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We discuss the properties of the Hankel transformation of a sequence whose elements are the sums
of consecutive generalized Catalan numbers and find their values in the closed form.
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1. Introduction

The Hankel transform of a given sequence A = {ay, ai, a,, ...} is the sequence of Hankel
determinants {hg, h1, hy, ...} (see [7-10]) where h,, = |ai+j_2|;fj=1, ie.

ap ay cee an
ai a An+1

A =Aanlpeny, —> h={lpluen,: hu=]. . . (1)
ap,  Qp4l asp

In this paper, we will consider the sequence of the sums of two adjacent generalized Catalan
numbers with parameter L:

ay=L+1, a,=a,(L)y=cn;L)4+c(n+1;L) (n € N), 2)

where
cn; Ly=TQn,n; L) —T2n,n—1; L) 3)

Sh kN (n—k\
T(n,k;L>=Z(.)< , )Lf. “)
im0 J

with
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The properties of {T (n, k; L)} were studied by P. Barry in [1].

Example 1.1 Let L = 1. Vandermonde’s convolution identity implies that

()==C)(")

2n 2n
T(2n,n;1) = ( ) , TQ2n,n—1;1)= <n 1) ,
n —

wherefrom we get Catalan numbers
- 2n 2n 1 2n
c(n) = — =
n n—1 n+1\n

. _ @m)!Gn+4) _
an—c(n)+c(n+1)_—n!(n+2)! n=0,1,2,...).

In paper [2], CvetkoviC et al. have proved that the Hankel transform of a,, equals sequence
of Fibonacci numbers with odd indices

(\/'+1)(3+\/')"+(«G—1)(3—f)"}

Hence

and

hn = F2n+1

«/_ 5 o+ {

Example 1.2 For L = 2 we get like a,,(2) the next numbers
3,8,28,112,484, ...

and the Hankel transform #4,,:

3,20,272,7424, 405504, . ..

One of us, Barry conjectured that
hn(Z) — 2((n2_n)/2)—2 {(2 + \/E)’H_l + (2 _ \/E)IH—I} .
In general, Barry made the conjecture, which we will prove through this paper.

THEOREM 1.3 (The mainresult) Forthe generalized Pascal triangle associated to the sequence
n +— L", the Hankel transform of the sequence

cn;LY+c(n+1; L)

is given by
L(112—n)/2 5 5
b= (I A+ WL+ L+ 2y
/L2 + 4

L2+ 4— L)L +2— \/L2+4)”}. (5)
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From now till the end, let us denote by

E=VL>+4, n1=L+2+E& n=L+2-¢.

Now, we can write
Ln(n—l)/2

I = g

(E+ D + (¢ - L)ny).
Or, introducing

o=t +16, Y=t -t (n€Ny,
the final statement can be expressed by

Ln(n—l)/2
hy = T (LY + E@n).
LEMMA 1.4 The values ¢, and ,, satisfy the next relations:

Qi ok =ik + @GLY ge_j, ViV =@ — @LY gr; (0 < j <k),
@i Vi =Y+ @LY Yn_j, Yo = Vi — @GLY Yy (0 < j <k).

287

(6)

)

®)

&)

(10)

COROLLARY 1.5 Assuming that the main theorem is true, the function h,, = h,, (L) is the next

polynomial

h” (L) — 2—nLn(n—l)/2

[(n—1)/2] n [n/2] n
n—2i—1 2 i n—2i,7r2 i
{ > (2,-+1)L(L+2) (L +4)+Z(2,-)<L+2) (L +4)}.

i=0 i=0
Proof By previous notation, we can write

(L+&L+24+8"—(L-§(L+2-8)"

=L+H) (’,Z) (L+2" =L -5 Y (D (Z) (L+2) gt
k=0 k=0

_n VERTIY n—k gk . vk (T n—k gk+1
—;a (1)>(k)L<L+2> 4+ 1)><k)<L+2> §

k=0
[(n—1)/2] [n/2]

— 2 L L 2 n—2i—12i+1 2 L 2 n—2i 2i+1
;(2i+1><+> £ +;2i(+)s

(O C i 2, .
=2s{ 5 (2i+1>L<L+z> ¢ +;<2i)<L+z) 6 }

i=0

wherefrom immediately follows the polynomial expression for #,,.
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2. The generating function for the sequences of numbers and orthogonal polynomials

The Jacobi polynomials are given by

PP (x) = 21 Z <n :a) <Z J_FZ) @—1"* @+ D (@b > —1).
k=0

Also, they can be written in the form
n n k
P@h (x) = x—1 n+a\ (n+b)(x+1)"
" 2 —~ k n—k)\x—1

1 L+1
e IV L IS N AV
x—1 L—1

From the fact

we conclude that:

L+1
TQn,n; L) = (L —1)"- pOO (L_+1> ,

L+1
TRn+2,n;L)=(L-1"- pn(2q0> (L—le) )

The generating function G (x, t) for the Jacobi polynomials is

00 2a+b
G@b 1) = pla.b) no_ , 11
(x, 1) g S Y (R TRy Y (b
where
o =0¢(x, 1) =v1—2xt+12
Now,
. L+1
. (0,0) _ n 0o (="" _
;T(zn,n, Lyt" HXS‘P ( )((L D' =G (L_ (L 1)r>,

[e¢]

oo
L+1 L+1
> T@n+2, ;Lt”:E:P(Z’O) L-1t)"=G* —— (L-1t]).
(2n+2,n; L) n (( )) 71 ¢ )

n=0 n=0
Also,

> L+1
ZT(Zn,n—l;L)t":t-{G(2'0)< + (L — 1);)—1},
n=0

> 1 L+1
ZT(2n+2,n+1;L)t”=?-{G(O’O)( + (L—l)t) }

n=0
The generating function G(¢; L) for the sequence {a, },>0 is given by

o0

G(t; L) = Zant” ”; 1G<°°> (2 1 (L — 1)r>
n=0
— 4+ 1HG?Y (i—i (L — 1)z> - % (12)

After some computation, we prove the following theorem.
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THEOREM 2.1  The generating function G(t; L) for the sequence {a,}n>o is

1 1 4 1
G L) = - { }—;, (13)

pt: L) |t (1=(L =i+ p(;L))?
where
L+1
o(t: L) = ¢ (ﬁ (L — 1)r) =1 —=2(L+ )t + (L —1)22. (14)

The function p(¢; L) has domain

1-2VL+L 14+2JL+ L
D, =|—o0, U

, L£1
1—2L + L2 1—20L+ 12 +°°) (L #1)

and

1
D, = (—oo, Z) (L =1.

Example 2.2 For L = 1, we get

5)

o0 ) 1
G =) a)i" =

n=0

((1 —VT=an(+1) 1)

2t

and for L = 2, we find

g(r;z)zgan(z) z“:—%+L{l— : } (16)

Ji2—6t+1 1t (1 —t+ 12 =61+ 1)2

3. The weight function corresponding to the functional

It is known (for example, see Krattenthaler [3]) that the Hankel determinant %,, of order n of
the sequence {a,},>o equals
hy =agBi™' 8372 By sBurs 17)

where {8,},>1 is the sequence given by:

B o] . ap
G(x) = ;a”x T Ttaox — B/(L+ arx — (Box?/(I +anx — )

(18)

The sequences {o,},>0 and {B,},>1 are the coefficients in the recurrence relation

Oni1(x) = (x = 0n) Qn(x) = B Qn—1(x), 19)

where {0, (x)},>0 is the monic polynomial sequence orthogonal with respect to the functional
U determined by

Ux"1=a, n=0,1,2,...). (20)
In this section, the functional will be constructed for the sum of consecutive generalized
Catalan numbers. We would like to express U[ f] in the form:

UL ()] = /R £ dy (),

where 1 (x) is a distribution, or, even more, to find the weight function w(x) such that

w(x) = ¥'(x).
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Denote by F(z; L) the function
oo
FzL) =) az "
k=0

From the generating function (13), we have:
FL)=z"6(z" L) @
and after some simplifications we obtain that

2(z+1)
L—14z+L2+@z—-1)2=2Lz+1)
2(z+ 1)
L—1+z(14zp(1, L))

F(z; L) =-1+

Example 3.1 From (15) and (16), we yield:

Z

F(Z;2)=;—Zl{1+z<2—z+(z+l),/l—§+zl2>}.

F(Z;1)=Zlg(Zl;l)Z%{Z—l—(Z-Fl) 1—41},

Notice that
1 1
F(z;2)dz =z + Zz(z —1p = 2 ) +log(z)
1 1 7 1
——log{l+z|p|—-,2)—-3 ——loglz—34+2z0|-,2])).
2 z 2 Z
It will be the impulse for further discussion.

Denote by

R(z; L) =zp (% L) =L+ (z—1)2=2L(z+ ).

From the theory of distribution functions (see Chihara [4]), especially by the Stieltjes inversion
formula
t

1
Y(t) — Y(0) = —— SF(x +iy; L)dx, (22)
0

lim
T y—>0t

we conclude that holds

F(z; L) = f F(z; L)dz = %[zz —2Lz—(z—L+ DRz L) - L&) +h@)], (23)
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where

L(z) =2GL + Dlog[z — (L + 1) + R(z; L)],

—(L—=1DR(z: L) — (L — 12+ z(L + 1)}
22(L —1)3 )

h(z)=2(L -1) log[

Rewriting the function R(z; L) in the form

R(z;L)=+(z—L—12—4L

and replacing z = x + iy, we have

iVAL — (x — L —1)2, x € (a.,b),

R(x; L) = ]im+ R(x +iy; L) =
y—>0 J(x —L—1)2—4L, otherwise,

where

a=KL-1?% b=L+1DA

291

(24)

In the case when x ¢ ((vL — D)%, (VL +1)?), value R(x; L) is real. Therefore we can

calculate imaginary part of F(x; L) = lim,_,o+ F(x +iy; L):
SF(x; L) = J[lh(x) —Li(x)] =0.

Otherwise, if x € ((«/Z -2, WL+ 1)2) we have that:

Ii(x) = 23L + 1) log[x (LD +iVAL—(x—L— 1)2],

VAL — (x — L — 1)?
x—(L+1)
VAL — (x — L — 1)2
x—(L+1)

2(3L + 1) arctan , x>L+1,

Sh(x) =

2BL+ 1) <n+arctan ), x<L+1,

—(L—1?>4+2x(L+1)—i(L —1)/4L — (x — L — 1)2

L(x)=2(L —1)log |: (L 1)

’

o 132 12
2(L—1)<27t+arctanx(L+1) (Z 1)), x>u

VAL — (x — L —1)? L+1
x(L+1) —(L-17? x<(L—1)2
VAL —(x—L—-12)" L+1 "~

Sli(x) =

2(L—-1) (rr + arctan

After substituting all considered cases in (23), we finally obtain the value

|

SF(x; L) = linol SFx +iy; L) =h(x) =3 (x) — (x — L+ 1)\/4L —(x—=L—-1)2
y—>07

From the relation (22), we conclude that

1d
ox; L)y =9'(x;L) = —;agf(x; L)

(25)
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and finally, we obtain

w(x; L) =

( )\/4L (x —L—1)?2

(-5

The previous formula holds for x € (a, b), and otherwise is w(x; L) = 0.

(26)

4. Determining the three-term recurrence relation

The crucial moment in our proof of the conjecture is to determine the sequence of polynomials
{0, (x)} orthogonal with respect to the weight w(x; L) given by (26) on the interval (a, b)
and to find the sequences {«,} {B,} in the three-term recurrence relation.

Example 4.1 For L = 4, we can find the first members:

Qo(x) =1, IQoll* = 5.
24 104
010 =x- 7, lol* = —,
127 256 , 1088
0r(x) = x* — - +§, 1O21I" = BER
541 2 1096 1344 5696
03(x) = x° 17 +Tx_7’ 10s11* = 7
wherefrom
24 By =5 323 _ 104 _ 1104 _ 680
Olo—s, 0=, 061—65, 1—25, 062—221, 2_169'
Hence

2
hi=ay=5, hy=alp =104, hy=aBif =5 (%) % = 8704.
At the beginning, we will notice that in the definition of the weight function appears the
square root member.
That is why, let us consider the monic orthogonal polynomials {S, (x)} with respect to the
p1/21/2(x) = /1T — x2 on the interval (—1, 1). These polynomials are monic Chebyshev
polynomials of the second kind:

sin((n + 1) arccos x)
20 .41 — x2

They satisfy the three-term recurrence relation (Chihara [4]):

Su(x) =

Sn+1(-x) =(x - (X:) Sn(x) — ,3:5,1,1()6) (n= 0,1,.. D, (27)

with initial values
S_1(x) =0, So(x)=1,
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where

a, =0 (n>0) and ,80=5, ,3n=1 (n>1).
If we use the weight function W(x) = (x —c¢) p"/%> /P (x), then the corresponding
coefficients &, and B, can be evaluated as follows (see, for example, Gautschi [5]):

)\n = S,,(C),
A )\n-‘rl * )\-n
o, =C— — — 28
n )Mn ﬁn+1 )\'n-t,-] ( )
~ An—1Ans1
br=B="=3" (neNo).
n

From the relation (27), we conclude that the sequence {A, } < satisfies the following recurrence
relation:

dhpir —4dchy + 21 =0 (A1 =0; Ap=1). 29)
The characteristic equation
42 —4cz+1=0

has the solutions
1
712 = E(C + vV C2 — 1)
and the integral solution of (29) is
A= EiZ] + Ezy (neN).

We evaluate values E; and E, from the initial conditions (A_; = 0; Ay = 1).
In order to solve our problem, we will choose ¢ = —(L + 2/ 2V/L). Hence

—t

4L

= (k=1,2), where ), =L+2++L*+4.

Finally, we obtain:

(—1y" o
A = il g (A=-1,0,1,...),
n 2. 4nn/2. /2 +_4(1 2 )
ie.,
o O e
"D 4npn2g n+1 =-1,0,1,...).

After replacing in (28), we obtain:

A L+2 1 l[fn+2 1anrl

n = — . L- , 30
* 2\/Z + 4\/z wn-H + \/_ WIH-Z ( )
2 1a”nlﬁnJrZ

= , 31
=202, D

If a new weight function w(x) is introduced by

w(x) = w(ax+b),
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then we have
&n - b ol ,én
a a2
Now, by using x +— (x — L — 1)/2+/L, i.e.,a = 1/23/L and b = —(L + 1/2+/L), we have
the weight function

=i () (- ()

a, =

Thus
~ 1 WnJrZ ¢n+1
o =—14 =" + 2L - (n € Np) (32)
2 wn-H ‘(//n+2
and
= T Y n
fo=(L+D7. fi=L"3"" (neN). (33)
n+1
Example 4.2 For L = 4, we get
Py(x) =1, I Poll* = 3,
17 327
Pl('x)zx_?v ||P]||2=T9
43 101
P(x) =x* = x4 ==, 1P| = 42r,
331 1579 2189 3520
P =2 = x4 = - =2 P =
3(x) = x TR + T TR 1.P5 ]| TH
wherefrom
- 17 /§ 3 - 61 5 32 - 421 - 63
a:—’ :j‘[, a:—’ = -, a:—’ = —_—
073 M T PP o TP e PP
Introducing the weight
2L

w(x) = ?ﬁ)(x)

will not change the monic polynomials and their recurrence relations, only it will multiply the
norms by the factor 2L /m, i.e.

o o b 2L
P(x) = Pe(x), P} =/ P(x)w(x) dx = 7||Pk||2 (k € Ny),
fo=L(L+2), fi=F keN), da =a (keNy.

Here is

5 5 5 L" ¢11+1

BoBr -+ Pt = PR
In [6], Gautschi has treated the next problem: If we know all about the MOPS orthogonal

with respect to w(x) what can we say about the sequence {Q, (x)} orthogonal with respect to

(34)
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a weight

waw = 2 4 g supporc(iy 2

Gautshi has proved that, by the auxiliary sequence

r,lz—fwd(x)dx, rn=d—a, — B n=0,1,...),
R

n—1

it can be determined

s Tk—1

Ogo =0 +70, Qax=0+7rk—"Te—1, PBao=—T-1, PBax= ,31<—1r— (k € N).
k=2
In our case it is enough to take d = 0 to get the final weight
wx) = w(x)
Hence
_ s P\ e
roi=—L4+1), rn=—|a,+ n=0,1,...). 35)
Fn—1
LeEMMA 4.3 The parameters r, have the explicit form
n L n + n
rn:_lﬂ +1 Ytz + E@us2 (n € Ny). (36)

Yotz L¥nsr +E@un

Proof We will use the mathematical induction. For n = 0, we really get the expected value

L2420 +2
(L+1D(L+2)

ro =

Suppose that it is true for k = n. Now, by the properties for ¢, and ,,, we have

_ Y1 ) Lyt +5@nys
l/fn+3 Lle—l + 5%+1

&n-H T+ 5n+1 =
Dividing with r,,, we conclude that the formula is valid for 7,,11. |

Example 4.4 For L = 4, we get

__s 13 5l _ 356
=T E s T TS T TRy
wherefrom
24 fo=>5 323 _ 104 _ 1104 . 680
(X()— 57 0_ ) C(]— 657 1 — 257 052— 221 £ 2 = ]697

just the same as in Example 4.1.
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Proof of the main result Krattenthaler’s formula (17) can also be written in the form
hy =ao, hy = PoP1B2- - Bu—2Bn—1 - hn-1. (37)

From the theory of orthogonal polynomials, it is known that

1Qu1l* = BoBiBr -+ Bu—afut (n=12,3,..0), (38)
wherefrom
hi=ao, hy=[0nl’ hut (n=2.3,..). (39)
[ |
Here,

1Qu-11I> = Bo

n—2
Foe . Ll Ly, + Eg,
k 2 Hﬂk _ ¥ §p (40)
k=0

2 L +E@u

We will apply the mathematical induction again. The formula for 4, is true for n = 1.
Suppose that it is valid for k = n — 1. Then

Ln—l Lw + éﬁo L(n—l)(n—Z)/Z
hn _ . n n .
2 Lwn—l + 5%—1 2”5

wherefrom it follows that the final statement

(L1 +E@u—1),

Ln(n—l)/Z

h, = W (LY, +E¢,) (neN)

is true.
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