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In a similar manner as in the papers by W. Koepf, D. Schmersau, Spaces of functions satisfying simple
differential equations, Konrad-Zuse-Zentrum Berlin (ZIB), Technical Report TR 94-2 (1994) and Salvy,
B., Zimmermann, P., GFUN: A package for the manipulation of generating and holonomic functions in
one variable, ACM Transactions on Mathematical Software, (1994), pp. 163—177, where explicit
algorithms for finding the differential equations satisfied by holonomic functions were given, in this paper
we deal with the space of the g-holonomic functions which are the solutions of linear g-differential
equations with polynomial coefficients. The sum, product and the composition with power functions of
g-holonomic functions are also g-holonomic and the resulting g-differential equations can be computed
algorithmically.

Keywords: g-derivative; g-differential equation; Algorithm; Algebra of g-holonomic functions

2000 Mathematics Subject Classification: 39A13; 33D15

1. Preliminaries

The purpose of this paper is to continue the research exposed in Refs [7,8]. There, the authors
discussed holonomic functions which are the solutions of homogeneous linear differential
equations with polynomial coefficients.

In the present investigation, we consider a similar problem from the point of view of g-
calculus. As general references for g-calculus see Refs [2,4]. We begin with a few
definitions.

Let g € R, g # 1*. The g-complex number [a], is given by

1—qg“

, a€C.
l—g¢q

[a]q =

Of course

Ell}[a]q =a.
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#Actually, in all the algorithms developed, we will consider ¢ as an indeterminate.
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The g-factorial [n ], of a positive integer n and the g-binomial coefficient are defined by

[01! =1, [nly! = [nlyln — 1], --[1] [n] U
A g g g " LHg T M —
k . [k],![n — k] !

The g-Pochhammer symbol is given as
(ll; q)O = 17

@y =1 —a)(l —agl —ag”---(1 —ag"™h, k=12, ..,
(@ @)oo = Jim(1 —a)(1 —ag)(1 —ag®)--«(1 —ag"™") (gl <1

and

@, =29 i <1re0).

(ag*; oo
The g-derivative of a function f(x) is defined by

f(X) f((J)

Dy f(x) = (@ 70),  Dyf(0):= lim Dgf(x), ey

and higher order g-derivatives are defined recursively
D)f=f, Dif:=D,Dy'f, n=123, ... )
Of course, if fis differentiable at x, then

lim D, /() = (x).

The next four lemmas are well-known in g-calculus and their proofs can be found, for
example, in [3,4].

LEMMA 1.1.  For an arbitrary pair of functions u(x) and v(x) and constants o, B € C and
q # 1, we have linearity and product rules

D (au(x) + Bo(x)) = aDyu(x) + BD,v(x),
Dy(u(x) - v(x)) = u(gx)Dgv(x) + v(x)Dyu(x)
= u(x)D,v(x) + v(gx)D,u(x).

LeEmMmA 1.2.  The Leibniz rule for the higher order g-derivatives of a product of functions is
given as

n

Dy(u(x) - v@) =)

k=0

n

L szku(q kx)Dzv(x).

q
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LeMMA 1.3.  For an arbitrary function u(x) and for t(x) = cx* (c € C,k € N, g* # 1) we

have for the composition with t(x)

Dy(uer)(x) = Dgru(t) - Dyt(x).

LemmA 1.4. The values of the function for the shifted argument and for higher

g-derivatives are connected by the two relations:

f@" =3 (=01 =gt| | ¢“xDifw.
k=0

L g

by —(n—
¢®" V(g

Dl f(x) = )n nZ(—IY‘

-4

For our further work, it is useful to write the product rule in slightly different form.

LemMMA 1.5. The product rule for the g-derivative can be written in the form
Dy(u(x) - v(x)) = u(x)Dyv(x) + v(x)Dyu(x) — (1 — q)xD4u(x)D,v(x).

In the same manner, higher g-derivatives can be expressed by

DX (u(x) - v(x)) = Z Z o), ()DL u(x)D (x),

=0 u=0

where the coefficients a(”) ,.(x) are symmetric
W@ =al® (np=1 )
o, () =alx) (vp .

and can be computed recursively:

(naul)(x) -0,

1
af'th () = el (qx),

alfl) ) = —(1 — @xal(qx),
af)"ﬂ)(x) D aO" I)L(x) + a(()"I)L_l(qx),
) = o) (qx) — (1 = g)xall),(gx),

a0 () = Dyl (0) + ol | (qx) + o), (gx) — (1 = @xa? 1 (q),

¢

with initial values
ay =0, afi =1, o}=-0-gx
Let us finally recall that the g-hypergeometric series is given by Refs [2,6]

ap,dz, ...,a © T: (aj’ q)k xk o\ L+s—r
rébs x| = = (1)
"\ bi,ba, . by | kz:; [T- 1B @) (@ i I

3

“

(&)
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2. On g-holonomic functions

For every function f(x) which is a solution of a polynomial homogeneous linear q-differential
equation

S e HDEF@) =0 (o € Kig)lxl,n € N) ©)
k=0

we say that f(x) is a g-holonomic function. The smallest n such that p, # 0 is not
the zero polynomial is called the holonomic order of f(x). Here K is a field, typically
K= Q(a;,a3,...) or K=C(aj,ap,...) where aj,as, ... denote some parameters.
An equation of type (6) is called a g-holonomic equation.

Although the following examples of g-holonomic functions of first order are well-known,
we state them with complete proofs so that the paper is self-contained.

Example 2.1, Since
Dyx’ =[s]x*" (x,a,s ER),
we have
fx) =x* = xD, f(x) — [s],f(x) = 0,
or
(g = DxDyf(x) = (¢* — Df(x) =0,

i.e. the power function is (for integer s) a g-holonomic function of first order.

Example 2.2. For 0 <|g| <1, € R, x # 0,1, we have

Dy((x;9))) = —[Al(gx: -1 =

A
1 [_]q (5 @
X

Hence
S =@y = (x — DDy f(x) — [Al,f(x) =0

or
(¢ — Dx = DD, f(x) — (¢ = Df(x) = 0.

Therefore, the g-Pochhammer symbol is (for integer A) also g-holonomic of first order.
Similarly, from

1

_ 1
Dy((x:@)ee) = —(1 = @) (qx: @)oo = TTT TR D

we get

1
J@) = (q)e = (1 = X)Dy f(x) + qf(X) =0.
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Example 2.3.  The small g-exponential function

0

S|
13) S WeeH<L o

eq(x) =1 ¢0< @
=0 \4>Dn

has g-derivative

eq(x) - eq(qx)

Dye,(x) = X gx
(S 1, & .,
Cx—gx <nz_; (g; q)nx nz:; (43 @n (@9 >
_ 1 i’o: x" = (gx)"
x—gx4= (q:qh

1 % 1—q" :
R {” 2 Ui =g - i- g }

x st 1
= 1 k
x—qx{ T ga— - d }

1

= quq(x)a

i.e. the small g-exponential function is g-holonomic of first order:
J) = eq(x) = (1 — @)Dy f(x) — f(x) = 0.

Note that this g-differential equation as well the resulting g-differential equations of the next
four examples and similar ones can be obtained completely automatically by the
gsumdiffeq command of the Maple package gsum by Boing and Koepf [1] using
the g-version of Zeilberger’s algorithm [6]. The above equation, e.g. is obtained using the
g-hypergeometric representation (7) and the command
gsumdiffeq(l/gpochhammer(q, g, n)*x"n, q,n, £(x))}

Example 2.4. The big g-exponential function

® ;)
q’_X>ZZ T o<l <1

Eq(x) =0 ¢0<

has g-derivative

1 = g %) © q(ﬁ) 1
D,E,(x) = x" = (g0)" | = ——E,(qx).
Ty —gx (,,_0 (q:9)n ; (q:9)» 1—q

which can be obtained in a similar way as in Example 2.3. Since
f(gx) = f(x) = (1 = @x(Dy f)(x),
we conclude that the big g-exponential function is also g-holonomic of first order:

J@) = Eq(x) = (1 — @)x+ DD, f(x) — f(x) = 0.
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Example 2.5. For 0 < |g| < 1, both the g-sine and g-cosine functions

sin 4(x) =

e,(ix) — eq(—lx) i’: —1)" e

“— (4 Dont1

e (ix) + e (—
R M

satisfy
(1= g’D,f(@) +fx) =0

and are therefore g-holonomic of second order.

Example 2.6. The g-hypergeometric series ,¢; is g-holonomic. The gsumdiffeq
command computes in particular for
)

a,b
fx) =2 ¢y (
c

the g-holonomic equation

= (xabq — c)x(q — 1)’ D, f(x)
+ (=xb — xa + 1+ xabg — ¢ + xab)(q — 1)D, f(x)
+ (=14 a)(—1+b)f(x).

Example 2.7. Most g-orthogonal polynomials are g-holonomic. The Big g-Jacobi
polynomials (see e.g. [5], 3.5) are given by
QaQ>'

- +1
" Clbqn X

fx) = P,(x;a,b,c;q) =3¢ (
aq,cq

They satisfy the g-holonomic equation
0 = q"a(bqx — c)(qg — )*(1 — 0D, f(x)
+ (g — D(abg™™ + abg®™'x + x — g"a — q"c — abq"'x — abq"x
+q""lac)Dy f(x) + (¢" — D(abg"™" = Df(x)

which is again easily determined by the gsumdi £ feq command. The following lemma will
be the crucial tool for the investigations of the next section.
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LemMmAa 2.1.  If f(x) is a function satisfying a holonomic equation (6) of order n, then the

functions Déf xX)(U=n,n+1,...) can be expressed as
n—1
D fx) = p e /)D f(x), ®)
k=0

where p,(cl) (x) are rational functions defined by

Ol 0=l<n-—1,
_ ) _
pg)(x) = ﬁi(x)’ I=n
PP + Dl P00 + PP gop” (), 1> n,

for 0=k =n—1and O for other k’s.

Proof. The representations (8) and the corresponding coefficients are evident by equation (6)
for[=0,1, ...,n By g-deriving and using Lemma 1.1, from

n—1

Difx) =" p{" (D5 f(x)
k=0

we get
n—1
Dy f0) =3 D, (0D @)
k=0
n—1 n—1
= P @D 00+ Dy (p @) D )
k=0 k=0
n—1
=3 (P21 @) + Dy (p°0) DEF@) + P D))
k=0
n—1
= p" @Dk f),
k=0
with

PP = P (90 + Dop’ @)+ pi (qop"(®) (0 =k =n—1).

Repeating the procedure, we get the representation and coefficients for arbitrary I > n. [

We finish this section by noticing that there are functions which are not g-holonomic.
LeEMMA 2.2.  The exponential function f(x) = a*(a > 0,a # 1) is not g-holonomic.

Proof. Taking successive g-derivatives of f(x) :== a” up to order n generates iteratively the
functions of the list L := {a",aq",aqz)‘, ...,a9"%}. Since the members of L are linearly
independent over [K(¢)[x] (by mathematical induction), and since L contains n + 1 elements,
no g-holonomic equation for f(x) of order n exists. ]
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3. Operations with g-holonomic functions

In this section, we will formulate and prove a few theorems about g-holonomic functions
provided by derivation, addition or multiplication of the given g-holonomic functions.

THEOREM 3.1. If f(x) is a g-holonomic function of order n, then the function h,(x) =
Dy f(x) is a g-holonomic function of order at most n for every m &€ N.

Proof. If we prove the statement for m = 1, the final conclusion follows by mathematical
induction.

Let h(x) = D, f(x), where the function f(x) satisfies (6). If po(x) =0 is the zero
polynomial, then obviously /(x) is a g-holonomic function of order n — 1.

Hence, let po(x) # 0. Then, by Lemma 2.1, we have

D f(x) = Zp‘”(x)D" ),
wherefrom
[ = W o (D”f( )~ Zp“”(x)D’;f(x))

1 =
(n)( : (Dn h(x) — ;p; jl(x)D’;h(x)),

Also, by g-deriving, we get

Dih(x) =D/ f(x) = Zp("“’(x)D’;f(x) (”“)(x)f(x)+Zp("+1’(x)D’;"h(x)

(n+l) n=2 n=2
<n><(;) (Dz‘lhm - Zpi%(x)Df,W) + > P DA,
k=0

k=0
Hence,
n—1
Dih(x) = Pi(x; DAh(x),
k=
where
n+1) (n+1)
n ( ) n (x)
Pk(X;h) P;c:ll)( ) (n) ()1( )7 k:()ala ...l’l_2, Pn*l(X;h):po(n) .
Py (X) Py (X)

By multiplying with the common denominator of the rational functions
{Pr(x;h),k=0,1, ...,n — 1}, we can conclude that h(x) satisfies the equation

> prlx: DER(x) = 0,

k=0

i.e. h(x) = D, f(x) is a g-holonomic function of order = n. ]
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We note that the proof of Theorem 3.1 provides an (iterative) algorithm to compute the
corresponding g-differential equation for D f(x).

Example 3.1. In Example 2.2, for the g-Pochhammer symbol we proved that it satisfies
1
@) =@ q)e = (1 =)D, f(x) + Ef(x) =0.

Hence, we have

m

() = D ((x; @)oo) = (1 = q"X)Dghyu(x) + %qhm(X) =0 (m€ Ny).

THEOREM 3.2. If u(x) and v(x) are g-holonomic functions of order n and m respectively,
then the function u(x) + v(x) is g-holonomic of order at most m + n.

Proof. If u(x) and v(x) are g-holonomic functions of order n and m respectively, they satisfy
holonomic equations

m

> B@Diux) =0, > FDjvx) =0, ©)
k=0

J=0

where py(x) and 7(x) are polynomials and p, 0, 7,, # 0. According to Lemma 2.1, Dgu(x)
and D;v(x) can be represented as

m—1

n—1
Dhu(x) = kZ;pi”ngu(x), Dlo(x) = 2; KD (0D v(x), (10)
= =

where pff)(x) and rj(-l)(x) are rational functions given by Lemma 2.1.

Let h(x) = u(x) + v(x). Then, according to (10), we have

n—1 m—1
Dih(x) = pPDku) + > Do), 1=0,1,....,m+n. (11)
k=0 =0
Taking the values for /=0,1,...,m+n — 1 in the above identities and expressing

g-derivatives of u(x) and v(x) by g-derivatives of h(x), we get

m+n—1
Dhutx)= " al(DLh(x), k=0,1,....n—1,

=0

) m+n—1
Do)=Y D), j=0,1,....m—1.

=0

By eliminating D’;u(x) (k=0,1,...,n—1) and D{lfv(x) (j=0,1,...,m— 1) from the
last identity (/ = m + n) of (11), we get

m+n—1

DR = Y aDyh(),
=0
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where
m—1
ci(x) = Zp(” @al @)+ Y b ().
j=0

By multiplying with the common denominator of {¢;(x),/ = 0,1, ...m+n — 1}, we get the
holonomic equation for A(x)

m+n

Z &i(x)D)h(x) =

=0

This proves that the g-holonomic order of u(x) + v(x) is at most m + n, but can be less.  [J

Note that the algorithm given in the proof of Theorem 3.2 finds a g-differential equation
which is not only valid for u(x) 4+ v(x), but also for every linear combination A;u(x) + A, v(x),
in particular for u(x) — v(x). An iterative version of the given algorithm will determine the
g-holonomic equation of lowest order for u(x) 4+ v(x).

Example 3.2. The small g-exponential function from Example 2.3 is g-holonomic of first
order and satisfies

u(x) = ey(x) = Dhu(x) = u(x) (k=0,1,...).

1
(a—qf

Also, the g-sine from Example 2.5 is g-holonomic of second order and satisfies

Dk+2

2(x) = sin ,(x) = (x) = Div(x) (k=0,1,...).

-1
(1-g7?
Now, by the algorithm given in the proof of Theorem 3.2, the function A(x) = u(x) + v(x)
satisfies

Dh(x) = ;Dzh(x) 1 ———— Dh(x) + ——

1
h
(1— g7 a—a

i.e. it is g-holonomic of third order.

THEOREM 3.3.  If u(x) and v(x) are g-holonomic functions of order n and m respectively,
then the function u(x) - v(x) is g-holonomic of order at most m - n.

Proof. If u(x) and v(x) are g-holonomic functions of order n and m respectively, they satisfy
holonomic equations (9), and their g-derivatives (10).
Let h(x) = u(x) - v(x). Then, according to (1.5), we have

D h(x) = Z Z o) ()DLu(x)D v(x)

VO[.LO

l —1
— Z Z o) (x) <Z p<”>(x)Dku(x)> ( KD v(x))

J

S

I
o
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ie.
n—1 m—1 i
Dlh(x) =" " BP0DiuxDivx)  (1=0,1,...,mn), (12)
k=0 j=0
where
1 1
Bl = anop " ).
v=0 u=0
Taking the relations (12) [=0,1,...,mn— 1 and expressing the g-derivatives

D’;u(x)D/év(x) by g-derivatives of h(x), we get
mn—1

Dyu(x)D}o(x) = Z yg?(x)pgh(x) O=k=n—10=j=m-1).
=0

Eliminating all the products D’;u(x)Dzv(x) from the last identity (/ = mn) of (12), it becomes

mn—1

DI"h(x) = Y o)D),
1=0
where
n—1m—1 ; ;
T =Y > BV ).
k=0 j=0
By multiplying with the common denominator of {oy(x),/=0,1, ...mn — 1}, we get the

g-holonomic equation for A(x)

mn

> 61Dl hx) = 0.

=0

This proves that the g-holonomic order of u(x) - v(x) is at most mn, but can be less. U

Again, the proof of Theorem 3.3 provides an algorithm. An iterative version of the given
algorithm will determine the g-holonomic equation of lowest order for u(x) - v(x).

Example 3.3.  We use again u(x) = e,(x) and v(x) = sin ,4(x). Now, by the given algorithm
the function A(x) = u(x) - v(x) satisfies

(1 = @’ Dh(x) — (1 = ¢")Dygh(x) + (gx” — (1 4 g)(x — 1)h(x) =0,

i.e. it is g-holonomic of second order.

THEOREM 3.4.  If u(x) is a g-holonomic function of order n, then the function w(x) = u(x")
(v € N) is a g-holonomic function of order at most n.
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Proof. By assumption u(¢) satisfies a g-holonomic equation
> pDju(n) =0, (13)
k=0
where py(t) are polynomials and p,, # 0. Then, by Lemma 2.1, Déu(t) can be represented as
n—1
Diu() = p(ODju(), (14)
k=0

where p,(f)(t) are rational functions determined by that lemma.
Let r = x”. Using Lemma 1.3, we have

u(t) — u(g"n)

D w(x) = Dyu(t)Dy(x") = a= " [v],x""".
According to (4), we get
Dyw(x) = e, ()Du(t),
j=1
where
J
o ()
ej‘y(x>=<—1yl(1—qy‘[j1 q XL =12, (15)
q

By (14), we can write

n—1
Dyw(x) = Z e, V(x)Z i (ODyu(r) = Zf,ﬁll(x)D"u(t),

j=1

where
fi@) = Zp (x)ej(x), k=0,1,...,n— 1. (16)
Furthermore,
D2w(x) = kz_; Dq( (l)(x)Dku(t)) Z D f O Dhu(r) + kz_; F(g0D, (D’;u(t)).

As before, the second sum in the above term can be transformed to

n—1 n—
> 1@, (Diun) = Z <1><qx)z .00 (Do)
=0 i

= Z Zf(“(qx)e,-,v(x)z);*fu(t)
=1 j=

n—1 v n—1

=> Z F(gx)e; ,,(x)z P (ODEu().

=1 j=
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Hence,
n—1
2 2 k
Diw(x) = > fExDhu(),
k=0
where

n—1 v
10 = Dy fi(0) + Z Z O(goe opi ™", k=0,1,...,n— 1.
i=0 j=1

By induction, we obtain the representations

n—1

Diw(x) =Y fil 0Dk, 1=0,1,2,....n (17)
k=0

where f,({?,),(x) = &0, fgl))(x) is given in (16) and

n—1 v
000 =Daf @ + D7 L Vg op (. (18)
i=0 j=1

Taking the first n of the identities (17), we can determine

N4

n—1
Dhuty = b DLwx), k=0,1,...,n—1,
=0

where b\")(x) are rational functions. Substituting this in identity (17), we get

n—1

n—1 n—1
Diw(x) = > fO,m>  b@Dw) =" e, x)Dw(x),
k=0 1=0 =0

where
n—1
cLx) = > FE b0
k=0
By multiplying with the common denominator of {¢; ,(x),/=0,1, ...,n — 1}, we obtain

> &, 0DLwx) = 0.
=0

Example 3.4. In Example 2.2, it was proved that
u(x) = (x:q)y = (g = D = DDyu(x) = (¢ = Du(x) = 0.
Using our algorithm we get for w(x) = u(x?) = (x?; q), the g-holonomic equation
(g = D = Dx + Drg = DDew) = x(g" = DE*g™ — g = 1 +2°g)f (1) = 0

and similar, but more complicated, equations for (x”; ¢), for higher » € N.
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Example 3.5. In Example 2.5, for the g-sine function, we got

u(x) = singy(x) = (1 = ¢’ Du(x) + u(x) = 0.
Now, for w(x) = u(x?), we have

Dyw(x) = f§300u(t) + £ (0Dgu(),

with
3
o= Sm=0+gx
and
D2w(x) = fR@)u(r) + f2@)D,u(t),
with
201~ _ ) 3,4 _ 2 2\,4
fg%%(x):(qX)( 2-q9—q +qx") f%(x):(“rq)(l qa+q"(+47x")

(1—g)y 1—¢q
By eliminating D,u(t), we get
Dow(x) = co ()W (x) + €1 2(x)Dgw(x),

wherefrom we get for the function w(x) = u(x?) the following equation

1—q4
(1—-g)

1+4¢°

2
ngw(x) - <1 + q2 =4 x4>qu(x) + qx3< + a i q)2x4>w(x) =0.

4. Sharpness of the algorithms

In the previous section we proved that the sum, product and composition with powers of g-
holonomic functions are g-holonomic too. In this section we show that the given bounds for
the orders are sharp in all algorithms considered.

Example 4.1. The functions u(x) = x> and v(x) = x> are g-holonomic of first order.
According to Theorem 3.2, the function h(x) = u(x) + v(x) is g-holonomic of order at most
two. However, all polynomials are g-holonomic functions of first order, and we find that A(x)
satisfies the equation

x(1 + x)Dgh(x) — (121, + [3],0)h(x) = 0.

This example shows that the order of the sum of some g-holonomic functions can be
strictly less than the sum of their orders. This applies if the two functions u(x) and v(x) are
linearly dependent over K(q)(x).

However, we will prove that for every algorithm given in the previous section there are
functions for which the maximal order is attained.
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LeMMA 4.1, The functions E,(x*) (u = 1,2, ..., n) are linearly independent over IK(q)(x)

Proof. Let us consider a linear combination
FE ) 4+ rE (%) + -+ 4 r,E,(x™) = 0,

where r, = r,(x) (w=1,2, ...,n) are rational functions and suppose that r, # 0. Then,

Byt = = ruEg(x"),

n=0,
wFEv
i.e.
faZd) _ (19)
=0 v Eqx”)
wEY
Since
m ;)
> e -
50 (G Dn . . oo, m=v,
A(m) = lim ™ - = limx"* ¥ =
X—00 q(z o X—00 0, n<v,
—— (")
= (G D
we have
. E (xM) ) +00,  w >,
1 q = limA(m) =
pooes E, (x?) st (m) { 0, wp<w
This is a contradiction with (19). Hence, it follows that r, = 0 for all w = 1,2, ...,n, ie.
E,(x*) (u=1,2, ...,n) are linearly independent over K(q)[x]. O
LemMA 4.2.  The function
Fo(x) = Y Eg(x") (20)
pn=1

is g-holonomic of order n.

Proof. The function E,(x) satisfies the g-holonomic equation of first order (see Example 2.4)
(I = @)+ DDy f(x) — f(x) = 0.

With respect to Theorem 3.4, for each u € N, the function E,(x*) is g-holonomic of first
order and one has

DL(E (x*) = £ (OE,(x*), 1=0,1, ..., 1)

where fg)ﬂ(x) are rational functions given as in (18).
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According to Theorem 3.2, the function F,(x) is g-holonomic of order at most n. Therefore
DLF,(x) =Y DY(E, ") =Y £, (0E,(x*).
u=1 u=1

Let us suppose that the function F,(x) satisfies a g-holonomic equation of order m, i.e.

m—1
DI F(x)+ Y ADLF,(x) = 0. (22)
i=0

This equation can be represented in the form

> ( o) + ZA 0 (x)) E,(x*)=0

p=1

Since E,(x*) (w = 1,2, ...,n) are linearly independent over K(g)[x], it follows that

<’">(x)+ZA f0,@0=0, nw=12.n

This can be written in the form of the system of equations

ZA fou® = ~f,@, w=12..n

with unknown rational functions A; = A;(x).
If m < n, then the system is overdetermined and has no solution. Hence it follows that
m=n. O

Note that similar results as in Lemmas 4.1 and 4.2 hold for the small g-exponential
function.
Using the functions (20) of Lemma 4.2, we get the following conclusions.

THEOREM 4.3.  Foreach n € N there is a function F which is g-holonomic of order n, such
that H = D,F is g-holonomic of order n.

Proof. The function defined by (20) satisfies the statement. O

THEOREM 4.4. For each n,m € N there are functions U and V that are g-holonomic of
order n and m respectively, such that H = U + 'V is g-holonomic of order n + m.

Proof. Consider the functions
n+m

U(x):ZEq(x“) and V(x) = Z E,(x"). (23)
n=1

u=n+1
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According to Lemma 4.2, they are g-holonomic of order n and m respectively, and the
function

n+m

Hx) = U+ V@) = > E,(x")
u=1
is g-holonomic of order n + m. O

THEOREM 4.5. For each n,m € N there are functions U and V that are g-holonomic of
order n and m respectively, such that H = U -V is g-holonomic of order n-m.

Proof. The statement is valid for the functions defined by (23), because in the function

n n+m

HE) = U)-VE) =Y > ExME,(x")
u=1 v=n+1
there are nm linearly independent summands E,(x*)E,(x”) (u=1,2,...,n; v=
n+1,n+2,...,n+m) over K(q)[x]. The proof of their independence is again based on
Lemma 4.1. U

THEOREM 4.6. Foreach n € N there is a function F which is g-holonomic of order n, such
that W(x) = F(x") is g-holonomic of order n.

Proof. Starting from the function F,(x) defined by (20), we can form
W(x) = Fy(x") =Y E,(*)
w=1

which is of the same type as F,(x). U
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