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Abstract

The dynamic stability problem of a viscoelastic Voigt–Kelvin rotating shaft subjected to action of axial forces at the ends is studied.

The shaft is of circular cross-section, it rotates at a constant rate about its longitudinal axis of symmetry. The effect of rotatory inertia of

the shaft cross-section is included in the present formulation. Each force consists of a constant part and a time-dependent stochastic

function. Closed form analytical solutions are obtained for simply supported boundary conditions. By using the direct Liapunov method

almost sure asymptotic stability conditions are obtained as the function of stochastic process variance, retardation time, angular velocity,

and geometric and physical parameters of the shaft. Numerical calculations are performed for the Gaussian process with a zero mean and

variance s2 as well as for harmonic process with amplitude H.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Rotating shafts, as elements of construction, often can take
position to lose stability. The stability problem of rotating
shafts arises when shafts are required to run smoothly at high
speed. Destabilizing factors can be compressive force, the
normal inertia force, as well as certain types of damping. So
internal damping has this effect, while external damping
generally has a stabilizing influence on the system.

The dynamic stability of rotating shafts, with omission
of the compressive force, was first analyzed by Bishop [1]
using a modal approach. The same problem using the
direct Liapunov method was examined by Parks and
Pritchard [2].

Shaw and Shaw [3] considered instabilities and bifurca-
tions in non-linear rotating shaft made of viscoelastic
Voigt–Kelvin material without compressive force.

Uniform stochastic stability of the rotating shafts, when
the axial force is a wide-band Gaussian process with zero
mean was studied by Tylikowski [4]. The rotating shaft

subjected to axial forces with simultaneous internal
damping (Voigt–Kelvin model) and external viscous
damping was analyzed by the same author [5].
Tylikowski and Hetnarski [6] examined the influence of

the activation through the change of the temperature on
dynamic stability of the shape memory alloy hybrid
rotating shaft.
Young and Gau [7,8] investigated dynamic stability of a

pre twisted cantilever beam with constant and non-
constant spin rates, subjected to axial random forces. By
using stochastic averaging method, they determined mean-
square stability condition in Ref. [7] and first and second
moment stability conditions in Ref. [8].
In the present paper almost sure stability of the rotating

viscoelastic Voigt–Kelvin shaft without accounting exter-
nal damping is investigated. The axial force is stochastic
process with known density function. Problem is solved by
direct Liapunov method, and stability regions are given as
function of geometric and physics parameters of the shaft.

2. Problem formulation

Let us consider a shaft rotating about its longitudinal
axis with angular velocity Ō, shown in Fig. 1. In this Figure
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(X, Y, Z) is rotating coordinate system where Z-axis
coincides with longitudinal axis of the rotating shaft.

According to Young and Gau [7], governing differential
equations can be written in the form
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� rI
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where u, v are flexural displacements in the X and Y

direction, r is mass density, A is area of the cross-section of
shaft, I is axial moment of inertia, E is Young modulus of

elasticity, ai is retardation time, T is time and Z is the axial
coordinate.
Using the following transformations:

Z ¼ z‘; e2 ¼
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ffiffiffiffiffiffiffiffiffiffiffi
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where ‘ is the length of the shaft and z is reduced
retardation time, we get governing equations as
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z 2 ð0; 1Þ.

Boundary conditions for the simply supported shaft are

uðt; 0Þ ¼ uðt; 1Þ ¼
q2u
qz2
ðt; 0Þ ¼

q2u

qz2
ðt; 1Þ ¼ 0,

vðt; 0Þ ¼ vðt; 1Þ ¼
q2v
qz2
ðt; 0Þ ¼

q2v

qz2
ðt; 1Þ ¼ 0. ð6Þ

The purpose of the present paper is the investigation of
almost sure asymptotic stability of the rotating shaft
subjected to stochastic time-dependent axial loads. To
estimate perturbated solutions it is necessary to introduce a
measure of distance k � k of solutions of Eqs. (4) and (5)
with nontrivial initial conditions and the trivial one.
Following Kozin [9], the equilibrium state of Eqs. (4) and
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Notation

A area of cross-section
I axial moment of inertia
E Young’s modulus
fcr dimensionless Euler’s critical force
fo dimensionless constant component of axial

force
f(t) dimensionless stochastic component of axial

force
F̄ axial force
l length of the shaft
r radius of gyration
p probability density function
P probability

t dimensionless time
T time
X, Y, Z shaft coordinates
z dimensionless axial shaft coordinate
u, v flexural displacements in X and Y direction,

respectively
V Liapunov’s functional
ai retardation time
z dimensionless retardation time
Ō angular velocity
O dimensionless angular velocity
r density
s2 variance of stochastic loading
E{ � } mathematical expectation
|| � || distance of solution from the trivial solution

Fig. 1. The rotating shaft and co-ordinate systems.
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(5) is said to be almost sure stochastically stable, if:

Pf lim
t!1
jjwð:; tÞjj ¼ 0g ¼ 1, (7)

where w ¼ col(u, v) matrix column.

3. Stability analyses

With the purpose of applying the Liapunov method, we
can construct the functional by means of the Parks–Pritch-
ard’s method [2]. Thus, let us write Eqs. (4) and (5) in the
formal form Lw ¼ 0; where L is the matrix

L ¼
‘11 ‘12

‘21 ‘22

" #
, (8)

with elements
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,

and introduce the linear operator:
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which is a formal derivative of the operator L with respect
to q/qt.

Integrating the scalar product of the vectors Lw <w on
rectangular C ¼ [z: 0pzp1]� [t:0ptpt] with respect to
Eqs. (4) and (5), it is clear

Z 1

0

Z t

0

Lw<wdzdt ¼ 0. (11)

After applying partial integration to Eq. (11), the sum of
two integrals may be obtained. In the first, integration is
only on the spatial domain, and it is chosen to be the
Liapunov functional:
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Since it is evident
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¼ 0, (13)

then the second integral in Eq. (11) is a time derivative of
the functional Eq. (12) along Eqs. (4) and (5):
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Functional V will be a Liapunov functional if it is a
positive definite. By using well known Steklov’s inequalities:Z 1

0

qnþ1u
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and omitting dynamical terms, we can write:

VX½p2ð1� f 0e
2Þ þ p4e2

� ðf 0 þ O2e2Þ�
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0

qu

qz
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þ
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so, the positive definite condition reduces to relation:

f 0pp2 �
O2e2

1þ p2e2
. (17)

4. Stability under constant axial force

If f(t) ¼ 0, and using relations (15), the first derivative of
Liapunov functional (14) will be negative definite when

f 0pp2 �
O2

p2
. (18)
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The relation (18) is stronger than (17) and represents the
dynamic stability condition of the rotating shaft under
constant force. We may observe that if fo ¼ fcr ¼ p2, where
fcr is Euler’s critical force, then O ¼ 0.

In the absence of axial force (fo ¼ 0), we find

Opp2 ) Ōp
p2

‘2

ffiffiffiffiffiffiffi
EI

rA

s
¼ o1, (19)

where o1 denotes the first natural frequency of the shaft at
rest. The angular velocity O may be larger if foo0 (i.e., fo is
tensile force).

5. Almost-sure stability

Let a scalar function l(t) be defined as

1

V

dV

dt
plðtÞ. (20)

As a maximum point is a particular case of the
stationary point, we may write:

dð _V � lVÞ ¼ 0. (21)

By using the associated Euler’s equations we obtain:
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After simplifying, we get two equations:
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(24)

According to the boundary condition (10), we may write
the solution in the form

uðz; tÞ ¼
X1
m¼1

UmTmðtÞ sin amz,

vðz; tÞ ¼
X1
m¼1

VmTmðtÞ sin amz, ð25Þ

where am ¼ mp and from Eq. (24) we obtain algebraic
equation:

Aml
2
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where
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2
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Hence, from Eq. (26)
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1þ e2a2m

�
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( )
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By solving the differential inequality (17), we obtain the
following estimation of the functional:

V ðtÞpV ð0Þ exp �t
1

t

Z t

0

lðtÞdt
� �� �

. (29)

Therefore, it can be stated that the trivial solution of
Eq. (9) is almost sure asymptotically stable if

lim
t!1

1

t

Z t

0

lðtÞdtp0, (30)

or, when the process f(t) is ergodic and stationary:

EflðtÞgp0, (31)

where E denotes the operator of the mathematical
expectation, and

lðtÞ ¼ max
m

lmðtÞ. (32)

6. Numerical results and discussion

The relations (30), (31) and (32) give us possibility to
obtain minimal retardation time z guaranteeing the
asymptotic and almost sure asymptotic stability called
critical retardation time. The domain where the retardation
times are greater than the critical retardation time is called
the stability region or almost sure stability region. The
stability regions are given as functions of loading variance,
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retardation time, angular velocity, dimensionless para-
meter e ¼ r/‘ where r ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration and

constant component of the axial loading for Gaussian and
harmonic process.

Knowledge of the probability density function p(f) for
the process f(t) gives us possibility to obtain more precise
results, (see Kozin, [9]). The boundaries of the almost sure
stability are calculated by using the corresponding Gaus-
s–Cristofel quadratures, and presented with a full line for
Gaussian process, and a dashed line for the harmonic one.
For Gaussian process we take the parameters of Gaus-
s–Hermite quadrature, and for harmonic process we set
f(t) ¼ H cos(ot+y), where H, o are fixed amplitude and
frequency, and y is a uniformly distributed random phase
on the interval [0,2p). In order to compare both processes
the variance of harmonic process s2 ¼ H2/2, is used, and
we take the Gauss–Chebyshev quadrature, (see Pavlović et
al. [10]). Calculations were performed for the first mode,
(m ¼ 1).

In Fig. 2 stability regions are plotted as a function of the
angular velocity when the influence of rotatory inertia is
neglected (e ¼ 0) and axial loading is absent fo ¼ 0. As
expected, the increase of the angular velocity leads to
stability regions decreasing.

Fig. 3 illustrates effect of cross-section rotatory inertia
on almost sure stability when angular velocity is fixed
(O ¼ 4). Even in case of very short shafts (e ¼ 0.1) rotatory
inertia neglecting (e ¼ 0) causes error less than 5%, while
for e ¼ 0.05 error is less than 1.2%.

The relations (30), (31) and (32) also give us possibility to
obtain critical angular velocity guaranteeing the almost
sure stability of the shaft.

In Figs. 4–6 stability regions are given as functions of
retardation time, constant component of axial force and
parameter e. Stability regions are larger when retardation
time increases and constant component of axial loading
changes from pressure (fo ¼ 4) to tension (fo ¼ �4).
Generally speaking, in technical problems influence of
rotatory inertia on dynamic stability of rotating shafts can
be neglected, except in case of very short shafts. In that

ARTICLE IN PRESS

Fig. 2. Influence of angular velocity on stability regions.

Fig. 3. Influence rotatory inertia on stability regions.

Fig. 4. Influence of retardation time on stability regions.

Fig. 5. The variance of stochastic process as a function of angular velocity

and rotatory inertia.

R. Pavlović et al. / International Journal of Mechanical Sciences 50 (2008) 359–364 363



Author's personal copy

case influence of transverse shear should be also taken into
account.

7. Conclusions

The dynamic stability of a viscoelastic rotating shaft
subjected to the axial random forces at the ends is
analyzed. By taking into account rotatory inertia of the
shaft cross-section, almost sure asymptotic stability condi-
tions are obtained. Stability regions are calculated for
Gaussian and harmonic processes, and shown in varian-
ce–retardation time and variance–angular velocity coordi-
nate systems.

According to previous, we can emphasize the following
conclusions:

1. In the classical case, when the rotatory inertia of cross-
section is neglected, increasing of the angular velocity
causes rapidly decreasing of the stability regions.

2. The rotatory inertia neglecting of the viscoelastic
Voigt–Kelvin rotating shaft causes error less than 5%.

3. Stability regions are noticeable larger when retardation
time increases.

4. Critical angular velocity and stability regions can be
enlarged by applying tension axial loading at the ends of
the rotating shaft.
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