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FRACTIONAL INTEGRALS AND
DERIVATIVES IN ¢g-CALCULUS

Predrag M. Rajgkovi¢, Sladana D. Marinkovié, Miomir S. Stankovié

We generalize the notions of the fractional g-integral and g-derivative by
introducing variable lower limit of integration. We discuss some properties
and their relations. Finally, we give a g-TAYLOR-like formula which includes
fractional g-derivatives of the function.

1. INTRODUCTION

In the theory of g-calculus (see [5] and [7]), for a real parameter ¢ € Rt \ {1},
we introduce a g-real number [a], by

la), = 111q; (a€R).

The g-analog of the POCHHAMMER symbol (¢g—shifted factorial) is defined by:
k—1 _
(a;9)0o =1, (a;9)r = ‘Ho(l —aq") (k e NU {oo}) .
Also, the g-analog of the power (a — b)* is
k—1 ,
(a—b)® =1, (a—b)® = T] (a — bg') (k€eN; a,beR) .
i=0

There is the following relationship between them:

(a=0)™ =a" (b/a;q)n  (a#0).
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Their natural expansions to the reals are

W) (a-p@ —a G g, = B0 ey
Notice that
(a=b) = a*(b/a;q)a-

The following formulas (see, for example, [5] and [4]) will be useful:

2) (a:)n = (""" /as0),, (~1)" a” ¢(3);
(e @) _ (¢/a;9)n
®) (bg=™;@)n Q/b Dn ( )
(4) (a—b)@ = g° Z(fl)k [ﬂ q(’z") (g)k_
k=0 q
The g-gamma function is defined by

) = (q7q)00 o N\l—z _ A\(z—1) _ N\l—=z

(5) Ly(z) = 0w (I-q) "=(0-9) (1—q) ",

where x € R\ {0,—1,—2,...}. Obviously,
Loz +1) = [z]qlg(z) .
We can define g-binomial coefficients with

m _ Py(a+1) _ (@) (@ 0w
Bl, TqB+1) Ie(a—pB+1) (4 0)00 (4°F50) 00

a,B,a— B €R\ {-1,-2,...}. Particularly,

o :M )k g (5)
(6) [kL (4 9)x T e

The g—hypergeometric function is defined as

The famous HEINE transformation formula [5] is

(7) 2¢1(a’cb‘ q;m) = W 2¢1<C/a C/b‘ q,abx/c) .

We define a g-derivative of a function f(z) by
f(z) — flgz)

T —qx

(Dyf)(x) = (z#0),  (Dgf)(0) = lim (D, f) (x)
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and g-derivatives of higher order:
(8) DYf=f, D}f =Dg(Di'f) (n=1,2,3,...).

For an arbitrary pair of functions w(z) and v(z) and constants «, 3 € R, we have
linearity and product rules

Dy u(@) + B () = a(Dyu) (@) + B(Dyv) (2),
D, (u(m) . v(x)) =u

The g¢-integral is defined by

(1o f)@) = [ Ot =21 =) & flaa)a* (0= Ja] <1).
and
) (Iaf) (@) = [ £(8)dyt = Of F(t) dgt — Of £ dyt.

However, these definitions cause troubles in research as they include the points
outside of the interval of integration (see [6] and 10]). In the case when the lower
limit of integration is a = zq™, i.e., when it is determined for some choice of x, ¢
and positive integer n, the g-integral (9) becomes

(10) [ 0dt=o0-0 S .

As for g-derivative, we can define an operator I;, by

I‘(I)’af - f’ I(Zaf = I‘La (I(Z;l ) (TL = 17 2a 37 < ) .

For operators defined in this manner, the following is valid:

(11) (Dqu,af) ($) = f(x)a (Iq,aqu) (Z) = f({E) - f((l)

The formula for g-integration by parts is

b
/ u(z)(Dgv) (z) dgw = [u(m)v(w)]z —/ v(gz)(Dqu) (x) dgx .

a

W. A. AL-SALAM [2] and R. P. Agarwal [1] introduced several types of frac-
tional g-integral operators and fractional g-derivatives. Here, we will only mention
the fractional g-integral with the lower limit of integration a = 0, defined by

2~ (nta)

(I f) @) =

l(z —tq) V() dgt (n,a € RT).
q(a) 0/
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On the other hand, the solution of nth order g-differential equation

(Dly)(x) = f(x), (D,’;y)(a)zo (k=0,1,...,n—1),
can be written in the form of a multiple g-integral
n—1

x t t to
y(x) = (17, f) (@) = [dgt [dgtn1 [ dgtn_g--- [ f(t1)dgts.

The reduction of the multiple g-integral to a single one was considered by AL-
SaLAM [3]. He thought of it as a g-analog of Cauchy’s formula:

x

J@-a Vw4 mew.

a

1
n

(12) y(l‘) - (Iq,af) (:E) - [n _ 1]q'
In this paper, our purpose is to consider fractional g-integrals with the para-

metric lower limit of integration. After preliminaries, in the third section we de-

fine the fractional g-integral in that sense. On the basis of that, the fractional

g-derivative is introduced in the fourth section. Finally, in the last section, we give

a g-TAYLOR-like formula using these fractional g-derivatives.

2. PRELIMINARIES

We will first specify some results which are useful in the sequel and which
can be proved easily.

Lemma 1. For a,b,a € RY and k,n € N, the following properties are valid:

(13) (a—bg")™ = a®(1 - ¢*b/a),
(a—bg") @ (¢*b/a;q)x

1) @@~ Gaq

(15) ("¢ =0 (k<n).

The next result will have an important role in proving the semigroup property
of the fractional g—integral.

Lemma 2. For p,a, 3 € R, the following identity is valid

i (1—pg' )= (1 — gm0 (1 = pg)leti—

=@ (1-qrn 1 7 (1=

(16)

n=0

Proof. According to the formulas (1) and (3), we have

1—n. 1-n. .
(1= pgt—m)e=D = (nq 7naQ)oo _ (“q, s On (195 Q) o
("™ @)oo (1™ @O0 (9% @)oo
(a—1) (L™ q)n g-om

(L= tg=21q)n

= (1 - pq)
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Applying the identity (14) to the expression (1 — ¢'+t")(#=1D /(1 — q)(B=1 the sum
on the left side of (16) can be written as

ps— Lmr0 Y S (@50 (WS Dn e gan
(1= = (a)n (B¢ q)n

(11— pg)leV ¢1(u ,q q).

T (1 gD Pt
Using (7), we get
15— 1=rg) Y (@*Hg)n ¢1(q1 o, plgte ‘3‘ q.qa+ﬁ)
(1-q) Y (¢;9)0 plgt-e ’
_ (A —pg)teV 1 f: ("= On (u‘lq1 P q)n Jerom |
(1—gq)e= (1 —g)eth=1) = (g;q)n (u'q"~ q)L

According to (2) and (1), the following is valid:

T ST VLT (I S I VL SR | S L i ESp

(L 1g' = q)y (g™~ ) () (MG )00
_ (a0 (a0 gn
(1P @)oo (1425 q) oo

(Nqa; q)oo +B8-n\(—=B) ,—B
= M o djeo [ n n.
(hg° ;@)oo (1= na )
Hence
1— (a+B-1) 0 a
IS — (1— pg) Z an(] _ pgeti=my(=H)

(1= @) (1= )71

If we use formulas (6) and (4) and change the order of the summation, the last sum
becomes

1 . q
Z R g0 (1 — pg® TR
"0 Q7
- a—1 n  —(a—1)n (") an - k _ﬁ (k) a+B-—n k
= (-D)" g Db g A )
n=0 " q k=0 q
oo . a . 00 o—1 . o
= Z(l)k{ Iﬂ ) Z { . } q(Z) (")
k=0 q n=0 q
S —f k k (a—1)
= Z(—l)k{ L } q2) (g tP) " (1 — ¢ F) =(1—q* V.
k=0 q
The last relation is valid because of (1 — qlfk)(afl) =0 for k=1,2,.... Finally,
the identity holds:
LS — (1 — pg)etp=1 (1 gD = (1 — pg)lats=1 -
(1= gD (1= gqerrD 1 (1= gD
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3. THE FRACTIONAL ¢-INTEGRAL

In all further considerations we assume that the functions are defined in an
interval (0,b) (b > 0), and a € (0,b) is an arbitrary fixed point. Also, the required
g-derivatives and g-integrals exist and the convergence of the series mentioned in
the proofs is assumed.

Generalizing the formula (12), we can define the fractional g-integral of the
Riemann-Liouville type by

x

/(:I: - qt)(“_l)f(t) dgt (a e RT) .

(17) (Igaf) (@) =

Ly(a) s
Using formula (4), this integral can be written as
ot & a—1 k1 ¥
e = —1)k (2)_’“/tktdt RT).
(q,af)(x) Fq(oz) kz=0( ) |: k :|qq T i f(t) q (a e )
Lemma 3. For o € RY, the following is valid:
@ o a+1 f(a’) «
(Iq,af)(x)— (Iq;; qu)(l')ﬁ’m(l'fa)( ) (O<a<x<b) .

Proof. Since the g-derivative over the variable ¢ is
Dy((z = )@) = ~[a]g(x —qt)*™V,

and using the g-integration by parts, we obtain

o Pp) et [ NS
(Iq,af)( ) [a]qrq(a)/Dq(( t) )f(t)dqt

x

1

= m (($ —a) f(a) + /(x — qt)@ (D, f) () dqt)

a

= (Igd' Do f)(x) + Fq({icil)(x —a)® . 0

Lemma 4. For «, 8 € RT, the following is valid:
g(x—qt)(g_l)(lliaf)(t)dqt:O (0O<a<z<b).

Proof. Using Lemma 1 and formula (10), for n € Ny, we have

n

aq

(12 /) (ag™) = r@) / (ag™ — qu) =V f (u)dgu

n—1

(¢" — ¢ ™)@V flag’)g =0.
0

—a“(1—q)
Fq(a)

j=
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Then, according to the definition of g-integral, it follows

MS

(= gt) PV (I, ) () dgt = a(l — ) 3 (¢ — ag"* )P~V (18, f) (ag™)g" = 0. O

C—e

n=0

Theorem 5. Let o, 3 € RT. The g-fractional integration has the following semi-
group property

(1P, 10, f)(@) = (I2HP @)  (O<a<a<b).

q9,a”4q,a

Proof. By previous lemma, we have

(Ialgal z—qt) V(17 0) () g
o
8 ro _ 1 [ oG- [ (a=1)
(I%an, f)( >_ Fq(a)l“q(ﬁ) 0/( qt) /O (t ) f( )
__ ! [ o o@D [ (a=1)
L@, / (r=a@ [ =

Using the result from [1],

(12,120f) (@) = (157 1) (@),

we conclude that

8 ra r) = a+p3 ) — 1 $l‘— (B-1) 7 _ u(a_l) U u.
(uT5$)@) = (5N @ ~ 5w 0/( ) 0/<t a0 f(u)d,

Furthermore, we can write

(12,180 F) () = (182 F) (@) + a+6 / B0 £(4) d,

S wx_ - [ D@D ) doa
rqm)rq(mo/( ) O/(t )@ f(u)d,

wherefrom it follows

(18 12 f) (@) = (1240 ) (2) + a1 — ) 3 ¢ fag?)g?

Jj=0
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with
(.’E _ aqurl)(orFﬁ*l)
c; = —
! Ly(a+3)

l’(l—q) — _ .nt+1\(8-1) n i+1\(a—1) n
F(a)T. () D (@ —ag™t) P (ag" — ag/ TN gn.

n=0

By using the formulas from Lemma 1 and (5), we get

& = (1= gy

-\ (e+B-1) .
_ 8 g+t 00 _ _ & gitl-n
(o) (- gty (1= 5e)

- (1—g)etsn ZB (1—q)=b 1—g@n 1

(a—1)

Putting u = ¢?a/z into (16), we see that ¢; = 0 for all j € N, which completes the
proof. ([l

Lemma 6. For « € R*, X\ € (—1,00), the following is valid

T,(A+1)

(18) g ((z—a)) = TatrtD)

(z —a) @t 0<a<axz<b).

Proof. For X # 0, according to the definition (17), we have

12, (z—a)™) = Dia) (Of(x_qt)w*l)(t_a)@) Ayt — Z(x—qt)(a’l)(t —a) ).

Also, the following is valid:

a o0
J@ =gty @Dt —a)Ndgt = a1 (1—q) 3 (z — ag"™) @D (gF — 1)k = 0.
0 k=0

Therefrom, by using (16), we get

z—qgt) V(i —a)Nd,t
J( ) g

0
> \)
— oA (] _ 1 — gitkyla=1) 1_1 1—k (A+Dk
P00 0 - (10 ™)
(1—gl V(1 —gW o
=(1-9q) 1= g (z—a)( +X)

Using (5), we obtain the required formula.
Particularly, for A = 0, using a g-integration by parts, we have

[ i )
Uaal)(z) = sza) /(x —at)V dgt = l“qta) / Dq<(—[a]? ) dat

a a

-1 [ «a a
W/Dq((xt)( ))dqtzm(:cfa)(). O
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4. THE FRACTIONAL ¢-DERIVATIVE

We define the fractional g-derivative by

(I;2f) (), a<0
(19) (Do) (@) = (@), a=0

(D11 ) @), a >0,

where [«] denotes the smallest integer greater or equal to a.
Notice that (D‘;,af) (z) has subscript a to emphasize that it depends on the
lower limit of integration used in definition (19). Since [«/] is a positive integer for

a € R, then for (DW f)(z) we apply definition (8).
Lemma 7. For a € R\ Ny, the following is valid:
(Dqu;’af) (x) = (Dq"“;f1 )(:v) (0<a<ax<bd).

Proof. We will consider three cases. For a < —1, according to Theorem 5, we
have

(DyDgof) (@) = (Dol f)(z) = (Dgly " f)(x)

= (Dglgalya ' f) (@) = (I 0V ) (@) = (Dgd' £) ().

In the case —1 < a < 0,ie., 0<a+1<1, we obtain

(DgDgof) (@) = (Dol & f)(2) = (Dely, "V f) (@) = (Dgd' ) ().
For a > 0, we get

(DyDg o f)(@) = (Dg DI ILGI = f) (@) = (DI = ) (@) = (DGt f)(@). O

a

Theorem 8. For o € R\ Ny, the following is valid:

(DyD%)(@) — (D2aDuf) () = LD (@ )=o) (0 <a<az<t).

Proof. We will use formulas (11), Theorem 5, and Lemma 6, to prove the state-
ment. Let us consider two cases. If a < 0, then

(DgDg.of)(@) = (Dgly g f)(x) = Dq[;g((lq,aqu)(m) + f(a))
= (Dglg o1q,aDqf)(z) + f(a)(Dglyq1)(z)

r— a)—®
= (DI, 2" Dyf)() + f<a>Dq(§q<w)+1>>
- . [—aly(x —a) oY
= (Dqlqﬂlq,a qu)(x) + f(a) Fq(—Oé + 1)

_ « f(a) —a—1
= (DuDaf) (&) + o= ).
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If @ > 0, there exists | € Ny, such that « € (I, + 1). Then, applying a similar
procedure, we get

(Dg DS f)(x) = (DgDEF ILE = ) ()
= DL (1,0 Dy f) () + f(a))

I+1 I+1— f(a) 1+1 I+1—
= (Dq+ Dqu’an:tz aqu)($)+me+ ((l‘—a)("" Ot))

= (DDl (o) + o= a) .

5. THE FRACTIONAL ¢g-TAYLOR-LIKE FORMULA

Many authors tried to generalize the ordinary TAYLOR formula in different
manners. The use of the fractional calculus is of special interest in that area (see,
for example [11] and [8]). Here, we will present one more generalization, based on
the use of the fractional g-derivatives.

Lemma 9. Let f(z) be a function defined on an interval (0,b) and o € RT. Then
the following is valid:

(D A5 f) (@) = fx)  (0<a<z<b).
Proof. For a > 0, we have
(D olgaf) (@) = (Dyl1fe) =1 f) (@) = (DTG5~ f) ()
= (Dl ) (@) = f (o). O
Lemma 10. Let a € (0,1). Then
(1,08, f) (z) = f(z) + K(a)(z —a)*™D  (0<a<z<b),

where K (a) does not depend on x.
Proof. Let
A(z) = (I3.Dg.0f) (@) = f(2).
Applying Dg , to the both sides of the above expression, and using Lemma 9, we
get

(Dg.aA)(2) = (Dg.15.Dgaf)(x) — Dy f ()
= ((Dgalga)Dgaf)(@) = DG f(x) =0.
On the other hand, according to Lemma 6, we obtain

D, ((x—a)* V) = D10 % ((x — a) V) = (Dg1)(z) =0 .
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Hence, we conclude that A(z) is a function of the form

A(z) = K(a)(z — a)@™ V. O

Lemma 11. Let0<a<c<ax <band o € (0,1). Then the following is valid:

(x — ¢)(@th)

UG D D) = o ek D)

q,¢ q,a

(Dt H)e) + UgEM DT (), (k € No).

Proof. According to Lemma 3 and Lemma 4, we have

(Dg 4" f)(c)

at+k na+k . a+k+1 a+k
(Iq,c Dq, )(x)*(jq,c Dqu f)(I)JrFq(a—&-k—i-l)

a ,a

(z —¢)leth)

(Dg*)(e) DT,
Tarkant 0T FEETOTTN@. D

Now, we are ready to prove a TAYLOR type formula with fractional g-deriva-
tives, which is the main result of this section.

Theorem 12. Let f(x) be defined on (0,b) and a € (0,1) . For0<a <c <z <b,
the following is true:

n

& (DSEE)(e) (atk)
(20) f(z)szom(xfc) R 4 Ru(f),

with R, (f) = Ro(f) — K(a)(z — a) @Y + E,(f), where

1 fo (a=1)( pa
ol Kt S OL

a

Ro(f) =

and E,(f) can be represented in either of the following forms:
(21) En(f)

(Lo " Dg " (=),

(Dfﬁ;” )(5) (x_c)(a+n)
Iy(a+n+1)

(22) En(f)

(c< <)

Proof. We will deduce the proof of (21) by mathematical induction. Since

1
Ly(a)

using Lemma 10, we obtain

(12, D2 f)(x) = / (& — q) @D (D2, ) (1) dyt + (12,08 f) (),

f@) = (18D, (@) + Ro(f) — K(a)(z — a)*~ V.
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According to Lemma 11, for k = 0, we have

o [e% _ (DSLJI )(C) [e% a+1 Hya+1
(Iq,ch,af)('r) - Pq(Oé ¥ 1) (33 - C)( ) + (Iq,Z’L Dq,j; )(33)
(Dg.af)(c) o
" Tarp @7 B

which completes the expression for Ry (f) and proves (21) for n = 1.
Assume that (21) is valid for any n € N. Then, again from Lemma 11, the following
holds:

(Dga" (o)

En(f) = L3 Daa™ @) = 5 0

(l’ o C)(a+n) + (I;v’jnleDg;rnJrlf)(x)
(Dﬁ" )(c) (atn)
— ——aa T e g .
Fq(oz—kn—i—l)(x C) + +1(f)
Hence the formula (21) is valid for n + 1. So, it is valid for each n € N.
The second form of remainder, (22), can be obtained by using a mean—value
theorem for g—integrals [9]. Indeed, there exists £ € (¢, x), such that
1 x
. a+n na+n _ a+n—1 a+n
En(f) = U3 "Dga" f)(z) = T.(atn) /(93 — qt)! )(Dm ) () dgt
(Dgi"f)©) | (Dgt™ (&)
— 2 aa TN —at (a+n—1) dt=_ae T/ ratng
e [ = e U @)

(&

_ M(w —¢)letn), O

Fy(a+n+1)
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