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Abstract— In this work we use a new approach to model error
events in long-haul optical fiber transmission systems. Existing
approaches for obtaining probability density functions (PDFs)
relay on numerical simulations or analytical approximations.
Numerical simulations make far tails of the PDFs difficult to
obtain, while analytical approximations are often inaccurate, as
they neglect nonlinear interaction between pulses and noise.

Our approach combines the instanton method from statistical
mechanics, to model far tails of the PDFs, with numerical
simulations to refine the middle part of the PDFs. We combine
the two methods by using an orthogonal polynomial expansion
constructed specifically for this problem. We demonstrate the
approach on an example of a specific submarine transmission
system.

I. INTRODUCTION

Investigation of error statistics in high speed optical fiber
communication systems is a fundamental task. The nonlinear
nature of the propagation of light, nonlinear inter-symbol
interference (ISI) between neighboring pulses coupled with
noise makes this task very challenging.

Due to ISI it is necessary to study probability density
functions (PDFs) of signal samples corresponding to longer bit
configurations and not just individual bits. Existing approaches
for modelling these PDFs rely either on extensive numerical
simulations [1], [2] or on simplified and often inaccurate
analytical approximations ([3] and references therein).

Numerical approaches approximate middle part of distri-
butions well, but far tails of the PDFs are very hard to
obtain numerically. Unfortunately, tails of the PDFs are very
important, since acceptable bit error-rates in communication
industry are low ∼ 10−9 − 10−12, so error events fall into
far tails of distributions.

All the existing analytical approaches neglect non-linear
interaction between pulses and noise (which is implicitly
incorporated in numerical modelling), therefore leading to
PDFs approximations that are applicable only under very sever
restrictions in terms of system speed, distance and types of
fiber used (see [4], [5]).

Several recent papers [6], [7], [5], [9] used Karhunen-
Loève series expansion (KL) to determine PDFs. In the cases
when covariance function is known this method works well
[5]. In the case of a general optical fiber communication
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system covariance between received pulses is not known and
the KL expansion approach has several drawbacks. Firstly a
covariance matrix needs to be approximated numerically (in
which case Karhunen-Loève expansion is in fact the Principle
Component Analysis (PCA)) and numerical calculation of
eigen-quantities is often unstable. Secondly, a separate set of
eigen quantities needs to be numerically calculated for each
bit configuration (for more details about problems related with
this approach see [10], [6], and appendix of [5]).

In this paper we use method of optimal fluctuations or in-
stantons to model far tails, and numerical simulations to refine
the middle part of PDFs. We combine these two approaches
by using Edgeworth expansion with orthogonal polynomials
specially constructed for this problem.

The method of optimal fluctuations was originally devel-
oped in statistical physics [11]. This approach is very similar
to numerical saddle point approaches used in [8] but in contrast
to that paper we calculate the saddle point, i.e, “the most
damaging” noise configuration analytically.

Edgeworth expansion is a statistical method for approxi-
mating unknown PDFs [12]. An unknown distribution w(x)
is approximated by successive improvements of known start-
ing approximation u(x) by numerically (or experimentally)
obtained moments of w(x). In the existing literature this
method is almost always used with a Gaussian distribution
as u(x) [12], probably because in this case it involves widely
known Hermite polynomials (this special case of Edgeworth
expansion is referred to as Gram-Charlier expansion). Recently
use of Gram-Charlier expansion was suggested [3] in the
context of optical communication systems.

In this work we use PDFs derived by instanton method
as u(x). By using these PDFs, we obtain better asymptotic
properties of the approximate distributions, which leads to
faster and more accurate approximation of unknown PDFs.
This requires derivation of a special family of orthogonal
polynomials, which is given in Section III.

In the Section IV we apply the proposed method to find
PDFs for a single mode system with parameters corresponding
to submarine systems.

II. PROBABILITY DENSITY FUNCTIONS OBTAINED BY
INSTANTON METHOD

The derivation of the instanton approximation for the PDFs
follows the method derived in [16], and it is already presented
in [13], so due to space limitations it will not be repeat it here.
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where C is normalization constant, N is noise intensity, z is
propagation distance, T is the size of a time slot and s is a bit
configuration surrounding the center bit that gives As(t, z) via
non-linear interaction of the pulses in the absence of noise.

The asymptotic behavior of PDFs is not Gaussian as often
assumed in the existing literature. We note that this can be
concluded from the study in [4] and it is explicitly stated in
[5]. Similar approximations for PDFs have been derived in
different ways, see for example [2], [14].

At the end of this section, we would like to mention that
instanton method allows any noise statistics as long as it is
uncorrelated. Also, the calculations do not depend to specific
pulse shaping.

III. EDGEWORTH EXPANSION

In this section we use Edgeworth expansion [12] to refine
PDFs derived in the previous section.

An unknown distribution w(x) can be represented as

w(x) = u(x)

[ ∞∑

i=1

CiPi(x)

]
(2)

where u(x) is a starting approximate distribution and
Pi(x), n ∈ N is a family of polynomials orthogonal with
respect to the weight u(x). Let Pi(x) =

∑i
k=1 akxk. By

multiplying Eq. 2, by Pi(x) and integrating over the domain
of orthogonality (in our case x ∈ (0, +∞) since x represents
energy) we get

∑i
k=1 aηk = Ci where ηk, k ∈ N are moments

of the distribution w(x). We can obtain a finite number j
of these moments numerically or experimentally, therefore
deriving an approximate PDF w̃j(x) by truncating infinite sum
Eq. 2 to j terms. These approximate PDFs w̃j(x), j ∈ N are
guaranteed to converge to w(x) uniformly [12].

In order to use PDFs given in Eq. 1 as starting distributions
we need polynomials Pn(x;m; p), n ∈ N orthogonal with
respect to the weight

u(x; m; p) = e−m(
√

x−p)2 , x ∈ (0,+∞) (m, p > 0). (3)

These polynomials can be seen as generalization of Laguerre
polynomials and to the best of our knowledge have not been
studied before. Here we shall briefly explain how to construct
them; their properties will be studied in a separate publication
which is in preparation. Moment of the distribution u(x; m; p)
can be written as

µn(m; p) =
2

m2n+2

∫ +∞

−p

(t + p)2n+1e−t2 dt.

These moments can be calculated via recurrent relation derived
by partial integration rule.

Knowing all the moments µn(m; p) we can calculate the
polynomials by:

P (x;m; p) =
det

(
En

)

m(n+1)(3n−2)µn
1 (p)

, (4)

where the matrix En = [ei,j ](n+1)×(n+1) has the ele-
ments ei,j = m2(n−j)µi+j−1 (j = 1, 2, . . . , n) ei,n+1 =
m2(n+i)−4xi−1, (i = 1, 2, . . . , n + 1).

IV. NUMERICAL RESULTS

In this section we shall illustrate the developed method. We
considered the system that consists of periodically distributed
sections of fiber with positive D+ and negative dispersion
D− separated by amplifiers (EDFA). One span consist of one
section of fiber with positive dispersion, one section of fiber
with negative dispersion, and corresponding amplifiers.

The transmission of a signal through the fiber is modelled
by the nonlinear Schrödinger equation (NLSE) [15]. In the
system simulator, propagation of pulses through the system,
i.e. solving NLSE, was done numerically by the split-step
Fourier method.

The parameters of positive dispersion D+ and negative
dispersion D− fibers are given in Table I. Pre-compensation
of -330 ps/nm and corresponding post-compensation were
also applied. The RZ modulation format has duty cycle of
33%, and the launched power was set to -6dBm. EDFAs
with noise figure of 8dB were deployed after every fiber
section. The nonlinear distance of this system is roughly

TABLE I
PARAMETERS OF THE FIBERS USED

Parameters D+ fiber D− fiber

Dispersion [ps/(nm km)] 20 -40
Dispersion Slope [ps/(nm2 km)] 0.06 -0.12

Effective Cross-sectional Area [µm2] 110 50
Nonlinear refractive index [m2/W] 2.2×10−20 2.2×10−20

Attenuation Coefficient [dB/km] 0.19 0.25
Length (in one span) [km] 33.4 16.7

6000km. As expected, for distances below this number the
instanton approximation itself approximates the true PDF well.
To illustrate this, in the Fig. 1, we plot both PDFs obtained by
instanton method and histograms obtained numerically, for two
bit configurations: (i) with zero in the center slot s = 0110110
and (ii) with “1” at the center slot s = 0001000. Both bit
configurations were propagated through 100 spans, that is
5000km.

However, when the propagation distance is longer the in-
stanton approximation is not sufficient. As Fig. 2 and Fig.
3 show, after 300 spans (approximately two and a half non-
linear distances) neglecting of nonlinear interaction between
noise and pulses in the instanton approximation makes this
approximation overly “optimistic”, i. e, too narrow. After
polynomial correction is added, the refined PDFs show neg-
ligible differences to numerically obtained histograms. Note
that only polynomials up to fourth order are needed to refine
the PDF for “0110110”, and only first two polynomials are
needed for “0001000”. This is in sharp difference with what is
reported in [3], where, for a similar system, more than a dozen
of Hermite polynomials are needed to sufficiently improve
starting Gaussian distribution (also presented on figures).

Of course, question arises how many polynomials are
needed to approximate an unknown distribution sufficiently
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Fig. 1. Probability density functions after 100 spans
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Fig. 2. Comparison of various PDF approximations for energy of bit pattern
“0110110” after 300 spans

well. From the engineering point of view, satisfactory answer
can be to add higher order polynomials until the moment
difference between two consecutive refinements falls under
certain threshold.

V. SUMMARY

We developed an approach for approximating probability
density functions that is both practical and accurate. The
instanton method gives right asympotic behavior for the tails
of distributions. Use of the parameterized family of orthogo-
nal polynomials saves from extensive numerical calculations,
making this approach applicable for high speed applications.

Method is also very general (it is not restricted to specific
pulse shaping, bit rate, propagation distance) and therefore
applicable to a wide range of systems.
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[5] N. Alić et al. “Signal statistics and maximum likelihood sequence
estimation in intensity modulated fiber optic links containing a single
optical preamplifier”, Opt. Exp, vol. 13, pp. 4568-4579, Jun. 2005.

[6] T. Freckmann, J. Spiedel, “Viterbi equalizer with analytically calculated
branch meterics for optical ASK and DBPSK,” Photonic Technology
Letters, vol. 18, no. 1, pp. 277-279, Jan. 2006.

[7] F. Buchali, G. Thielecke, H. Blow, “Viterbi equalizer for mitigation of
distortions from chromatic dispersion and PMD at 10 Gb/s,” in Proc.
Opt. Fiber Comm. Conf., vol. 1, Los Angeles, CA, Feb. 2004.

[8] C.L. Ho, “Calculating the performance of optical communication sys-
tems with modal noise by saddlepoint method,” J. Lightw. Technol., no.
9, pp. 18201825, Sep. 1995.

[9] E. Forestieri, “Evaluating the error probability in lightwave systems with
chromatic dispersion, arbitrary pulse shape and pre- and postdetection
filtering,” J. Lightw. Technol., vol. 18, no. 11, pp. 1493-1503, Nov. 2000.

[10] E.R. Dougherty, Random Processes for Image and Signal Processing.
SPIE Opt. Eng. Press, IEEE Press, New York 1998.

[11] I. M. Lifshitz, “Energy spectrum structure and quantum states of
disordered condensed systems,”Usp. Fiz. Nauk, vol. 83 no.4, 1964.

[12] J. Kolassa Series Approximation Methods in Statistics, 2nd ed. Springer-
Verlag, New York 1997.

[13] M. Ivkovic, I. Djordjevic, B. Vasic, “A soft decision decoding scheme for
long-haul optical transmission systems based on the instanton approach”,
accepted for presentation at GLOBECOM’06.

[14] T. Foggi et al. “Maximum likelihood sequence detection with closed-
form metrics in OOK optical systems impaired by GVD and PMD”, J.
Lightwave Technology vol. 24. no. 8., pp 3073-3087, August 2006.

[15] G. P. Agrawal, Nonlinear Fiber Optics. San Diego, CA: Academic, 2001.
[16] V. Chernyak, et al. “PMD-induced fluctuations of bit-error rate in optical

fiber systems”, J. Lightwave Technol. vol. 22, no.4, pp.1155-68, 2004


