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Abstract

A method for the determination of sufficient conditions for #imost sure asymptotic stitity of some continuous systems,
when the damping coefficient is random time-dependent fumddcstudied. In this case, eéhprobabilistic property of the
derivative process of the damping coefficient is taken into account. The problem is solved by means Liapunov direct method,
and tested on a simply supported elastic beam, compressed by time-dependent stochastic axial force. Regions of almost sure
asymptotic stability as functions of the constant part of viscous damping coefficient and magnitude of an axial force are given.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

In recent studies of dynamic siéity of continuous systems, the constant viscous dampuefficient is presumed. Actually,
it is time-dependent, or precisely, it is a random function of time.

Taking this fact as a starting point oflstability of discrete systesnthe bounds of the regionsaymptotic stability, mean-
square stability and almost surabsility are determined. In the case when tlanping coefficient is a random time-dependent
function, it is more interesting to find a condition of the almost sure stability.

One of the first papers dedicated to this problem is givemiignie (1968), where the siiity theorem oflinear discrete
systems is defined, based on eigenvalue properties of the quadratic forms. Infante’s results are extended by Kozin and Wu
(1973), where proHality density of excitéion processes system parameters are known.

Using “best” quadratic Liapunov function from the previqueper, Kozin (1972) investigad almost surstability of con-
tinuous systems with a constant damping coefficient. In the case when the damping coefficient is time-dependent stochastic
function Kozin’s “best” functional based on the “best” quadratic function does not lead us to the problem solution. One of the
ways to overcome that problem is proposed in this paper.

Ariaratnam and Ly (1989) and Ariaratnam and Xie (1989), generalized earlier Infante (1968), Kozin and Wu’s (1973) results,
considering a linear system where system parameters are ergodic processes.
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The continuous systems considered in this paper are governed by a linear partial differential equation with random coef-
ficients. These coefficients are assumed to be stationary and ergodic in the stochastic case. It is desired to obtain sufficient
conditions for almost sure asymptotic stability of the equilibrium state of the system.

As an example, an isotropic, elastiedm with an ergodic, random damping coeéitiis considered. e condition of the
almost sure asymptotic stability was éetined by Liapunov direct method. Liapunfunctional was constructed as a sum
of modified kinetic energy and elastic energy of the system. Regions of the almost sure asymptotic stability as functions of
constant deterministic forces and one part of the damping coefficient are given.

2. Problem formulation

Let us consider a continuous dynamic system which occupies a bounded d@nveith the boundaryC in one, two or
three-dimensional spade}. Let us designate by (x, r) the displacement of the system from an equilibrium state which, for
simplicity, is taken asv(x,r) =0, ¢ is time (r > 0), and it is assumed that this displacement is governed by a linear partial
differential equation whose form is:

32w ow P

W+2(§+g(t))¥+3w+§[ﬁo+ﬂ(t)]3;w=0, xe®,1>0 @
with homogeneous time-independent boundary conditions:

Rw=0, xeC. 2

In this formulation 3, J; and R are linear spatial differential operators, is a positive constant, functiong(z),
f1), ..., fp(t) are measurable, strictly stationary functions whiatisfy an ergodic property insuring the equality of time
and ensemble averages, afi@, .. ., f,0 are constants.

For zero initial conditions, ifferential equation (1) pssesses trivial solutiom(x, t) = 0, which represents the equilibrium
state of the system. For non-pdnitial conditions in the form:

dw(x, 0)
at
the solutionw (x, t) of differential equation (1) will represent perturbation of the equilibrium state of the system.

The operatorss andS; (i =1, ..., p) contain only self-adjoint terms with constant coefficients. Hence, wheneyand
wo satisfy theboundary conditions (2):

/wl?swzdf):/wzi‘swldﬁ, /wlﬁiwzd.():/wz?siwld{), i=1...,p. 4)
2 9} 2 9}

We assume that the solution of Eq. (1) exists and belongs to an appropriate Hilbert space. The purpose of the present
paper is to derive the criteria for solgrthe following problem: will deviations frm the unperturbed state (equilibrium state)
be sufficiently small in a certain mathematical sense. To estimate a perturbed solution of Eq. (1) we introduce a measure of
distance| - || of the solution of Eq. (1) with non-trial initial conditions (3) from the triial one. Following Caughey and Gray
(1965), we shell say that the trivial solution of Eq. (1) is almost surely asymptotically stable if a measure of distance between
the perturbated solution and the trivial one tends to zero with probability one as time tends to infinity:

Pl lim Juen] =0} =1, ®)

w(x,0) =wg(x), =1px), xeL, 3)

3. Stability analysis

The transformation of the form:

t
w(x,t)=u(x,t)exp{—/g(r)dr} (6)
0
converts differential equation (1) to:
NPT P 3 =0 2.1>0 7
Szt o+§[ﬁo+f,~<t>]c; u—pnu=0 xef, 10, @)



R. Paviovi€ et al. / European Journal of Mechanics A/Solids 24 (2005) 81-87 83

where

o(t) = g2(t) + 252(t) + &(0). (8)

We construct the Liapunov functional as a sum of modified kinetic energy and elastic energy of the system:

p
V(u,v)= %/[(v—l—gu)z—l—gzuz—l-u(?su+Zfoi3,»u>:|d9, 9)

o i=1

wherev = du/dt. The functional is positive-definite if:

14
/u<fm+2fo,-s,-u) de >k/u2d9, (10)

2 i=1 Q

wherek > 0. Then the square root of functioriilcan be chosen as the measjiéx, ¢)|| = +/V of the distance of the disturbed
solution from the initial state.
The time derivative of the functional (9) is:

14 P
(jj_‘z/ = —/{gvz +v in(t)fsiu +cu |:3u + 2()”[0 + f,'(t))fsiui| —u(v+ gu)w(t)} dx. (11)
0 1= 1=

Let a scalar function.(r) be such that:

% < A(). (12)

Integration of this expression yields:

t

V() < V(0) epo%/m) dr“ (13)

0

and whenr — oo, relation (13) will be satisfied if:
1 t
lim —/A(t) dr <0 (14)
t—oo t
0

or, if processeg (1), (1), f1(t), ..., fp(¢) are ergodic and stationary:
E{r()} <O, (15)

where E is the operator of the mathematical expectation. Based on relation (13) we conclude that M2 =lim; 00 V =
0 and we obtain the following estimation:

t t
Jwex, )%= ||u(x,t)||zexp{—2/g(t)dt} =V(u,v)exp{—2/g(r)dr}
0 0

t

<Vp exp{/[k(r) - 2g(D)] dr}. (16)
0

According to (16), the trivial solutiomw = 0 of Eq. (1) will be almost surely asymptotically stable if:
E{r(t) — 2¢(1)} <O. (17)

If E{g(¢)} =0, relation (17) is reduced to (15).
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4. Example

Let us consider a thin, simply supported beam which is subjected to axial compressions and time-varying damping which
are assumed to be an ergodic random processes. The equation of transverse motion of the beam has the form:

32w ow 4w 92w
— +2 — 18
2 T (c+50) + o (fo+f(t)) 0, (18)
with bounday conditions:
By using transformation (6) differential equation (18) reduces to:
3%u du 0% 3%u
+2 +—+ + f(t))— —up()=0. 20
2 TSy T (fo+f®) 52~ e (20)
Liapunov functional has the form:
1
1 32u\? du\ 2
szf[(v+gu) +c%u +<a 2) —fo(a—z>]dz (21)
0
and its time derivative is:
dv a%u 9%u 9%u d -
e s tousg 4+§fou 2+f(t) 2(v+§u) p@u(v+ gu) | dz. (22)
0

Using the extremum properties of the minimal eigenvalues:

1 1
— ) dz> — ) dz 23
/(az2> ‘ ”/(a) : (23)
0 0
the functional (21) will be positive-definite if:

fo<n?, (24)

which represents Euler condition for the static stability of the beam.
As the maximum is a particular case of the stationary point, we put:

S(AV —V)=0. (25)

By using the associated Euler—Lagrange equations we obtain:

A+ 25)v +f(t)82” + (& ®))
_— _ u =
S 922 s—¢

(26)
9% 3%u 9% 9%u 3%v 9%u
[g(v 20w+ o7+ fo 5 ] +25< tfos ) +f(t)< 7 +2655 ) — 90+ 2u) =
From (26) we can eliminate one of the unknowns, sayielding the fourth-order equation i
3%u 9%u 9%u 9%
A 42002 — — | (A¢ +4 t
(A + §)<az4+foazz>+f()[(§+ S +<p()) f()a4]
52
u
+ (rs —g0(t))|:()»g+4g2+(p(t))u - f(t)g} =0. (27)
According to the boundary conditions (18 can write the solution in the form:
o (0.¢]
u@ 0 =Y Tu@®Un@) =Y Tt sinamz, (28)

m=1 m=1
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wherea,, = mm, and from (27) we obtain the unknown function:
262 + o2 (1) + §(1) +258(1) + 82(1))

Am(t)=—2¢ £ (29)
Vah@d — fo) + 52
The largest region of almost sure asymptotic stability is if:
2., .2 ; 2
) = M, (1) — max{—Zg 4 e+ f(O) 480 +268(1) + 80 } (30)
m m

Voh @3 — fo) +¢2

5. Numerical results and discussion

It is well known (Kozin and Wu, 1973}hat if joint probability densityp( f, g, ¢) of the excitation processes is available,
stability regions can be enfged. This improvement is shown for systerithnergodic Gaussian coefficients. We assume that
f(0), g(r) andg(r), with respect to their nature, are tglibuted independent Gaussiamdam processes wijbintly probability
density of the form:

o 86 &
VSR St T a
(21)3/20 o404 202 207 207
so that for any integrable function(t, g, £)
o
EfH(r0.0)) = [ [ [ Mo dptr 0.6 dr dga. (32)
—0Q
Changing to new variables defined by:
f g g
= , = , 0: 33
Sy "o T V2o 3
Eq. (17) becomes:
[o sl olNe o]
/ / /H(af,ag,ag,s,n,e)exp(—sz—nz—ezmwnde<2g, (34)
—00 —00 —00
where:
1262 4 V2m?7%0 & + 24/ 204 ¢ + 2020 4+ /2046 |
H(of,0q,04,8,1,0) = / $ $ e (35)

Vm?m2(m?72 — fo) + g2
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Fig. 1. Stability regions of the non-compressed beam as difumaf the constant part of the damping coefficient.
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Fig. 3. Stability region of the beam subjected to the stochastic compressive force wheR.

Solving inequality (34) was performed by extending Paviatial. (2001) numerical calculation, by using the corresponding
Gauss—Hermite quadratures. Almost sure stability regions are given as the functions of variances precegses, constant
component of viscous damping and compressive fggce

In Figs. 1 and 2 stability regions are shown whgém) = 0, i.e. the compressive force has only the deterministic tgyrive
can notice that the increase of the deterministic component of viscous damping and decrease of the compressive force enlarged
almost sure stability regions.

In Figs. 3 and 4 three dimemsial surface boundkstability space.

The results obtained in this paper can be of importancéiénstudy of the dynamic stdity of viscous damped elastic
structures in a randomly fluctuating supersonic flow field (with Mach number near unity).
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Fig. 4. Stability region of the beam subjected to the stochastic compressive force whed.
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