
DDAASSMMxx  
Version 1.40, 18th October 2003 

A microprocessor opcode 
disassembler 

© Copyright 1996-2003  Conquest Consultants 



Copyright 
DASMx and all associated documentation are copyright Conquest Consultants. 

Disclaimer 
DASMx comes without any express or implied warranty.  You use this software at 
your own risk.  Conquest Consultants have no obligation to support or upgrade 
this software.  Conquest Consultants cannot be held responsible for any act of 
copyright infringement or other violation of applicable law that results from use of 
this disassembler software. 



Contents 
Introduction 1 

Version history 3 

Distribution 5 

Operation 5 
Platform..............................................................................................................6 
Command line options ....................................................................................7 
Input files ...........................................................................................................7 

Symbol file syntax.......................................................................................................................7 
Output files ........................................................................................................9 

Listing file ...................................................................................................................................10 
Code threading ..............................................................................................10 
Microprocessor specifics...............................................................................11 

Motorola 6800, 6802 and 6808...............................................................................................11 
Motorola 6801 and 6803.........................................................................................................12 
Hitach 6301 and 6303 .............................................................................................................12 
Motorola 6805 ..........................................................................................................................12 
Hitach 63L05 .............................................................................................................................12 
Motorola 68HC05 and 68HC705............................................................................................12 
Hitach 6305 ...............................................................................................................................13 
Motorola 6809 ..........................................................................................................................13 
MOS Technology/Rockwell 6502...........................................................................................13 
Rockwell 65C00/21 and 65C29 .............................................................................................13 
Rockwell 65C02, 65C102 and 65C112..................................................................................14 
Zilog Z80 .....................................................................................................................................14 
National Semiconductor NSC800 .........................................................................................14 
Sharp LR35902 (GameBoy processor) ..................................................................................14 
Intel MCS-80/85™ (8080 and 8085).......................................................................................15 
Intel MCS-48™ family (8048 etc.) ..........................................................................................16 
Intel MCS-51™ family (8051 etc.) ..........................................................................................16 
Signetics 2650 ...........................................................................................................................16 
RCA/Intersil CDP1802 COSMAC ............................................................................................17 
RCA/Intersil CDP1805 and CDP1806.....................................................................................17 
Microchip PIC16F83 and PIC16F84 .......................................................................................17 

Assembler pseudo operations ......................................................................18 
Number format................................................................................................18 

Future enhancements 20 

Contacting the author 20 

References 21 

 



 

Introduction 
DASMx is a disassembler for a range of common microprocessors.  The following 
main processor families are supported: 

 Motorola 6800 family and single chip variants (including Hitachi 630X 
devices); 

 Motorola 6809; 
 MOS Technology 6502 and Rockwell 65C0X; 
 Zilog Z80; 
 Sharp LR35902 (single chip Z80 variant as used in the Nintendo 

GameBoy); 
 Intel MCS-80/85TM family (i.e. 8080 and 8085); 
 Intel MCS-48TM family (i.e. 8048 et al); 
 Intel MCS-51TM family (i.e. 8051 et al); 
 Microchip PIC16CXX family; 
 RCA CDP1802 COSMAC and variants; 
 Signetics 2650. 

The disassembler takes as input a binary code/data image file (typically a ROM 
image) and generates either an assembler source file or a listing file.  DASMx is a 
multi-pass disassembler with automatic symbol generation.  DASMx can optionally 
use a symbol file containing user-defined symbols and specifications of data areas 
within the source image. 

DASMx includes a powerful feature called code threading.  Using known code entry 
points (e.g. reset and interrupt vectors) and by performing partial emulation of the 
processor, the disassembler is able to follow known code paths within a source 
binary image. 

Use of code threading, together with the multi-pass operation and symbol table 
management permits readable assembly code output from source images that 
contain large amounts of data (which tend to confuse most disassemblers). 

DASMx is copyright software.  This version (1.40) may be distributed and used 
freely provided that all files are included in the distribution, no files are modified 
(including the distribution zip file) and no charge is made beyond that reasonable 
to cover copying (maximum $10 US). 

Historical note: Version 1.10 of DASMx superseded the Motorola 680x 
disassembler, dasm6800 (last released as version 1.00 on 25th January 1997).  The 
change of name reflected the wide range of processors then covered. 

  Page 1  



 

The key features of DASMx are: 
 Disassembly of object code images for the following microprocessors: 

• Motorola 6800, 6802 and 6808; 
• Motorola 6801 and 6803; 
• Hitachi 6301 and 6303; 
• Motorola 6805; 
• Motorola 68HC05 
• Hitachi 6305; 
• Hitachi 63L05; 
• Motorola 6809; 
• MOS Technology/Rockwell 6502; 
• Rockwell 65C00/21 and 65C29; 
• Rockwell 65C02, 65C102 and 65C112; 
• Intel 8048; 
• Intel 8051; 
• Intel 8080 and 8085; 
• Microchip PIC16F83 and PIC16F84; 
• RCA CDP1802 COSMAC; 
• RCA CDP1805 and CDP1806; 
• Sharp LR35902 (i.e. GameBoy processor); 
• Signetics 2650; 
• Zilog Z80 and National Semiconductor NSC800. 

 Multi-pass operation, with automatic symbol generation for jump, call 
and data target addresses; 

 Code threading (used to automatically differentiate code from data); 
 Control file containing user defined symbols, specifications of data areas 

and code entry points; 
 Generation of full listing or assembler output file; 
 Runs from the Windows command line. 

  Page 2  



 

Version history 
 

Version Date Comments 
0.90 28th July 1996 First public release (as dasm6800): with 

support for 6800/6802/6808 only. 

1.00 25th January 1997 Second release (as dasm6800): 6801/6803 and 
6809 support added; other improvements in 
performance and listing output. 

1.10 16th July 1997 Third release (now renamed DASMx): 6502, 
Z80 and 8048 processor support added; minor 
improvements and bug fixes. 

1.20 2nd April 1998 8080, 8085 and 2650 processor support added; 
improvements and bug fixes. 

1.30 6th October 1999 6301, 6303, 65C00/21, 65C29, 65C02, 65C102, 
65C112, 8051 and LR35902 processor support 
added; wide listing format showing execution 
cycles; checksum and CRC-32 calculation; 
number format improvements; new symbol 
file directives; other improvements and bug 
fixes. 

1.40 18th October 2003 6805, 68HC05, 63L05, 6305, NSC800, CDP1802, 
CDP1805/1806, PIC16F83 and PIC16F84 
processor support added; new checksum 
utility; bug fixes and improvements. 

 

The changes from version 1.30 are: 
 Disassembly of 6805, 68HC05, 63L05 and 6305 added; 
 NSC800 CPU type added (identical instruction set to Z80); 
 Disassembly of RCA CDP1802 COSMAC and CDP1805/1806 added; 
 Disassembly of Microchip PIC16F83 and PIC16F84 added; 
 New DWORD data type in symbol file; 
 Symbol file code directive changed to allow length parameter; 
 Checksum command line utility added to distribution; 
 Origin now defaults to 0; 
 RCA and Acorn ARM number formats added; 
 Bug fixes and improvements to: 2650, 6502, 6809, 8051,  & GameBoy; 
 Bug fix: Signetics number type now allowed in symbol file; 

  Page 3  



 

 Improvements to code/data differentiation algorithm affecting 
disassembly for all processors. 

The changes between versions 1.20 and 1.30 were: 
 Disassembly of Hitachi 6301 and 6303 added; 
 Disassembly of Rockwell 65C00/21, 65C29, 65C02, 65C102 and 65C112 

added; 
 Disassembly of Intel 8051 added; 
 Disassembly of Sharp LR35902 (GameBoy processor) added; 
 Corrected documentation concerning Hitachi 6309 (which has, in fact, an 

identical instruction set to the 6809); 
 Labelling and threading improvements for 8080, 8085 and Z80 

disassembly (affects RST and indirect addressing instructions); 
 Correction to instruction format for 2650 lodz/eorz/andz/…; 
 New wide listing format showing execution cycles for each instruction; 
 File size, checksum and CCITT CRC-32 calculated and shown in listing 

header; 
 Auto number format determined by processor type (which can be 

overriden by a directive in the symbol file); 
 User messages can now be specified and generated from the symbol file; 
 Symbol file includes (which may be nested) now permitted. 

The changes between versions 1.10 and 1.20 were: 
 Disassembly of Intel 8080 and 8085 added (in addition to existing support 

for 8080 provided by Z80 disassembly); 
 Disassembly of Signetics 2650 added; 
 New symbol file command to skip areas of source image; 
 Origin can now be specified in symbol file; 
 New command line option to specify a single code entry point for 

threading; 
 New command line option to list all processors supported; 
 Fix to incorrect disassembly of 6801/6803 subd instruction (opcode 0x93); 
 Bug fixes and other minor changes. 

The changes between versions 1.00 and 1.10 were: 
 All references to “dasm6800” replaced by “DASMx”; 
 Disassembly of 6502 added; 
 Disassembly of Z80 added; 
 Disassembly of 8048 added; 
 Minor bug fix for code threading of 6801/6803 direct branch instructions; 
 Minor changes to listing output; 

  Page 4  



 

 Bug fixes and other minor improvements. 

The changes between versions 0.90 and 1.00 were: 
 Disassembly of 6801/6803 added; 
 Disassembly of 6809 added; 
 Define byte pseudo-op now generates full listing; 
 Two new commands supported in symbol file: cpu (to select processor 

type) and addrtab (to define a table of addresses, each of which points to 
data); 

 New command line switch to select processor type; 
 Performance improvement to pass 1; 
 Minor changes to listing output; 
 Bug fixes and other minor improvements. 

Distribution 
DASMx is copyright software.  This version (1.40) may be distributed and used 
freely provided that all files are included in the distribution, no files (including the 
distribution zip file) are modified and no charge is made beyond that reasonable to 
cover copying (maximum $10 US).  Conquest Consultants reserve the right to alter 
the free distribution and use terms for any future versions or derivatives of 
DASMx that may be produced. 

DASMx version 1.40 is distributed as file dasmx140.zip in the WinME / Win98 / 
Win95 / Programming Utilities section of the Simtel.net archive.  Provided that the 
above distribution terms are adhered to, this file may be freely copied to and 
mirrored at other ftp and web sites. 

Operation 
Before describing the operation of DASMx in detail, here is an overview of how 
the disassembler will be typically used in practice. 

First, you must obtain a file containing a binary image of the code/data that you 
wish to disassemble.  Typically, this will be from one or more ROMs or EPROMs 
that have been read using a PROM programmer.  Some PROM programmers 
output data in a form of ASCII hexadecimal format (Intel and Motorola are two 
common formats).  If that is the case, then you must use a conversion utility to 
generate a raw binary image.  A good check that you have a correct binary image 
of a complete ROM is that the file length (shown by a DIR command) will be a 
power of two and will correspond to the length of the ROM.  For example, the file 
size of a complete image of a 27256 EPROM will be 32,768 bytes. 

  Page 5  

http://www.simtel.net/


 

Assuming at this stage that you do not know which areas of the binary image are 
code and which are data, it is sensible to use the code threading feature.  For code 
threading to work, you must provide at least one code entry point.  This requires 
code, vector or vectab entries in a symbol file.  For example, if you are 
disassembling a ROM image from the uppermost region of the 6800 
microprocessor address space, then four vector entries for the standard interrupt 
and reset vectors will be all that is initially required to provide the necessary entry 
points.  You can also improve the readability of the disassembled output by 
defining symbols for all known hardware addresses (e.g. PIA registers and other 
ports). 

Try modifying one of the supplied example symbol files to suit your application.  It 
is important that the correct processor type is specified using a cpu directive in the 
symbol file (or by command line switch).  The disassembler will not make much 
sense of Z80 code if it thinks that the processor is a 6502! 

Run the disassembler with code threading.  This will identify all known areas of 
code.  Data and unknown areas will be listed as byte data rather than disassembled 
into instruction mnemonics.  Due to limitations of the code threading process (see 
below) not all code areas may be identified.  Any additional code entry points or 
address vector tables can be added to the symbol file.  Similarly, areas of byte, 
word or string data that can be identified from examination of the disassembly 
listing can also be recorded in the symbol file. 

Using a repeated “disassemble, inspect listing, update symbol file” cycle a 
comprehensive disassembly of an image can be built up quite quickly. 

Finally, if you are satisfied that you have identified all main data areas, try 
disassembling without code threading.  This will help pick up areas of code that 
may have been missed by the code threading and subsequent manual investigation 
process. 

Platform 
DASMx is a Win32 console application.  This means that it is a 32-bit application 
that requires Windows 95/98/Me or Windows NT/2000/XP to run.  Typically, 
you will run the disassembler from a command line window. 

  Page 6  



 

Command line options 
DASMx has the following command line options: 

-a Generate assembler output (default is to generate a full listing file). 

-cTYPE Set the CPU processor type – overrides any cpu statement in the 
symbol file, where TYPE is one of the types reported by the -l 
option (6800, 6809, 6502, Z80 etc.) (default is 6800). 

-eNNNN Specify a code entry point NNNN for threading. 

-l List all processors supported and exit. 

-oNNNN Set the origin, or start address to NNNN (default is top of address 
space less the length of the source image). 

-t Perform code threading (requires at least one code entry point to 
be specified). 

-v Display version information and exit. 

-w Wide listing format (shows instruction cycles and up to 8 data 
bytes per line). 

When specifying addresses, the number NNNN should be specified using C 
language conventions (i.e. default is decimal, prefix with 0x for hex, prefix with 0 
for octal). 

Input files 
The primary input file is a binary image of the code/data to be disassembled.  This 
must be code for one of the supported microprocessors (or other manufacturer 
equivalent).  DASMx will produce meaningless output for any other type of 
processor. 

DASMx assumes a file extension of “.bin” unless otherwise specified for the binary 
image file. 

DASMx looks for a symbol file of the same base name as the source binary file, but 
with a “.sym” file extension.  If a symbol file is found, it will be used.  Provision of 
a symbol file is optional, except where code threading is used (where a symbol file 
must be used to define at least one code entry point). 

Symbol file syntax 
The symbol file is a plain text file that may be created/modified with any text 
editor.  The file contains lines that fall into one of three categories: 

 Comment lines; 
 Command lines; 
 Blank lines. 

  Page 7  



 

Comment lines are denoted by ‘;’ as the first non-whitespace character on the line.  
Command lines start with one of the specified keywords.  Parameters follow the 
command keyword, separated by spaces or tabs.  A comment may be added to the 
end of a command, preceded by the ‘;’ character.  Blank lines are ignored. 

Number value parameters may be given in decimal (the default), octal or hex using 
standard C language conventions (e.g. 0x prefix for hex). 

The symbol file command syntax contains an include directive which allows one 
symbol file to be included within another.  Included files may be nested to any 
practical depth.  A particular use of this feature is to have a symbol file containing 
a generic set of defintions for a processor or item of hardware.  This can then be 
included within a symbol file with additional definitions for a specific software 
image that runs on that processor/hardware.  The pair of example files, 
gameboy.sym and tetris.sym, shows this in action with generic GameBoy 
definitions in one file and specific defintions for a tetris game cartidge in the other. 

Valid command keywords and their meaning are summarised in the table below. 

 

  Page 8  



 

Command Function/syntax 
cpu Specify the processor type. 

Syntax: cpu PIC16F83 | PIC16F84 | 1802 | 1805 | 2650 | 6502 | 
65C00 | 65C02 | 65C59 | 65C102 | 65C112 | 6301 | 6303 | 6305 
| 63L05 | 6800 | 6801 | 6802 | 6803 | 6805 | 68HC05 | 6808 | 
6809 | 8048 | 8051 | 8080 | 8085 | Z80 | LR35902 

numformat Specify number format (overriding default for processor) as ARM, Intel, 
Motorola, RCA, Signetics, C language hex (i.e. 0x prefix) or decimal. 
Syntax: numformat A | I | M | R | S | C | D 

include Include a file containing additional symbol commands.  Include filess may be 
nested. 
Syntax: include <filename> 

message Generate a message to the console during disassembly. 
Syntax: message "<message string>" 
or: message <word1> [<word2> <word3> ...] 

org Define the start address for the first byte of the code/data image.  Note that only 
one org statement should be present in a symbol file. 
Syntax: org <address> 

symbol Define a symbol corresponding to a value (usually an address). 
Syntax: symbol <value> <name> 

vector Define a location that contains a word pointing to a code entry (for example, the 
reset entry point). 
Syntax: vector <address> [<vector name>] [<destination name>] 

vectab Define a table of vectors (i.e. a jump table) of length <count>.  Each vector will be 
used as a code entry point if threading is used. 
Syntax: vectab <address> <name> [<count>] 

code Define a code entry point (for code threading).  Optionally, <count> may specify 
the length of the code region in instruction words. 
Syntax: code <address> [<name>] [<count>] 

byte Define a single data byte, or <count> length array of bytes. 
Syntax: byte <address> <name> [<count>] 

word Define a single data word, or <count> length array of words. 
Syntax: word <address> <name> [<count>] 

addrtab Define a table of addresses, which point to data, of length <count>. 
Syntax: addrtab <address> <name> [<count>] 

string Define a single data character, or <count> length string of chars. 
Syntax: string <address> <name> [<count>] 

skip Skip (i.e. omit from disassembly and listing) <count> length data bytes. 
Syntax: skip <address> <count> 

Output files 
By default, DASMx generates a disassembly listing file.  This is similar to the full 
listing file generated by most assemblers.  Optionally, DASMx can be made to 
produce an assembly file instead.  This could then be used as a source file to an 
assembler of your choice (with certain provisos concerning pseudo-ops and 
number formats noted later). 

  Page 9  



 

As an aid to readability, DASMx inserts a comment line after all breaks in a 
sequence of instructions (e.g. after an unconditional branch or jump, or a return 
from subroutine).  Comment lines are also inserted between code and data areas.  
This use of comment lines breaks the output listing into identifiable sections and 
aids manual inspection of the resultant disassembly listing. 

Note that output files tend to be large.  For example, a 32 Kbyte ROM image will 
generate a listing file of around half a megabyte in length. 

The output file is named based upon the name of the source image file, but with a 
file extension of “.lst” for the list file or “.asm” for the assembly output file. 

Listing file 
The list file format is largely self-explanatory.  Program counter and code/data 
byte values are given in hex.  Code/data is also shown as ASCII characters (where 
printable) as an aid to identifying strings within the binary image.  If the wide 
listing format is selected then instruction cycle counts are also given for every 
instruction. 

Instruction cycles are shown within [square braces].  If an instruction takes a 
variable number of cycles to execute (e.g. a conditional branch on many 
processors) then two values are shown: the minimum and the maximum. 

Code threading 
Code threading is a very powerful feature that will automatically identify known 
areas of code.  It can prove particularly useful in the early stages of disassembly of 
an image that contains large areas of data.  Such data areas would otherwise be 
disassembled incorrectly as code and would add many erroneous symbols to the 
symbol table. 

Code threading works by performing a partial emulation of the processor; 
executing instructions starting from one or more known entry points.  Code 
threading follows calls to subroutines and conditional and unconditional branches.  
In certain cases, the code threading may fail to follow certain code paths (i.e. 
leaving valid code still defined as data).  The following are examples of where the 
code threader will fail to follow a correct execution path: 

 Pushing an address onto the stack and then, later, performing a return 
from subroutine instruction (i.e. as a method of performing a jump); 

 Performing an indexed branch instruction (e.g. using addresses taken 
from a vector table); 

 Use of undocumented instruction opcodes – since threads are abandoned 
when an invalid opcode is detected; 

 Self-modifying code. 

  Page 10  



 

Indexed branch instructions are highlighted in the output listing by automatically 
generated comments.  These are an indication that you need to manually identify 
what the contents of the index register will be prior to the branch (often obvious – 
look for a preceding load index register instruction.)  Then, you can add a code or 
a vectab entry to the symbol file and repeat the disassembly. 

In rare cases, code threading may incorrectly identify data as code: 
 A call to a subroutine that never returns (e.g. the subroutine discards the 

return address); the other side of the call containing data rather than code. 
 A conditional branch that is always, or never, executed (and the other side 

of the branch contains data rather than code). 

Normally this latter scenario is pretty unlikely and requires a particularly perverse 
programmer of the original code.  However, it is a technique that may be 
encountered on those processors that have a “better” (i.e. fewer cycles and/or 
fewer bytes) conditional jump than unconditional jump.  So, in general, code 
threading will identify guaranteed known areas of code that may be a subset of the 
overall actual code.  Most of the above problem areas can be dealt with by manual 
inspection of the disassembly listing and subsequent additions to the symbol file. 

A thread of execution will be abandoned for one of two reasons.  If a branch or 
subroutine call is made outside the address range corresponding to the source 
image then that thread is not followed.  Also, if an invalid instruction is detected 
then the thread terminates immediately.  This will produce a command line error 
message identifying the address where the problem occurred.  Normally this 
represents an error condition that can be corrected by the person operating the 
disassembler: 

 The processor type is incorrectly specified; 
 The source binary image is not real code; 
 An incorrect code entry point has been supplied; 
 So called “undocumented” instructions have been used. 

In rare cases, the original programmer may have done something that causes the 
code threader to incorrectly identify data as code.  These cases may also result in 
invalid instruction messages. 

Microprocessor specifics 
The following sub-sections detail items of note relating to disassembly for the 
specific microprocessors (and their variants) supported by DASMx. 

Motorola 6800, 6802 and 6808 
The Motorola 6800, 6802 and 6808 share an identical instruction set. 

  Page 11  



 

Assembler mnemonics follow the Motorola standard definitions (see reference [1]).  
Note that there are two common styles for instructions that involve the A and B 
registers: 

 The A or B register name is separated by whitespace from the base 
instruction (e.g. lda b value); 

 The A or B register name is used as a suffix to the instruction mnemonic 
(e.g. ldab value). 

DASMx uses the latter style.  This point also applies to the 6801/6803 and 6809 
mnemonics generated by the disassembler. 

Motorola 6801 and 6803 
The Motorola 6801 and 6803 share an identical instruction set that is an object code 
compatible superset of that of the base 6800.  These processors contain on-chip 
timer and I/O plus an expanded interrupt vector area over that of the 6800.  
Definitions for these in a symbol file will be useful for disassembly of any 
6801/6803 code.  See the supplied 6803 symbol file, ebcgame.sym, for an example 
that could be used as a template for other 6801/6803 disassembly. 

Hitach 6301 and 6303 
The Hitachi 6301 and 6303 are enhanced versions of the Motorola 6801/6803 with 
an enhanced object code compatible instruction set.  Differences include a few 
additional instructions and pipelining that improves some instruction times. 

Motorola 6805 
The 6805 is another single chip microprocessor from Motorola.  But, unlike the 
6801/6803 it has an instruction set that no longer object code compatible with the 
original 6800.  Mostly found in embedded applications, the 6805 formed the 
starting point for a series of microprocessors from Motorola and Hitachi. 

Hitach 63L05 
The Hitachi 63L05 has an identical instruction set to the Motorola 6805, but with 
different cycle counts for some instructions. 

Motorola 68HC05 and 68HC705 
The Motorola 68HC05 and 68HC705 have an instruction set that is a superset of the 
Motorola 6805.  It has three extra instructions: stop, wait and mul.  There are also 
cycle count differences from the base 6805. 

  Page 12  



 

Hitach 6305 
The Hitachi 6305 has an instruction set that is a superset of the Motorola 6805.  It 
has three extra instructions: stop, wait and daa.  There are also cycle count 
differences from the base 6805. 

Motorola 6809 
The Motorola 6809 has an instruction set that is compatible with that of the 6800 at 
the assembler level (i.e. it is not binary compatible, but every 6800 instruction 
mnemonic is present in the 6809 instruction set).  The 6809 also has many 
additional instructions that are not present in the 6800. 

Note:the Hitachi 6309 was incorrectly included in earlier versions of DASMx as having an 
identical instruction set to the 6809.  This mistake was due to incorrect information in a 
Hitachi data book.  It is now understood that the 6309 has a greatly expanded set of 
instructions over the 6809.  Full support for the 6309 may be added in a future version of 
DASMx. 

MOS Technology/Rockwell 6502 
The MOS Technology/Rockwell 6502 has a similar instruction set to that of the 
6800 (but totally opcode incompatible). 

A number of 6502 variants, with expanded instruction sets and addressing 
capabilities have appeared over the years.  DASMx copes with some, but not all, of 
these variants (see next sections).  If you know that a processor is based on the 6502 
architecture, but are unsure of the variant then try disassembling with the CPU 
type set to 6502, 65C02 and 65C00.  Inspect the results and select whichever gives 
the most intelligent disassembly.  [Tip: try this with code threading and select the 
processor that gives least threading errors.] 

Rockwell 65C00/21 and 65C29 
The Rockwell 65C00/21 and 65C29 each contain two enhanced CMOS 6502 CPU 
cores plus on-chip masked ROM, RAM, two timers and general purpose I/O.  
Instruction set differences over the basic NMOS 6502 include new instructions for 
unsigned multiply, memory bit set and reset, branch on bit set/reset, 
unconditional branch and push/pop for the index registers.  With the exception of 
the multiply instruction, these new instructions are a subset of the additional 
instructions in the 65C02. 

Note that the CPU type for the 65C00/21 should be specified as 65C00 (i.e. 
without the trailing “/21”). 

  Page 13  



 

Rockwell 65C02, 65C102 and 65C112 
The Rockwell 65C02 is an improved version of, and object code compatible with, 
the original NMOS 6502 with twelve new basic instructions (giving 59 new 
opcodes with variants).  The 65C02 is pin compatible with the original 6502.  The 
65C102 is similar, but with minor pinout differences to provide for multi-processor 
bus operation.  The 65C112 has no internal clock oscillator and is designed as a 
slave processor to the 65C102.  The extra instructions include all of the additions 
found in the 65C00/21 and 65C29 dual processors – with the exception of the 
multiply instruction found in those devices. 

Zilog Z80 
The Zilog Z80 (also made by Mostek, Sharp, NEC and other second sources) has an 
instruction set that is binary compatible with that of the Intel 8080, but with many 
additional instructions.  Although each 8080 instruction has an identical Z80 
instruction, Zilog chose to use a different mnemonic style for almost every 
instruction.  Consequently, Z80 assembler (even if restricted to the 8080 subset) 
appears quite different even though the resulting binary image is identical. 

The Z80 has a great many (so called) undocumented instructions that (sometimes) 
perform useful functions.  DASMx does not currently support these additional 
instructions. 

Like the 6502, the Z80 has spawned many variants with opcode compatible 
instruction supersets.  DASMx can be used on code for these devices with the 
standard caveat that any of the new instructions will not be disassembled as valid 
code (and therefore code threading is not advised.) 

National Semiconductor NSC800 
The National Semiconductor NSC800 has an identical instruction set to the Zilog 
Z80.  The differences between a Z80 and the NSC800 were all electrical.  The 
NSC800 was fabricated in a CMOS process called P2CMOS.  It also had a bus 
architecture that was compatible with the Intel 8080 (i.e. multiplexed address and 
data bus) and was therefore not pin compatible with a standard Z80. 

Sharp LR35902 (GameBoy processor) 
The Sharp LR35902 is the processor used in the hugely popular Nintendo 
GameBoy.  This processor is a single chip variant of the Zilog Z80.  The instruction 
set is based on a subset of that of the Z80 but with some additional instructions.  Of 
those instructions that are shared with the Z80, most are opcode compatible but 
there are a few differences. 

As a single chip microcontroller, the LR35902 contains various on-chip I/O and 
timer functions.  These are accessed through a 256 byte memory page starting at 
address 0xFF00.  The supplied file, gameboy.sym, contains a set of known symbol 

  Page 14  



 

definitions for these memory mapped registers.  This generic GameBoy processor 
symbol file may be included in the main symbol file for the disassembly of a 
specific binary image.  The supplied tetris.sym file shows an example of this. 

 
WARNING: unlike all the other processors supported by DASMx, it 
has not been possible to obtain official manufacturer's data on the 
Sharp LR35902.  The information used is derived from a number of 
different public domain documents – some of which conflict over 
certain details.  Consequently, the LR35902 disassembly should be 
considered provisional and potentially subject to error. 

If anyone has access to genuine Sharp (or other official) data on this 
device please contact the author: pclare@bigfoot.com. 

 

Intel MCS-80/85™ (8080 and 8085) 
The Intel 8080 and 8085 share an almost identical instruction set.  The Intel 8085 is 
an enhanced version of the 8080, with two additional instructions (rim and sim) 
used to control new serial in and out pins and interrupt inputs. 

When disassembling 8080 (and, with provisos, 8085) code the user has the option 
of generating either Intel or Zilog mnemonics.  To generate Intel mnemonics, 
simply specify the CPU type to be 8080 or 8085 as required. 

Generating Zilog Z80 style mnemonics from Intel 8080 code is possible because the 
8080 has an instruction set that is a compatible binary subset of those of the Z80.  
Simply specify the CPU type is as Z80 and DASMx will correctly disassemble 8080 
code into Zilog mnemonics.  This will not suit Intel assembler die-hards, but may 
be preferred by those more familiar with the Z80. 

WARNING: if DASMx is used as a Z80 disassembler on 8085 code and either of 
the two 8085 specific instructions are used  (rim and sim) then problems will 
result.  In such cases Zilog disassembly is probably best avoided.  If you really 
must have Zilog mnemonics then read the following description of how these 
instructions are handled and be prepared for code threading to work incorrectly. 

rim is a one byte instruction, but DASMx will attempt to disassemble this as the 
two byte jr nz Z80 instruction.  This will both generate a false label and ignore 
the next byte in the 8085 opcode stream.  Since that could be the first byte in a 
multi-byte opcode it could take a number of erroneously disassembled instructions 
before synchronisation is achieved. 

sim is a one byte instruction that will be disassembled as the first byte of the three 
byte ld hl immediate instruction.  The results will be similar to those for rim. 

  Page 15  

mailto:pclare@bigfoot.com


 

Intel MCS-48™ family (8048 etc.) 
DASMx will disassemble opcodes for the following Intel MCS-48™ family devices 
(and equivalents from second source manufacturers): 8021, 8022, 8035, 8039, 8041, 
8741, 8048, 8049 and 8748.  The CPU type should be set to 8048 and the term 
"8048" is used throughout this documentation to refer to this family of devices. 

The 8021 instruction set is a much reduced subset of the full 8048 set of 
instructions. 

The 8022 has a very similar instruction set to the 8021, but with slightly more of the 
8048 instructions and a few new instructions to handle the on-chip analogue to 
digital converter. 

The 8041/8741 has almost the same instruction set as the 8048, but with just a few 
instructions missing. 

DASMx can disassemble code for the 8021, 8022, 8041 and 8741 variants with the 
caveat that data areas may be disassembled as 8048 instructions that are in fact 
illegal on the variant. 

The 8048 jump and call instructions operate on an 11-bit address (i.e. within a 
2 Kbyte memory bank).  A memory bank select bit (controlled by the sel mb0 and 
sel mb1 instructions) is combined with the 11-bit jump/call address to give full 
12-bit addressing within the 4 Kbyte address space of the 8048.  This presents a 
problem for the code threading and automatic label generation functions of 
DASMx since a destination address can only be fully calculated if the last memory 
bank select operation is known.  Tracking the state of the memory bank select bit is 
currently beyond the capabilities of DASMx.  For this reason, it is advised that 
code threading be not used if the size of the 8048 source image exceeds 2 Kbytes.  If 
images greater than this are disassembled, even with threading disabled, some 
errors in automatically generated labels may be expected. 

Intel MCS-51™ family (8051 etc.) 
Intel introduced the 8051 to provide an upgrade path from the 8048.  It would do 
all that the 8048 would do and more.  The heritage of the 8048 is obvious in the 
architecture and instruction set of the 8051. 

Like the 8048, the 8051 was initially available in a number of variants (e.g. 8031 and 
8751).  Subsequently, many further variants of the 8051 have been produced by 
Intel and by other manufacturers.  Some of these added to the instruction set. 

DASMx will only correctly disassemble code for the original 8051 devices that 
shared the MCS-51™ instruction set. 

Signetics 2650 
The Signetics 2650 is a rather oddball processor when compared to most other 8-bit 
processors handled by DASMx.  It operates on 8-bit data and can address 32,768 

  Page 16  



 

bytes of memory organised in four pages of 8,192 bytes each.  It has a large range 
of addressing modes, made possible by the use of bits encoded in the second byte 
of two and three byte instructions.  It has a 3-bit stack pointer, which means that 
subroutines can be nested to, at most, eight deep. 

RCA/Intersil CDP1802 COSMAC 
The CDP1802 is a single chip implementation of the earlier CDP1801/CDP18101 
two-chip pairing.  Its main novelty at the time of launch was fabrication using 
CMOS technology (at a time when most microprocessors were being made using 
NMOS).  Its internal register architecture is also a little bit different from most 
contemporary processors.  It is well endowed with registers – sixteen 16-bit to be 
precise – any one of which can be designated the Program Counter and another the 
Stack Pointer.  Unusually for processors of the era it also had rudimentary DMA 
capabilities. 

With just one exception, every possible 8-bit instruction opcode is valid.  This 
means that attempting to disassemble data will usually produce sequences of 
“code”. 

RCA/Intersil CDP1805 and CDP1806 
Using the one invalid opcode in the CDP1802 instruction set as a prefix instruction 
allowed the instruction set of the CDP1805 and CDP1806 to be expanded over that 
of the similar CDP1802 COSMAC. 

Microchip PIC16F83 and PIC16F84 
The Microchip PIC16F83 and PIC16F84 are both members of the Microchip 
PIC16CXX family of 8-bit microcontrollers.  These devices include on-board flash 
memory for program storage.  Other members of the family have ROM instead of 
flash memory.  These are known as the PIC16CR83 and PIC16CR84.  The 
processors are classified as “8-bit” due to the basic size of data transfers.  However, 
program memory is organised in 14-bit words with each instruction occupying a 
single 14-bit word.  DASMx assumes that the code image contains these 14-bit 
words, each aligned to a 16-bit boundary – each 16 bits of the code image 
containing the 14 actual bits with the top two bits set to zero.  These 16 bit words 
are assumed to be in little endian format. 

The PIC16F83 et al represent just a common example of processors in the 
PIC16CXX family.  They have an expanded instruction set over the PIC16C5X, for 
example.  Consequently, DASMx may be used to disassemble code intended for 
other PIC processors with some success.  Future versions of DASMx may add 
explicit support for all these variants. 

  Page 17  



 

Assembler pseudo operations 
Assembler pseudo operations (e.g. that to define a data word) are not in a standard 
style that matches the chosen processor.  The pseudo-ops are common across all 
processor disassembly output.  In general, the pseudo-ops follow Intel 
conventions: 

 The ‘;’ character to denote a comment; 
 The ‘:’ character following a label; 
 db, to define a data byte, character or string; 
 dw, to define a data word; 
 org, to specify a starting address. 

If these do not suit your preferred assembler, then use of search and replace in a 
text editor can probably effect the required changes. 

Number format 
Microprocessor manufacturers have chosen a variety of different formats1 for 
representing hexadecimal numbers. 

DASMx supports seven different hex number format styles.  These are 
summarised in the table below, with an example in each case for the hex number 
F12C. 

 
Number format numformat parameter Example 
ARM A &F12C 

Intel I 0F12CH 

Motorola M $F12C 

RCA R #F12C 

Signetics S H’F12C’ 

C language C 0xF12C 

Decimal D 61740 

 

DASMx chooses a default number format according to the CPU type setting.  A 
numformat statement in the symbol file can override the default choice.  The 
number format defaults for the processors supported by DASMx are given in the 
following table. 

                                                 
1 Some sort of formatting is essential; otherwise a hex number starting with an alpha character 
could be confused with a label or symbol name. 

  Page 18  



 

 
Manufacturer cpu parameter Format 
Microchip PIC16F83 C language 
Microchip PIC16F84 C language 
RCA 1802 RCA 
RCA 1805 RCA 
Signetics 2650 Signetics 
MOS Technology 6502 Motorola 
Rockwell 65C00 Motorola 
Rockwell 65C02 Motorola 
Rockwell 65C29 Motorola 
Rockwell 65C102 Motorola 
Rockwell 65C112 Motorola 
Hitachi 6301 Motorola 
Hitachi 6303 Motorola 
Hitachi 6305 Motorola 
Hitachi 63L05 Motorola 
Motorola 6800 Motorola 
Motorola 6801 Motorola 
Motorola 6802 Motorola 
Motorola 6803 Motorola 
Motorola 6805 Motorola 
Motorola 68HC05 Motorola 
Motorola 6808 Motorola 
Motorola 6809 Motorola 
Intel 8048 Intel 
Intel 8051 Intel 
Intel 8080 Intel 
Intel 8085 Intel 
Zilog Z80 Intel 
Sharp LR35902 Intel 

 

The number formatting applies to all operands in disassembled instructions with 
the exception of small positive or negative offsets in 6809 index instructions.  These 
are given as a signed decimal number. 

  Page 19  



 

Future enhancements 
Whilst there is no guarantee that future versions of this disassembler software will 
be released, some or all of the following areas are likely to receive attention in any 
future version: 

 Fixing any errors discovered in the instruction mnemonics or disassembly 
of an opcode to its instruction; 

 Rationalisation of the pseudo-ops such that the assembler output can be 
fed directly into at least one common assembler without further text 
editing; 

 Improved code threading (through use of a more complete emulation of 
the processor); 

 Improved symbol table output in listing file; 
 Specifying comments in the symbol file for inclusion in the output files; 
 Additional memory map output in listing file; 
 Better support for 8048 code greater than 2 Kbytes and for 8048 variants; 
 Support for additional microprocessors; 
 Support for further variants of the currently supported processors; 
 Disassembly of commonly known “undocumented” instructions. 

Fixing actual disassembly errors (if any are discovered) will be treated with 
priority. 

Note that it is not currently intended to support platforms other than Windows 
95/98/Me or Windows NT/2000/XP.  In particular, there will be no 16-bit 
versions for DOS or any other 16-bit operating systems.  If the demand exists, a 
Linux version may be produced. 

Contacting the author 
Feedback to Conquest Consultants may be made via pclare@bigfoot.com. 

  Page 20  

mailto:pclare@bigfoot.com


 

References 
The following publications were referred to in the course of the development of 
DASMx.  This may also be considered to be a useful reference list for anyone 
programming these processors at assembler level and/or inspecting the output of 
DASMx. 

[1] M6800 Microprocessor Applications Manual, Motorola Semiconductor 
Products Inc., First Edition, 1975. 

[2] Hitachi Microcomputer Databook 8-bit HD6800 & 16-bit HD68000, Hitachi 
Ltd., March 1983. 

[3] Programming the 6502, Rodnay Zaks, Sybex, ISBN 0-89588-046-6, Third 
Edition, 1980. 

[4] 6502 Assembly Language Programming, Lance A.Leventhal, 
Osborne/McGraw-Hill, ISBN 0-931988-27-6, 1979. 

[5] 6502 Assembly Language Programming, Second Edition, Lance A.Leventhal, 
Osborne/McGraw-Hill, ISBN 0-07-881216-X, 1986. 

[6] R650X and R651X Microprocessors (CPU), Rockwell, 29000D39, Data Sheet 
D39, Revision 6, February 1984. 

[7] MCS6500 Microcomputer Family Programming Manual, MOS Technology 
Inc., Second Edition, Publication Number 6500-50A, January 1976. 

[8] 1984 Data Book, Semiconductor Products Division, Rockwell International, 
March 1984. 

[9] TLCS-Z80 System Manual, Toshiba, 4419 '84-05(CK), June 1984. 

[10] Microcomputer Components Databook, Mostek, MK79778, July 1979. 

[11] Z80-Assembly Language Programming Manual, Zilog, 03-0002-01, Rev B, 
April 1980. 

[12] The MCS-80/85 Family User's Manual, Intel, ISBN 1-55512-009-1, 1986. 

[13] MCS-48TM User's Manual, Intel, 9800270D, July 1978. 

[14] 48-Series Microprocessors Handbook, National Semiconductor, 1980. 

[15] Component Data Catalog, Intel, 1980. 

[16] An Introduction to Microcomputers: Volume 1, Basic Concepts, Second Edition, 
Adam Osborne, Osborne/McGraw-Hill, ISBN 0-931988-34-9, 1980. 

[17] Osborne 4 & 8-Bit Microprocessor Handbook, Adam Osborne & Gerry Kane, 
Osborne/McGraw-Hill, ISBN 0-931988-42-X, 1980. 

[18] 2650A/2650A-1 Data Sheet, Signetics. 

  Page 21  



 

  Page 22  

 


	Introduction
	Version history
	Distribution
	Operation
	Platform
	Command line options
	Input files
	Symbol file syntax

	Output files
	Listing file

	Code threading
	Microprocessor specifics
	Motorola 6800, 6802 and 6808
	Motorola 6801 and 6803
	Hitach 6301 and 6303
	Motorola 6805
	Hitach 63L05
	Motorola 68HC05 and 68HC705
	Hitach 6305
	Motorola 6809
	MOS Technology/Rockwell 6502
	Rockwell 65C00/21 and 65C29
	Rockwell 65C02, 65C102 and 65C112
	Zilog Z80
	National Semiconductor NSC800
	Sharp LR35902 (GameBoy processor)
	Intel MCS-80/85™ \(8080 and 8085\)
	Intel MCS-48™ family \(8048 etc.\)
	Intel MCS-51™ family \(8051 etc.\)
	Signetics 2650
	RCA/Intersil CDP1802 COSMAC
	RCA/Intersil CDP1805 and CDP1806
	Microchip PIC16F83 and PIC16F84

	Assembler pseudo operations
	Number format

	Future enhancements
	Contacting the author
	References

