98 17.97 34
D9 330K 200 -8.43 -1.57 -2.21 0.32 30
D10 395K 21.6 -14.83 -8.19 -8.61 1.96 31
D11 396K 13 -86.02 -2.55 -3.01 3.54 51
D12 504K 60 -4.40 -1.53 -2.65 1.87 18
D13 613K 100 -285.43 -264.35 -268.29 3.94 72
Average 10.15 78

3.5 VSB related work
The authors in [8] described a method to estimate the minimum
achievable delay of a design. Like VPS, their method is based on
a form of logical effort model for the cell library. However, they
only consider the gate-sizing trick and do not consider the
placement of the cells nor wire delay. Our repeater insertion
technique was inspired by [1]. However, their choice of repeaters
is based on previous runs of similar designs on the same
technology, and they only consider one type of repeaters.

4. Experimental Results
We implemented both placement-based timing-driven partitioner
(PTP) and virtual physical synthesis based budgeter (VSB) on the
top of a state-of-the-art commercial physical synthesis tool. To
measure the timing improvements that PTP and VSB can achieve,
we developed an experimental physical synthesis flow that: (1)
perform timing-driven placement for the entire design, (2) run
PTP, (3) run VSB, (4) run distributed placement-based logic
optimization using the ameba-block approach, (5) merge the
block-level results and legalize, and (6) quick touch-up to fix
electrical DRC violations caused by legalization. We ran the

Figure 8 Repeaters of progressively increasing sizes are
inserted at equal distance into a long wire.

Figure 9 Example of macro-aware repeater insertion.
Repeaters of increasing sizes are inserted right before and
after the macro, and at equal distance on the segments of the
net that are not blocked.

load
B*

l*

B
s

experimental physical synthesis flow on 7 industrial designs with
between 300K and 2.5M cells on a network of 64-bit AMD
servers with 2.2GHz CPUs and 16G main memories.

Table 2 shows the comparison between the experimental
distributed physical synthesis flow and the standard physical
synthesis (flat) flow. The first three columns show the design code
names, the cell numbers and the number of blocks in the partitions
of the designs. The last two columns show the runtime speedup
and timing degradation. On average the experimental flow
achieved a 1.7x runtime speedup with 4.8% timing degradation.
The range of timing degradation is less than ideal. The main
purpose of this experimental distributed physical synthesis flow is
to measure the capabilities of PTP and VSB. We believe that this
experimental flow can be refined to achieve more runtime
speedup and less timing degradation.

Table 2 Experimental distributed synthesis flow vs. flat flow
Design
name

cells

blocks

Speedup WNS comp.
(negative=improved)

V 305K 9 1.4x 4.80%

T 629K 8 1.6x 4.10%

H 850K 3 1.4x -9.10%

W 1.1M 8 2.2x 1.20%

L 730K 8 1.7x 9.70%

A 1.3M 5 1.5x 15.40%

S 2.4M 7 2.1x 7.30%

Average 1.7x 4.8%

Table 3 compares the partitioning methods PTP and DHML [4]
by running the step (2) of the experimental flow with “ run PTP”
vs. “ run DHML”. On average the experimental flow with PTP
spent 1.2% more CPU time but achieved 24.4% better timing. For
designs W and A, both PTP and DHML quickly decided to use
the level-2 logical modules as the blocks of the partitions. Table 4
compares the budgeting methods VSB and the proportional time
budgeter based on the current design timing by running the step
(3) of the experimental flow with “ run VSB” vs. “ run proportional
time budgeter” . On average the experimental flow with VSB spent
1.2% more CPU time but achieved 23.4% better timing.

Table 3 PTP vs. DHML
Design
Name

CPU time (negative =
improved)

WNS (negative =
improved)

V -3.78% -19.47%

T 5.27% -6.72%

H 8.55% -58.74%

W 0.00% 0.00%

L -1.79% -84.24%

A 0.00% 0.00%

S -2.50% -1.69%

Average 1.15% -24.41%

5. Conclusions and Future Work
Distributed physical synthesis improves runtime and capacity, but
may incur negative impact to timing. We introduced placement-
based timing-driven partitioner (PTP) and virtual physical
synthesis based budgeter (VSB) to enable high-quality distributed
physical synthesis. PTP considers logical hierarchy, placement

and timing during partitioning and VSB performs a fast virtual
physical synthesis algorithm to produce more realizable time and
load budgets. On 7 real-world designs an experimental distributed
physical synthesis flow with PTP and VSB on average achieved
respectively 24.4% and 23.4% timing improvements with
negligible runtime overhead. Both PTP and VSB are also useful
techniques in conventional floorplanners. Indeed, VSB has been
productized in a commercial floorplanner.

Table 4 VSB vs. proportional time budgeter
Design
Name

CPU time (negative =
improved)

WNS (negative =
improved)

V 0.07% -9.00%

T 10.98% -3.10%

H 6.94% -47.53%

W -3.62% -27.27%

L -4.30% -71.41%

A 9.50% -7.19%

S -11.49% 1.75%

Average 1.16% -23.39%

6. References
[1] C.J. Alpert, J. Hu, S.S. Sapatnekar and C.N. Sze, Accurate

estimation of global buffer delay within a floorplan. ICCAD,
pp. 706-711, 2004.

[2] H. Chen, C.-K. Cheng, N.-C. Chou and A.B. Kahng, An
Algebraic Multigrid Solver for Analytical Placement with
Layout Based Clustering. DAC, pp. 794-799, 2003.

[3] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W.
Chang, A High-Quality Mixed-Size Analytical Placer
Considering Preplaced Blocks and Density Constraints,
ICCAD, pp. 187-192, 2006.

[4] Y. Cheon and D.F. Wong, Design Hierarchy Guided
Multilevel Circuit Partitioning. TCAD, Volume 22, Issue 4,
pp. 420- 427, 2003.

[5] C.M. Fiduccia and R.M. Mattheyses. A linear time heuristic
for improving network partitions. DAC, pp. 175-181, 1982.

[6] B. Hu and M. Marek-Sadowska, Wire Length Prediction
based Clustering and its Application in Placement.

[7] A.B. Kahng, S. Reda, and Q. Wang. Aplace: A general
analytic placement framework. ISPD, pp. 233–235, 2005.

[8] S.K. Karandikar and S.S. Sapatnekar, Fast comparisons of
circuit implementations. IEEE Trans. VLSI Syst. 13(12), 05.

[9] G. Karypis, R. Aggarwal, V. Kumar and S. Sheckhar,
Multilevel hypergraph partitioning: Application in VLSI
domain. DAC, pp. 526-529, 1997.

[10] B. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning of electrical circuits. Bell System Technical
Journal, vol. 49, no. 2, pp. 291-307, 1970.

[11] P. Spindler and F.M. Johannes. Fast and Robust Quadratic
Placement Combined with an Exact Linear Net Model.
ICCAD, pp. 179-186, 2006.

[12] I. Sutherland, B. Sproull and D. Harris. Logical effort:
designing fast CMOS circuits. Morgan Kaufmann
Publishers Inc., 1999.

