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Abstract

We prove that the Hankel transformation of a sequence whose elements are the
sums of two adjacent Catalan numbers is a subsequence of the Fibonacci numbers.
This is done by finding the explicit form for the coefficients in the three-term recur-
rence relation that the corresponding orthogonal polynomaials satisfy.

1. INTRODUCTION

Let A = {ag,ay,as,...} be a sequence of real numbers. The Hankel matrix gener-
ated by A is the infinite matrix H = [h, |, where h; j; = a;4_2, l.e.,
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g a4 dz as
ay dz dsz G4
az a4z 44 as
az dag ds dg
a4 das de a7

The Hankel matriz H,, of order n is the upper-left n x n submatrix of H and
the Hankel determinant of order n of A, denoted by h,, is the determinant of the
corresponding Hankel matrix.

For a given sequence A = {ayg, ay, az, ...}, the Hankel transform of A is the corre-
sponding sequence of Hankel determinants {hg, k1, ha, ...} (see Layman [[).

The elements of the sequence in which we are interested ([A005807 of the On-Line
Encyclopedia of Integer Sequences (EIS) [[0], also INRIA [[]]) are the sums of two

adjacent Catalan numbers:

i = e = 1 ()4 5 (00)
(2n)!(5n + 4)

= W (TZZO,]_,Q,)

This sequence starts as follows:
2, 3, 7, 19, 56, 174...
In a comment stored with sequence [R00I90( Layman conjectured that the Han-
kel transformation of {an},>0 equals the sequence [A00190d, i.e., the bisection of

Fibonacci sequence. In this paper we shall prove a slight generalization of Layman’s
conjecture.

The generating function G(z) for the sequence {a,}n>0 is given by

Glr) = ian:ﬂ” 1 <(1 ~VI-d)(l4x) 1)

z 2z

(1)

n=0

It is known (for example, see Krattenthaler [[]]) that the Hankel determinant h,
of order n of the sequence {a, },>0 equals

hyp = agﬁf_l 3_2 o 'ﬂz—zﬁn—h (2)

where {8,},>1 Is the sequence given by:

G(z) = Zan:ﬂ” = fo (3)

n=0 1+ agx —
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The sequences {a, }n>0 and {8, }n>1 are the coeflicients in the recurrence relation

Pn+1($) = (‘T - an)Pn(x) - /BnPn—l(x)

where {P,(z)},>0 is the monic polynomial sequence orthogonal with respect to the
functional L determined by

Liz"l=a, (n=0,1,2,...). (4)

In the next section this functional is constructed and a theorem concerning the
polynomials {P,(z)},>0 and the sequences {a,},>0 and {f,}n>1 is proved.

2. MAIN THEOREM

We would like to express L[f] in the form:

Life)) = [ Fe)die)
R
where t(z) is a distribution, or, even more, to find the weight function w(z) such
that w(z) = ¢'(z).
Denote by F(z) the function

o0

F(z)= Zakz_k_l,

k=0

From the generating function ([l]), we have:

F(z):z_lG(z_l):%{z—l—(z—l—l)\/l—g}. (5)

From the theory of distribution functions (see Chihara [[]), we have Stieltjes inver-
sion function

1 [t .
P(t) —P(s) = —;/ SE(x +y)de. (6)
Since F(z) = F(z), it can be written in the form
1 ! . .
P(t) —(0) = _%ylilgi ; [F(J?—I-ly)—F(ar—zy)]da;. (7)

Knowing that

¢ 1 / 4 4
/OF(QZ—I—a)dgz::Z{az 1—5—2t—|—2at—|—t2—(a—|—t)2 1_a—|—t}
4 4
—210g<—2—|—a—|—a\/1——)—|—210g<—2—|—a—|—t—|—(a—|—t) 1-— ),
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we find the distribution function

3=

t\/t(4d—1t)— 8<7r — arctan g:t)t> } , 0<t<2;
P(t) = (4_t)t}.

t \/t(4 —t) — 8arctan Y—— 2 <t <4,

3=

After differentiation of (¢) and simplification of the resulting expression, we

finally have:
1 4
w(x) = 5(;1;—%1)\/;—1, z € (0,4). (8)

In this way, we obtained the positive-definite L that satisfies ([]) and proved that
the corresponding orthogonal polynomial sequence exists. We have

Theorem 1. The monic polynomial sequence { P,(z)} orthogonal with respect to the

linear functional
I 4
L) =5 [ fo)e+1y3 -1 (9

satisfies the three-term recurrence relation

Pasi (@) = (2 = ) Pa(@) = fuPacs (2), (10)
with
2 ! By=14 — k>0 (11)
Ofn = D -~ n — 9 iy
F2n+1 F2n+3 F22n+1

where F; is the i-th Fibonacci number.

Example 1. The first members of this sequence are:

Py(z) = 1
3
Py(z) = 2%~ =7 + 5
Py(z) = 2°— I—gzz:z + %l’ - %3
Py(z) = z2*— 23%:1:3 + %1’2 — 43%:1: + g—i

Notice that Pn(()) = (_1>nF2n+2/F2n+1.

Proof of Theorem 1. Denoting by W, (z) = P,EI/Q"I/”(:I;) (n > 0) a special
Jacobi polynomial, which is also known as the Chebyshev polynomaial of the fourth
kind.

The sequence of these polynomials is orthogonal with respect to p(t/2=1/2)(z) =
(1 — 2)"%(1 4+ 2)~"/? on the interval (—1,1). These polynomials can be expressed



(Szego [H]) by
sin(n + %)9
27 sin %9 ’

W, (cos ) =

and satisfy the three-term recurrence relation (Chihara [fI]):

Wisi(z) = (z - a*) n(2) = BaWasi(z) (n=0,1,...),
where . .
a8:—§, ar =0, By =m, B;:Z (n>1).

If we use the weight function p(t) = (t — ¢)p('/2=1/2)(¢), then the corresponding
coeflicients &, and 3, can be evaluated as follows (see, for example, Gautschi [f]])

L Wl Wl
R AR ) -
b= gVl OWon(c) g (13)

W3(c) ’
Here, we use ¢ = —3/2 and p(z) = (¢ + 3/2)(1 — l’)l/z(l + 1’)_1/2.
If we write A\, = W, (—3/2) then, using the three-term recurrence relation for
W, (x), we have
4)\n—}—l + 6)\n + )\n—l = 07

with initial values \g =1, A; = —1.

So, we find

A = Wi(—3/2) = ;;[g) {(

54+1)(3+ VB + (V5 -1)(3-VE)"}.

Denoting by

¢ = ¢=— (14)
the golden section numbers, we can erte:
( 1)n 2ntl _ 72ntl (=1)"
An = -3/2 nHl = Fonyr. 15

In order to simplify further algebraic manipulations we shall use
Fon-1Fonps =Fy 1 +1 (16)
This formula is a special case of the identity (Vajda [[J]):
Gn+i)Hn+k)—Gn)Hn+1—k)=(-1)"(G)H(k) —G(0)H(: + k)) (17)

where G and H are sequences that satisfy the same recurrence relation as the Fi-
bonacci numbers with possibly different initial conditions. However, we take both
G and H to be the Fibonacci numbers and n — 2n + 1,1 =2,k = —2.



Now
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If a new weight function p(x) is introduced by
p(z) = plaz +b)

then we have )
an, — b n
o, = , 67’1 — /6—2
a a
Now, by using x + /2 — 1, i.e., a = 1/2 and b = —1, we have the wanted weight

function

(n > 0).

T 1 4 —x
w(e) = (5 1) = Ha + 1y
Thus
) 1
n=2— =2 - — 19
« (¢2n+1 _ $2n+1)(¢2n+3 B 5271-}-3) F2n+1F2n-|—3 ( )
and
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Bn=1+ — =1+ 20
(¢2nt1 — ¢2 "‘1)2 F22n+1 (20)

finishing the proof of ([]) .0

3. LAYMAN’S CONJECTURE

By making use of ([]) we have that:

n—1 n—2
hn=ag [ 1+ ! 1+1 1+ ! (21)




Using ([[d) we can write (P]]) as:

o =ay (F2) (D) (LY B
3 F; F7 Fhny
Since ag = 2 = Fj the corresponding factors cancel, therefore:
hn — F2n+1 (n 2 0)7

thus proving that Hankel transform of |A005807 equals |A00151Y -sequence of Fi-

bonacci numbers with odd indices.

As we have mentioned in the introduction, Layman observed that the Hankel

transform of equals [A00TO0] -sequence of Fibonacci numbers with even

indices. This sequence is obtained if we start the Hankel matrix from a; = 3, i.e.,
determinants will have a; on the position (1,1).

The proof of this fact is almost identical with the proof presented here, and
so we do not include it. Notice that now we construct L[z"] = a,4; and that
a; = 3 = Fy; in ([7) we take n — 2n. We also use the easily provable fact
P.(0) = (=1)"Fyu42/ Fnt1 (see Example 1).

Finally we mention that, following Layman [[J, it is known that the Hankel trans-
form is invariant with the respect to the Binomial and Invert transform, so all the
sequences obtained from using these two transformations have the Hankel

transform shown here.
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