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Abstract We construct the sequence of orthogonal polynomials with respect to an

inner product which is defined by q-integrals over a collection of intervals in the

complex plane. We prove that they are connected with little q-Jacobi polynomials. For

such polynomials we discuss a few representations, a recurrence relation, a difference

equation, a Rodrigues-type formula and a generating function.
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1 Introduction

We will start with well-known facts from q-calculus (see, for example, [1, 3, 5]). For

a real number q ∈ (0, 1), the basic number [a]q is given by

[a]q = 1 − qa

1 − q
(a ∈ R),
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the q-derivative of a function is

Dq F(x) = F(x) − F(qx)

x − qx
(x �= 0)

and q-integral over a complex finite interval is defined by∫ c

0

F(x) dq x := c(1 − q)

∞∑
k=0

F(cqk)qk (c ∈ C).

The generalization of the gamma function �(x) is given by

�q (x) = (q; q)∞
(qx ; q)∞

(1 − q)1−x ,

where (a; q)∞ = ∏∞
j=0 (1 − aq j ). The basic hypergeometric function is defined by

r�s

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣q; z

)
=

∞∑
k=0

(a1, a2, . . . , ar ; q)k

(b1, b2, . . . , bs ; q)k
(−1)(1+s−r )kq (1+s−r )

(k
2

)
zk

(q; q)k
,

where (a; q)λ = (a; q)∞/(aqλ; q)∞ and (a1, a2, . . . , an; q)λ = ∏n
j=1(a j ; q)λ.

The little q-Jacobi polynomials are part of the Askey-scheme of hypergeometric

orthogonal polynomials [5] and are defined by

pn(x ; a, b| q) = 2�1

(
q−n, abqn+1

aq

∣∣∣∣∣ q; qx

)
.

Their orthogonality is given by the next relation

∞∑
k=0

(bq; q)k

(q; q)k
(aq)k pm(qk ; a, b| q) pn(qk ; a, b| q)

= (abq2; q)∞
(aq; q)∞

(1 − abq) (aq)n

(1 − abq2n+1)

(q, bq; q)n

(aq, abq; q)n
δmn

for 0 < a < q−1, b < q−1. If a = qα and b = qβ , the inner product on the left-hand

side can be expressed by q-integral

(pm, pn) = (qβ+1; q)∞
(1 − q) (q; q)∞

∫ 1

0

pm(x ; qα, qβ | q) pn (x ; qα, qβ | q) w(x) dq x,

where

w(x) = xα (qx ; q)∞
(qβ+1x ; q)∞

= xα(qx ; q)β.
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In the next sections, we will define a new inner product and establish the connections

of the corresponding orthogonal polynomials with little q-Jacobi polynomials.

Similar problems were discussed by some other authors. Likewise, in the paper [2],

J.S. Geronimo and W.V. Assche have discussed the orthogonality of a new polynomial

sequence which is obtained by some polynomial transformations of a measure and its

support. J.A. Charris, M.E.H. Ismail and S. Monsalve [4] examined the orthogonality

of the polynomial sequence defined by blocks of recurrence relations and established

the connection with polynomial mappings. Also, the orthogonality on radial rays in

the complex plane was discussed in the papers of G.V. Milovanović [6] and G.V.

Milovanović, P.M. Rajković and Z.M. Marjanović [7].

2 About q-orthogonality over the collection of intervals

Let us assume that N is a positive integer, q is a real number (0 < q < 1) and Q = q1/N .

We start with the sequence of the little q-Jacobi polynomials pn (x ; q1/N−1, 1| q)

which is orthogonal with respect to the inner product

( f, g)0 =
∫ 1

0

f (x)g(x)x1/N−1dq x .

Also, let us denote

ϕN ( j) = exp

(
i
2π j

N

)
, j = 0, 1, . . . , N − 1, (i2 = −1).

Then, it is valid

Lemma 2.1. The function j �→ ϕN ( j) has following properties:

(1) ϕN (N ) = 1, ϕN ( j) = ϕN (− j);

(2) ϕN ( j + l) = ϕN ( j) · ϕN (l), ϕM
N ( j) = ϕN ( j M);

(3)
∑N−1

j=0 ϕN ((Nn + ν) j) = ∑N−1

j=0 ϕN (ν j) =
{

N , ν = 0

0, 1 ≤ ν ≤ N − 1.

We consider the polynomial T (x) = x N over the interval E0 = (0, 1]. Its inverse

branches are

T −1
j (x) = ϕN ( j)x1/N , x ∈ (0, 1] (0 ≤ j ≤ N − 1)

and the sets

E j = T −1
j (E0) = (0, ϕN ( j)] (0 ≤ j ≤ N − 1)

are the intervals which connect the origin and N-th roots of unity. We will define the

inner product

〈F, G〉 =
[

1

N

]
q

N−1∑
j=0

∫
E0

F
(
T −1

j (x)
)

G
(
T −1

j (x)
)

x1/N−1dq x . (2.1)
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Lemma 2.2. For the q-integral it is valid

∫ c

0

F(x)dq x = c
∫ 1

0

F(cx)dq x (c ∈ C),

∫ 1

0

F(x N )dQ x =
[

1

N

]
q

∫ 1

0

F(x) x1/N−1dq x .

Using these properties of the q-integral, the inner product (2.1) can be also written

in the two following forms

〈F, G〉 =
N−1∑
j=0

ϕN (− j)

∫
E j

F(x) G(x) dQ x (2.2)

〈F, G〉 =
N−1∑
j=0

∫
E0

F (ϕN ( j)x) G (ϕN ( j)x) dQ x . (2.3)

It is easy to see that it is valid 〈zN F, G〉 = 〈F, zN G〉, where F(z) and G(z) are an

arbitrary pair of functions.

The inner product (2.3) is positive-definite because of ‖F‖2 = 〈F, F〉 > 0, ex-

cept for F(x) ≡ 0. It implies the existence of the sequence of the monic orthogonal

polynomials {Pm(z)} which satisfies

〈Pm, Pn〉 = δmn‖Pm‖2 (m, n ∈ N0).

We can construct this sequence by Gram–Schmidt orthogonalization.

If we evaluate the moments

μi,k = 〈zi , zk〉 =

⎧⎪⎨⎪⎩
N

[i + k + 1]Q
, i ≡ k(mod N )

0, others

and denote the moment-determinants by

�0 = 1, �m = det [μi,k]m−1
i,k=0, m ≥ 1,

then these polynomials can be expressed in the form

P0(z) = 1, Pm(z) = 1

�m

∣∣∣∣∣∣∣∣∣∣
μ00 μ10 . . . μm−1,0 1

μ01 μ11 μm−1,1 z
...

μ0,m μ1,m μm−1,m zm

∣∣∣∣∣∣∣∣∣∣
, m ≥ 1.
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On q-orthogonal polynomials over a collection of complex origin intervals related to little q-Jacobi 249

This sequence is unique and the norms are ‖Pm‖2 = �m+1/�m . Precisely,

‖PNn+ν‖2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N

|2ν + 1|Q
, n = 0

N Qn(N (n−1)+2ν+1)

[2Nn + 2ν + 1]Q

n∏
i=1

[Ni]2
Q

n−1∏
i=0

[Ni + 2ν + 1]2
Q

, n ≥ 1.

By the definition of the q-analogous of the �-function, we have

‖PNn+ν‖2 =

⎧⎪⎪⎨⎪⎪⎩
N [1/N ]q

[(2ν + 1)/N ]q
, n = 0

N [1/N ]q qn((n−1)+(2ν+1)/N )

[2n + (2ν + 1)/N ]q

(
[n]q !�q ((2ν + 1)/N )

�q (n + (2ν + 1)/N )

)2

, n ≥ 1.

Lemma 2.3. The polynomials {Pm(z)} satisfy

Pm(ϕN ( j)z) = ϕN (mj)Pm(z), j = 0, . . . , N − 1.

Lemma 2.4. The first N members of the orthogonal polynomial sequence are

Pm(z) = zm, m = 0, . . . , N − 1.

Theorem 2.5. The monic polynomials {Pm(z)}+∞
m=0 satisfy the recurrence relation

Pm+N (z) = (zN − αm) Pm(z) − βm Pm−N (z), m ≥ 0,

Pm(z) = zm, m = 0, . . . , N − 1, (2.4)

where

αm = 〈zN Pm, Pm〉
〈Pm, Pm〉 , m ≥ 0, βm =

⎧⎨⎩
〈Pm, Pm〉

〈Pm−N , Pm−N 〉 , m ≥ N

0, m ≤ N − 1.

The explicit form of coefficients will be derived in the next section. But it should be

emphasized that they are real because of (zN Pm, Pm) = (Pm, zN Pm).

3 Some representations of the polynomials {Pm(z)}

According to the last section, we easily get to the next conclusion.
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Lemma 3.1. Every polynomial PNn+ν(z) can be expressed in the form

PNn+ν(z) = zν S(ν)
n (zN ; q), (n ∈ N0, 0 ≤ ν ≤ N − 1)

where S(ν)
n (t ; q) are the monic polynomials of degree n.

Theorem 3.2. The polynomial PNn+ν(z) can be represented by

PNn+ν(z) = Kn,ν(q) zν pn(zN ; q (2ν+1)/N−1, 1|q), (3.1)

where

Kn,ν(q) = (−1)nq

(
n
2

) (
�q (n + (2ν + 1)/N )

)2

�q ((2ν + 1)/N ) �q (2n + (2ν + 1)/N )
(3.2)

and pn(x ; q (2ν+1)/N−1, 1| q) is the member of the sequence of the little q-Jacobi poly-
nomials.

Proof: For any n, l ∈ N0 and ν ∈ {0, 1, . . . , N − 1} we have

〈PNn+ν, PNl+ν〉 = (1 − Q)

N−1∑
j=0

∞∑
k=0

PNn+ν(ϕN ( j)Qk) PNl+ν(ϕN ( j)Qk)Qk .

According to Lemma 2.1 and Lemma 3.1, we yield

〈PNn+ν, PNl+ν〉

= (1 − Q)

m−1∑
j=0

∞∑
k=0

ϕN ((Nn + ν) j)PNn+ν(Qk)ϕN ((Nl + ν) j)PNl+ν(Qk)Qk

= N (1 − Q)

∞∑
k=0

PNn+ν(Qk)PNl+ν(Qk)Qk .

Since the polynomials Pm(z) have all real coefficients, taking Q = q1/N , the previous

relation can be written as

〈PNn+ν, PNl+ν〉 = N (1 − q1/N )

∞∑
k=0

(qk/N )ν S(ν)
n (qk ; q) (qk/N )ν S(v)

l (qk ; q) qk/N

= N (1 − q1/N )

∞∑
k=0

S(ν)
n (qk ; q) S(ν)

l (qk ; q) qk((2ν+1)/N−1) qk

= N

[
1

N

]
q

∫ 1

0

S(ν)
n (x ; q) S(ν)

l (x ; q) x (2ν+1)/N−1dqt.
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Because of the orthogonality of the polynomials Pm(z), we have∫ 1

0

S(ν)
n (x ; q) S(ν)

l (x ; q ) x (2ν+1)/N−1dq x = [N ]Q

N
‖PNn+ν‖2 δnl .

It means that the sequence of the polynomials S(ν)
n (x ; q) is orthogonal with respect

to the same inner product as little q-Jacobi polynomials pn(x ; q (2ν+1)/N−1),1|q). So,

because of the uniqueness of the sequence of the orthogonal polynomials and the fact

that S(ν)
n (x ; q) are monic, we get the coefficient Kn,ν(q) and, finally, the representation

(3.1–2). �

Corollary 3.3. The coefficients in recurrence relation (2.3) for m = Nn + ν, n ∈
N0, 0 ≤ ν ≤ N − 1, can be represented by

αNn+ν = QNn

× [Nn + 2ν + 1]2
Q[N (2n − 1) + 2ν + 1]Q + Q2ν+1−N [Nn]2

Q[N (2n + 1) + 2ν + 1]Q

[N (2n − 1) + 2ν + 1]Q [2Nn + 2ν + 1]Q[N (2n + 1) + 2ν + 1]Q

βNn+ν = Q2N (n−1)+2ν+1

× [N (n − 1) + 2ν + 1]2
Q[Nn]2

Q

[N (2n − 2) + 2ν + 1]Q [N (2n − 1) + 2ν + 1]2
Q [2Nn + 2ν + 1]Q

.

Proof: The statement follows from Theorem 3.2 and the recurrence relation for the

little q-Jacobi polynomials yn(x) = pn(x ; a, b | q)

−xyn(x) = An yn+1(x) − (An + Cn)yn(x) + Cn yn−1(x),

where

An = qn (1 − aqn+1)(1 − abqn+1)

(1 − abq2n+1) (1 − abq2n+2)
, Cn = aqn (1 − qn)(1 − bqn)

(1 − abq2n) (1 − abq2n+1)
.

�

The proof of the next statement follows from Theorem 3.2 and the definition of the

little q-Jacobi polynomials by the basic hypergeometric function.

Theorem 3.4. The polynomial Pm(z), with the index m = Nn + ν, where n ∈ N0 and
0 ≤ ν ≤ N − 1, can be represented by

PNn+ν(z) = Kn,ν(q) zν
2�1

(
qn, q (2ν+1)/N+n

q (2ν+1)/N

∣∣∣∣∣ q; qzN

)
,

where Kn,ν(q) is defined by (3.2).
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Theorem 3.5. Every polynomial PNn+ν(z) can be expressed in the explicit form

PNn+ν(z) = (−1)nq

(
n

2

) (
�q (n + (2ν + 1)/N )

)
�q (2ν + (2ν + 1)/N )

×
n∑

k=0

(−1)kq

(
k + 1

2

)
−kn

[
n

k

]
q

�q (n + k + (2ν + 1)/N )

�q (k + (2ν + 1)/N )
. zNk+ν

Proof: For the little q-Jacobi polynomial pn(x ; q (2ν+1)/N−1, 1| q), it is valid (see [5])

pn(x ; q (2ν+1)/N−1, 1| q) = 2�1

(
q−n, q (2ν+1)/N+n

q (2ν+1)/N

∣∣∣q; qx

)
=

∞∑
k=0

(q−n, q (2ν+1)/N+n; q)k

(q (2ν+1)/N ; q)k

qk xk

(q; q)k

= 1 +
∞∑

k=1

(
k−1∏
i=0

(1 − q−n+i )(1 − q (2ν+1)/N+n+i )

(1 − q1+i )(1 − q (2ν+1)/N+i )

)
qk xk

= 1 +
n∑

k=1

(−1)kq−kn+(k
2)

k−1∏
i=0

[n − i]q

k−1∏
i=0

[i + 1]q

k−1∏
i=0

[(2ν + 1)/N + n + i]q

k−1∏
i=0

[(2ν + 1)/N + i]q

qk xk

= 1 +
n∑

k=1

(−1)kq−kn+(k
2)

[
n

k

]
q

�q ((2ν + 1)/N )�q ((2ν + 1)/N + n + k)

�q ((2ν + 1)/N + n)�q ((2ν + 1)/N + k)
qk xk

= �q ((2ν + 1)/N )

�q ((2ν + 1)/N + n)

n∑
k=0

(−1)kq
−kn+

(
k
2

) [
n
k

]
q

�q ((2ν + 1)/N + n + k)�q

((2ν + 1)/N + k)
qk xk .

Putting x = zN and using Theorem 3.2, we get the required formula. �

4 Some properties of the polynomials {Pm(z)}

From the theory of the orthogonal polynomials it is well-known that all zeros of the

little q-Jacobi polynomials pn(x ; a, b| q) are simple and lie in the interval (0, 1)

under the conditions 0 < q < 1, 0 < a < q−1, b < q−1.

By the representations from the third section, we easily conclude that all zeros of the

polynomial Pm(z), orthogonal with respect to (2.1), are located on the support-intervals.
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Moreover, they are simple with a possible exception of a multiple zero in the origin

z = 0 of the order ν if m ≡ ν (mod N ).

Theorem 4.1. Every polynomial Pm(z)(m = Nn + ν, n ∈ N0, 0 ≤ ν ≤ N − 1) sat-
isfies the following Q-difference equation

An,ν(z; Q)z2D2
Q PNn+ν(z) + Bn,ν(z; Q)zDQ PNn+ν(z) + Cn,ν(z; Q)PNn+ν(z)

= (1 − Q)Tn,ν(z; Q)z DQ PNn+ν(z),

where

An,ν(z; Q) = Q2−N (Q2N zN − 1),

Bn,ν(z; Q) = [2]Q QN zN − [2 − N ]Q,

Cn,ν(z; Q) = Q−Nn−ν(QNn[ν]Q[1 − N + ν]Q − [Nn + ν]Q[Nn + ν + 1]Q QN zN ),

Tn,ν(z; Q) = Q−Nn−ν(QNn[ν]Q[1 − N + ν]Q − [Nn + ν]Q[Nn + ν + 1]Q).

Proof: One solution of the q-difference equation (see [5])

q (1−n)(1 − qn)(1 − qn+(2ν+1)/N ) t y(qt)

= q (2ν+1)/N−1(q2t − 1)(y(q2t) − y(qt)) − (qt − 1)(y(qt) − y(t))

is the little q-Jacobi polynomial y(t) = pn(t ; q (2ν+1)/N−1, 1| q). Applying the relation

(3.1), we have

y(t) = (Kn,ν(q))−1t−ν/N PNn+ν(t1/N ),

y(qt) = (Kn,ν(q))−1q−ν t−ν/N PNn+ν(q1/N t1/N ),

y(q2t) = (Kn,ν(q))−1q−2ν t−ν/N PNn+ν(q2/N t1/N ).

Having in mind that Q = q1/N , substituting t = zN in q-difference equation, it

becomes

QN (1−n)−ν(1 − QNn)(1 − QNn+2ν+1)zN PNn+ν(Qz)

= Qν+1−N (Q2N zN − 1)(Q−ν PNn+ν(Q2z) − PNn+ν(Qz))

− (QN zN − 1)(Q−ν PNn+ν(Qz) − PNn+ν(z)).

According to [3], we have

PNn+ν(Qk z) =
k∑

j=0

(−1) j (1 − Q) j
[

k
j

]
Q

Q

(
j
2

)
z jD j

Q PNn+ν(z),

where from the last identity takes the required form. �
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Theorem 4.2. For the polynomial Pm(z) satisfies the Rodrigues-type formula

PNn+ν(z1/N ) = (−1)nqn(n−2+(2ν+1)/N ) �q (n + (2ν + 1)/N )

�q (2n + (2ν + 1)/N )

× z1−(ν+1)/N Dn
q−1

(
zn−1+(2ν+1)/N (qz; q)n

)
is valid.

Proof: The Rodrigues-type formula for the little q-Jacobi polynomials

pn(x ; q (2ν+1)/N−1, 1| q) is

x (2ν+1)/N−1 pn(x ; q (2ν+1)/N−1, 1| q)

= qn((2ν+1)/N−1)+(n
2)(1 − q)n

(q (2ν+1)/N ; q)n
Dn

q−1

(
(qx ; q)n xn−1+(2ν+1)/N

)
= qn((2ν+1)/N−1)+(n

2)
�q ((2ν + 1)/N )

�q (n + (2ν + 1)/N )
Dn

q−1

(
(qx ; q)n xn−1+(2ν+1)/N )

)
.

According to Theorem 3.2, we can write

pn(x ; q (2ν+1)/N−1, 1| q) = (Kn,ν(q))−1x−ν/N PNn+ν(x1/N ),

and by simplifying the previous identity, we get the formula. �

Theorem 4.3. The generating function for the polynomials {Pm(z)} is given by

∞∑
n=0

N−1∑
ν=0

(1 − q)2n

([n]q !)2

�q ((2ν + 1)/N ) �q (2n + (2ν + 1)/N )

(�q (n + (2ν + 1)/N ))2
PNn+ν(z)t Nn+ν

=
N−1∑
ν=0

(zt)ν 0�1

( −
q (2ν+1)/N

∣∣∣∣q; q (2ν+1)/N zN t N

)
2�1

(
z−N , 0

q

∣∣∣∣q; zN t N

)
.

Proof: Starting from the generating function for the little q-Jacobi polynomials

pn(x ; q (2ν+1)/N−1, 1 | q), which is given by

∞∑
n=0

(−1)nq(n
2)(1 − q)2n

([n]q !)2
pn(x ; q (2ν+1)/N−1, 1| q) un

= 0�1

( −
q (2ν+1)/N

∣∣∣ q; q (2ν+1)/N xu

)
2�1

(
x−1, 0

q

∣∣∣ q; xu

)
Springer
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and using the relations (3.1–2), we have

∞∑
n=0

(1 − q)2n

([n]q !)2

�q ((2ν + 1)/N )�q (2n + (2ν + 1)/N )

(�q (n + (2ν + 1)/N ))2
x−ν/N PNn+ν(x1/N ) un

= 0�1

( −
q (2ν+1)/N

∣∣∣ q; q (2ν+1)/N xu

)
2�1

(
x−1, 0

q

∣∣∣ q; xu

)
for any 0 ≤ ν ≤ N − 1. Taking z = x N and u = t N and summing by ν from 0 to

N − 1, we get the desirable expansion. �
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