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Abstract. We construct two sequences of orthogonal polynomials with respect to the inner
products which are defined by g-integrals over a collection of intervals in the complex plane.
We prove that they are connected with some g-analogies of the Laguerre polynomials. For
such introduced polynomials we discuss a few representations, a recurrence relation, a difference
equation, a Rodrigues—type formula and a generating function. Also, a relationship between

those two sequences is found.

1. Introduction

Each class of classical orthogonal polynomials has several g—analogies (see, for
example, [3]). In this section we study the little q—Laguerre polynomials p,(z;a|q)

and the g—Laguerre polynomials Lﬁf‘)(a:; q) as the analogies of the Laguerre poly-
nomials L' (z). They are defined by

"0
(1.1) pnlzsalq) = 2<I>1< a; qﬂc>,
a+1. ) —-n

1.2 L%O‘) r;q) = —(q D g (q q; —q”+a+1x),
(1.2) (:4) (G Q)n  — \got!
where

ai,ag, ... ,Qr = (a17a27"~ 7ar;Q)k 14+s—r)k (l—i—S—T‘)(k) Zk
rq)s< ;Z) = —1 (1+ ) 2) —

bi,b2,... ,bs 1 kZ:O (b1,ba, ... 7bs;Q)k:( ) 1 (¢ Q)
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is the basic hypergeometric function, (a; q), = H;;é(l—aqj) and (a1,...,a,;q)r =

H?:1(aj5 Q)r-
The orthogonality of the little g-Laguerre and the g—Laguerre polynomials is
given by the relations

(aq)”  (¢;9)n 5
aq; @)oo (aq; q)n

— (aq)*
(1.3) kz o mn (0<a<1/q),

pm(d"a| Q)pn(d®;alq) = (
=0

0 ka+k

q a o
> i L(edsq) L (eq"sq)
(1.4) L (—ed )
| (¢, —cg* —c ' @)oo (@*F 5 9)n
= = ’ ’ = bmn (> =1, ¢>0).

(¢t —c, ="' @)oo ¢ (q; O

Having in mind the definitions of the g—exponential functions

< (5)
Ey(x) = (—250)00 = Y (;], o ¥, (0<lgl <1, z€C),
k=0 ‘"’
(1.5) 1 =
eg(r) = ——— =Y ——aF, (0<lgl <1, |z[<1),

where (a;¢)co = [[;2((1 — ag’), and the definitions of ¢-integral

[ 1@ e =a-0Y g0 i [ 1@ de= -0 3 16 i
0 y 0

—0 k=—o0

for 0 < |¢| < 1 and = > 0, it follows that {p,(z;¢%|q)}nen, are orthogonal with
respect to the inner product

1
(16) (Fgh= [ 1) 5) o* Ey(-a1) dya
0
and that {L%a)(a:; q) }nen, are orthogonal with respect to the inner product

(L.7) (f.9)n = / " 1) 9@) 2 ey(—x) dy.
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The relationship between these two g—analogies of the Laguerre polynomials is
given by
(1.8)
a+1.

pn(ﬂc;q_“| q—l) — M Lgla)(_m;q), L%a)(:lf;q_l) _ (q aQ)n

—————pp(—7;¢%| q).
(q*t159)n " (¢; Q)n n( [9)

At last, let us remember (see, for example, [3]) that g-number and g-factorial
are defined by

[a]q = (a € R), [nlgt =[nlg [n—1]q...[l]g (n€N)

and the ¢-derivative of a function is

F(x) — F(gx)

DyF(z) = T — qx

(z #0).

In this paper, our purpose is to examine the polynomials orthogonal with re-
spect to the inner products defined by the sum of g-integrals over a collection of the
complex intervals with starting point in the origin. The similar considerations can
be found in the papers of J.S. Geronimo and W.V. Assche [1], who have discussed
the orthogonality of a new polynomial sequence which is obtained by some poly-
nomial transformations of a measure and its support. Also, the orthogonality on

radial rays in the complex plane was discussed in the papers of G.V. Milovanovié¢
[4] and G.V. Milovanovié¢, P.M. Rajkovi¢ and Z.M. Marjanovié¢ [5].

2. About g—orthogonality over a collection of the intervals

Let us assume that m is a positive integer, ¢ is a real number (0 < g < 1) and
Q = ¢*/™. Also, denote

_
) =en(ZD), =0t men (=)
m

The function j — ¢,,(j) has following properties:

(i) Qom(mj) =1, @m(j) = me(_j);
(ii) Spm(j + k) = Spm(j) + Som(k)v 90%(]) = me(Nj);

() Y plmn+ 1)) = 3 @ulvi) = { I
j=0

0, 1<v<m-1.



We consider the polynomial T'(z) = 2™, = > 0 and its inverse branches

-1 _ . 1/m .
T (@) = gm(j) 2™, >0  (0<j<m-—1).

In this way, we will define the inner products via polynomial mappings (for the
idea see, for example, [1])

(2.1)
m—1 1
(F,G) = [%} / F(Tj_l(z)) G(Tj_l(z)) z”‘Hl/mEq(—qz) dyz,
¢ =5 Jo
(2.2)
171 L[ -1 A(=17_\\ y—1+1/m
(F.G)r =[] Z/ F(TY(2) GIT1(2)) 27~V mey(—2) dys,
¢ =5 Jo

where m~y + 1 > 0. Using the property of the g-integral

m

(2.3) /ObF(g;m) dor = [l}q/ObF(x) e (b e {1,00))

the previous inner products can be rewritten as

(2.4)
(F.60 =Y [ Flon(3)2) Glonli)e] 2 Bon(-Q"2") doz,
(2.5)

PG =Y [ Flon(i)2) Glonl1) 2 eqn (2" dox

=0

According to the definition of the g—integral, we get equivalent expressions:

(2.6)
(F.G)r=(1=¢"") >3 Flem(i)d"™) Glem(5)g*/™) ¢FOT/™ Ey(—g"tH),
=0 k=0
(2.7)

(F.G)p = (1=g"") > Flem(i)d"™) Glom(i)ad /™) ¢F 0™ e (—g").
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The inner products (2.1)-(2.4)-(2.6) and (2.2)-(2.5)-(2.7) can be represented in a
common form

m—1 b
(F.G). = 3 [ Flon(i)2) Glon(i)2) w(z: Q) doz
j=0 "0

(2.8) o
> Flom()Q%) Glom()QF) w(@Q": Q) Q.
=0 k=g

In this way, the choice b = 1, ﬁ 0, w(z;Q) = 2""Egm(—Q™2"™) gives the
product (2.1)-(2.4)-(2.6) and b = o0, f = —o00, w(z;Q) = 2"Tegm(—2™) gives
(2.2)-(2.5)-(2.7).

Under the conditions m~y 4+ 1 > 0 there exist the sequences of the monic poly-
nomials {Ag\?)(z;Q)}NeNO and {AS\’;)(Z; Q) }nen, orthogonal with respect to the
inner product (2.1) and (2.2) respectively. Their existence we will prove by the
construction.

For the inner products (2.8) and the arbitrary pair of the functions F'(z) and
G(z) it is valid

(M, G)y = (F,2MG)..

By the end of this section we will give some general properties related to the se-
quence of the polynomials {)\5\7)} Nen, and {Ag\}y)} NeN, and respective inner prod-
ucts without the proofs. Therefore, let {mn}nen, denote one of mentioned se-
quences of polynomials, i.e. the set of the monic polynomials orthogonal with

respect to the inner product (2.8), depending of the choice of the parameters and
the weight function.

The polynomials 7y (2), N =0,1,..., satisfy
(2.9) TN (om(1)z) = om(Nr)mN (2),
forallr=0,... ,m—1.

For 0 < M < N <m — 1, it is valid (zV, 7)) = 0.
From the previous facts, we conclude that the monic polynomials {7x}nen,
satisfy the recurrence relation

TN+m(2) = (zm - ag\ﬂ;)) mn(z) — ](:;)WN m(2), N >m,

(2.10)
an(z) =2, N=0,...,m—1,

where

(%) (2N, TN )« (v, V) , N2>2m

Qn = W7 N >0, ](\}k) = <7TN—m77TN—m>*
NN T 0 , N<m-—1.
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The explicit form of the coefficients we will derive in the next section.
According the start values and recurrence relation, we have that the polynomials
mn(2), N € Np, can be expressed in the form

7T-N(Z) = 7Tmn—|-l/(z) = ZVS*r(:z)/(Zm7 Q)7

where S,({fZ(t; q) are the monic polynomials of degree n forn >0, 0 <v <m — 1.

3. Some representations of the polynomials )\5\7)(2; Q) and Ag\?)(z; Q)

The sequences of the polynomials orthogonal on several intervals are closely
connected the sequences of known g—orthogonal polynomials considered in the
previous section.

Theorem 3.1. The polynomials )\5\7)(2; @), N € Ny, can be represented by

(3.1) A (2567 ™) = KD, ()2 pa (2™ g7~ 1 @D/ g,
where
(3.2) K (q) = (_1)”q(3) eq(qmtYHEID/MY B (v Gra))/m)y

and py (x; 7~ HEEDN/™| o) s the member of the sequence of the little g—Laguerre
polynomials.

Proof. For shorten writing, let us denote p,(x) = py,(2; ¢ FETD/™| o) Tt is
enough to prove (zM, 2¥p,, (2™)); = 0 for M < mn+v and (z™"" 2Vp, (2™)); # 0.
Really,

<M?
5%

"

2 (2
/ om()2)" (0m(5)2) n ((Pm(G)2)™) 2™ Egm(—Q™=™) dgz

T

1
om (M — 1)) / M (57) 2 B (~Q72™) dgz.

<.
I
o

Since Y71 cpm((]\/[ v)j) # 0only if M =v (modm), then (z,2"p, (2™)); =
0, for any M € Ny, except for M = Nm + v (N € Ny). At last, we will discuss



such cases. Now, according to (2.3) and Q™ = ¢, we have
<ZNm+1/’ Zupn(zm)>l

1
:m/ ZNm—|—21/pn(zm) Zm'yEQm(_szm) sz
0
1

1

= m[—} / gNr2/my (x) 27 Ey(—qx) /™1 dyx
milq 0
1 1

= m[—} / N pp(z) 2@/ ME () dga.
mdq 0

Because of the orthogonality of the little g—Laguerre polynomials, the last integral
is zero for N < n and it is positive for N = n. So, if M = Nm +v < mn + v,

we get (zM, 2Vp,(2™)); = 0 and (™", 2Vp,(2™)); # 0. The constant K,(Ll,),,(q) is
obtained from the fact that )\5\7)(,2; ()) are monic. [J

Theorem 3.2. The polynomials Ag\}y)(z; Q), N € Ny, can be represented by

(3.3) A (2™ = KB (q)20 L~ Gvib/m) (ms g,
where
(3.4) KB (q) = (—1)ng =14 @vD/mg (qn4ly B (—q)

and LSJ*H(Q”“)/"” (z;q) is the member of the sequence of the q—Laguerre poly-

nomials.
Proof. As in the previous theorem, denoting L., (z) = Lol /m) (x;q), let us
prove that (zM, 2" L, (2™)), = 0 for M < mn + v and (z™" 2YL, (™)) # 0.

Really, since

m—1

> [ @nl) on2) Lallon o)) ™ egn(~") do

1=

<zM,z”Ln 2™N L

as in Theorem 3.1, there is valid (2, 2V L, (2™)), = 0, for any M € Ny, except
for M = Nm + v, N € Ny. In these cases, using (2.3) and Q™ = ¢ we have

1 1
<ZNm+V,ZVLn(Zm)>L — m[_} / INLn(l') x’771+(2u+1)/m6q(_l‘) dqm.
mdiq Jo
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Because of the orthogonality of the g—Laguerre polynomials, if M = Nm + v <
mn + v, we get (M, 27 L, (2™))r = 0 and (2™ 2YL, (™))L # 0. As previous,
the constant KT(LL,,) (q) is obtained from the fact that Ag\?)(z; Q) are monic. [J

Based on the connection )\S\?)(Z; Q) and Ag\?) (2; Q) with p,, (z; g7~ 1Hv+1D/m| 4)

and LT EAD/m) (x; q) respective and their recurrence relations, we can evalu-

ate the coefficients in recurrence relations (2.10) for both classes of the polynomials.

Corollary 3.3. The polynomials )\5\7)(2; Q), N € Ny, satisfy the recurrence rela-

tion
M (#Q) = (=7 = o) AP (5:Q) = VAL (2Q), N2 m,
where
s = (1= Q@™ (Im(n +7) + 2 + 1]q + QO™ T2 g )

67(7?714—1/ (1—Q)2QmE T =242+ im0 Im(n 4+ — 1) + 2v 4+ 1o
forme Ny, 0<v<m-—1.

Corollary 3.4. The polynomials AS\?)(Z; Q), N € Ny, satisfy the recurrence rela-
tion

A (5Q) = (27 = o)A () - BYANL,(5:Q), N =m,
where
o = (1= Q) Q=2 (Im(n + 1o +Q [mn+7 - 1) + 2 + o),

ﬂ’r(fvz—i—z/ =(1-Q)* Q- mnt2y=3)-2(2v+1) [mnlg [m(n+~v—1)+2v+1]g

formeNy, 0 <v<m-—1.

Proof. The recurrence relations satisfied by polynomials )\S\’,Y)(z; Q) and AS{,Y)(Z; Q)
can be obtained from the Theorem 3.1 and Theorem 3.2 and the three—term re-
currence relation satisfied by the little g-Laguerre polynomials p,(z;a | q)

—q "zpn(r;alq) = (1 —aq"" )pnti1(z;a|q)
— (1—ag""" +a(l = ¢"))pnl(x;alq) + a(l — ¢")pn_1(x;a]q)
and g-Laguerre polynomials L%a)(x; q)
— "L (a5q) = (1— "L, (w5 q)
— (1= "+ g1 = ") L (w39) + q(1 — ¢"F) LY, (219). O

n+1)

From Theorem 3.1 and Theorem 3.2 and the representation of the little ¢—
Laguerre and the g-Laguerre polynomials (1.1) and (1.2) we can give following
statements.
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Theorem 3.5. The polynomials As\?)(z; Q) and Ag\?)(z;Q), N € Ny, can be rep-
resented by

m 1% q_nﬂo m
A (zd ™) = KD (q) 2 2<I>1(q,y+(2y+1)/m ’q; qz >

-

m 10 v q n v m.m
Ao (zd™) = K1) 2 1<I>1<qv+(zy+1)/m ’q; maR )

where KT(LZ,),,(q) is defined by (3.2) and

K(L) (q) — (_1)nq—n(n+'y—1+(21/—|—1)/m)eq<qn—|—'y—|—(21/—|—1)/m) Eq(_q’y—l—(ZV—i—l)/m).

n,v

Theorem 3.6. The polynomials )\5\7)(2; Q) and Ag\?)(z; Q), N € Ny, can be rep-
resented by

Mo (20 ™) = (=1)7q(3) eg(gntrt@an/m)
% (—l)kq(k;_l)_kn |:Z:| Eq(_qk—l—'y—&—@u—l—l)/m) ka—!—zz’
k=0 q
A&Yzb_'_y(z; ql/m) _ (_l)nq—n(n+'y—1+(2y+1)/m) eq(qn—|—fy—|—(2u—|—1)/m)

- - - v m n v m m v
% Z(_l)kq k(k+vy—1+(2v+1)/ ){k} Eq(_qk+’y+(2 +1)/ ) 2kt
k=0 q

Proof. The summation formulas can be obtained using representations (3.1)—(3.2)
and (3.3)—(3.4) and the definitions of the g¢—hypergeometric function. [

4. Some properties of the polynomials )\g\}y)(z;Q) and Ag\?)(z; Q)

In this section we will show what are some classical properties of the orthogonal
polynomials look like for these two classes of the polynomials.
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72 ()
Theorem 4.1. The polynomial )\T,ZML,,

following Q—difference equation:

(z;Q), n € Ny, 0 < v < m — 1, satisfies

AD (2:Q)22 DY (2) + BY,(2:Q)2 DY (2) + CU, (2, Q) Y (2) = 0

where

AD (,Q) = QmO—vi2,
Qm(l—n) .

BY(%Q) =[m(y—1)+v+2]g —QmO VT [, T 7

Qm(l—n)
C(=Q) = F—gmlmn +lg 7 = g [m(y = 1)+ v+ 1.

Proof. The little ¢-Laguerre polynomial y(z) = py(z;¢?" @D/ ¢) is one
solution of the g—difference equation

—q "M (1= ¢"zy(qz)

_ q7,1+(2y+1)/my<q2x> + (qz — q7*1+(2V+1)/m — Dy(gz) + (1 — gx)y(x).

Applying the relationship (3.1) we have

-1 —v/m m m
y(x) = (Kno(@) /™A L (@™ g2 ™),

-1 —v/m . —v/m m m m
y(qz) = (Kno(q) g/ ma/m A0 (g mat/ms gy,

71 —zlV/m —vV/m m m m
y(@®x) = (K (q)) " q 2/ ma /™A (Pt /™ gt ).

Substituting x = 2™ and ¢ = Q™, previous difference equation becomes

(Q%2 Q)+ (QmU=mzm —QmO-D+2rtl 1)\ (2. Q)

Qm(7—1)+l/+1 )\(’Y)
+QY(1— Q=™ AL, (:Q) = 0.

mn—+v

Providing the formula (see [2])

k . TEl
bt =3 (11— g [j] G D (o),

=0

we get the difference equation in the required form. [
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Theorem 4.2. The polynomial Ag}lﬂ(z; Q), n € Ng, 0 < v <m—1, satisfies
following Q—difference equation:

AN (%Q)2% DY (2) + B)(2:Q)z DY (2) + CiH)(2:,Q) Y (2) = 0,

n,v

where

A (2.Q) =QmO— D2 (1 4 Qm2™),
BI)(zQ) =m(y = 1) +v+2g — QMO g
Qm'y—l—u+2
_( 1-Q

Qm’y—ky—l—l

o 1-Q

+ Qv Tl [mn + I/]Q> z™,

Cff,}(z; Q) mn + v|gz™ — [V]g [m(y—1)+v+1]g.

Proof. 1f we repeat the procedure used in the proof of the previous theorem, but
now starting with the g—difference equation

— T FD/M (] g™V zy(g)
= ¢ EADm (4 ga)y(gPa) — (14 @M 4 gr))y(ga) + y(x)

satisfied by the ¢—Laguerre polynomials L%’Y_H(QVH)/ m)(x; q) and the representa-
tion (3.3), we get

QoI (14 Q™) A1, (Q25 Q)
— (14 QO L Qe L) AL L (Q2Q)+QY A4 (5Q) =0,

and, finally, the required difference relation. [

Theorem 4.3. For the polynomials )\5\7)(,2; Q) and Ag\?)(z; Q), N € Ny, Rodrigues
— type formulas

A (27 g ™) = (—1)ngnt =2 v /m) gy
% Z—v—i—l—(y—i—l)/m eq(qz)pg_l <2n+7—1+(2u+1)/m Eq(—qz)>,
A (2™ g ™) = (—1)"(1 - g)g T T v /m)

« 277+17(U+1)/m Eq(Z)D;z<Zn+’yfl+(2u+1)/m 6q(_z)>
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are valid.

Proof. If in the Rodrigues — type formula for the little g-Laguerre polynomials

2% Eq(—qz) pn(z;q4|q)
_ qna+(’5)(1 _ q)neq(qa-i-l) Eq(_qn+a+1) Dg‘fl (In—l—aEq(_qx))

we apply the representation (3.1), we get

(K@) 27N

mn-+v

(2M/m5 g™
_ qn('y—1+(2u+1)/m)+(g)(1 o q)n eq(q7+(2y+1)/m) Eq(_qn+'y+(2u+1)/m)

% 5=V HI=(v1)/m eq(qz)DZ_l<Zn+w—1+(2y+1)/m Eq(—qz)>.

According to the expression (3.2) and the properties of the g-exponential functions,
we get the Rodrigues — type formula for polynomials )\S\}Y)(z; Q). The Rodrigues

— type formula for the polynomials Ag\?(z; ()) can be obtained as previous, using
the formula )
I 30) = gy o B D (2" o) ).

and the representation (3.3)-(3.4). O

Theorem 4.4. The generating functions for the polynomials )\g\?)(z; Q) and
AS\’;)(Z; Q), N € Ny, are given by

oo m—1
eq(Q) Z Z Eq(_qn—H) Eq (_qn+7+(2u+1)/m))\£z%+y(z;ql/m) umntv
n=0 v=0
m—1

= B (G0”) S0 o (g | 500",
v=0

> (0 B (=g E(— AL

mn_’_V(Z; ql/m)umn-i-l/
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Proof. Using the generating function for the little g—Laguerre polynomials
pn(z;alq)

Z(—l)"q(g)Eq(_an)pn(x;a | )t" = Ey(—q) eq(zt) Eg(—t)o®1 (C;I ‘ q;aqxt)

and the relations (3.1)—(3.2) we have
ZE n+1 ( qn—|—'y+(2l/—|—1)/m) )\gzzl+y(l,1/m;ql/m> g
= xy/m Eqy(—q) Eq(_qw+(2y+1)/m) eq(xt) Eq(—t)

- . +(2v+1)/m
XO(I)l(q’H—@V—l—l)/m g; g xt>,

for any 0 < v < m—1. Taking z = 2™ and u = t"* and summing for 0 < v <m-—1
we get the expansion. For the second formula we use the generating function for
the g—Laguerre polynomials L%a)(z; q)

ZE q) L (w59) 7 = By(—=4°") ey(t) o@l(qaﬂ K —qa“xt)

and the representation (3.3)—(3.4). O

Theorem 4.5. The norm of the polynomials )\5\7)(2; Q) and AS\',Y)(z; Q), N € Ny,
are

AP = m(1 - Q) @imtrtt2eh
m 2 m(n 1% mn
X (Bgn(=Q™)" eqm(QMM 24 equ (MY,
“A%)H% — m(l _ Q) Qf2mn(n+’y)72n(2y+1)+mn
m 2 mi(n m
X (Egm(=Q™))" eqm (@™ egm(—1) egm(—Q™)
x eQm(Qm(n—f—'y)—i—Qu—f—l) EQm(Qm'y—i—Ql/—i—l) EQm(Q m('y—l—l)—Ql/—l).
Proof. The norms of the polynomials are obtained using the definition of the inner

products (2.1)-(2.4)-(2.6) and (2.2)-(2.5)-(2.7) and Theorem 3.1 and Theorem 3.2.
0J

Finally, we will give the simple, but not trivial connection between the involving
class of the polynomials.
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/\(’Y)

Theorem 4.6. For the polynomials A, ., (2;Q) and AfQ}HV(z Q), n € Np,

0<v<m-—1, holds
om(@/2) A7 Q7Y = (=1)" AD) L (em(1/2) 2 Q).

Proof. Using Theorem 3.1 and Theorem 3.2 and the connection between the little
g—Laguerre and the ¢g—Laguerre polynomials given by (1.8), we obtain

(DA (5Q7Y) = (UMD (DY 2 Q).
Since (—1)Y/™ = ,,,(j +1/2) for any 0 < j < m — 1, we have

em((G+1/2) AD) L (Q7Y) = (=1)"AD) 1 (om(G +1/2) 2Q)

and according to (2.9) and the properties of ¢,,(j), we get the required relation—
ship.
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