
An Architecture for the Evolution of Web Applications
Paulo Caroli

Computer Science Department
PUC-Rio, R. Marquês de S. Vicente,

225, Rio de Janeiro, RJ, Brazil,

22453-900

caroli@les.inf.puc-rio.br

Carlos José P. de Lucena
Computer Science Department

PUC-Rio, R. Marquês de S. Vicente,
225, Rio de Janeiro, RJ, Brazil,

22453-900

lucena@inf.puc-rio.br

Marcus Fontoura
Computer Science Department

Princeton University, 35 Olden Street,
Princeton, New Jersey, USA, 08544

mfontoura@acm.org

ABSTRACT
This work presents a software architecture that is especially
useful for managing the evolution of web applications. Web-based
systems are a range of applications for which there are no
technological standards and new concepts and tools are currently
under evolution. Examples of this lack of standards include the
transition from CGI scripts to Java Servlets and to Java Server
Pages (JSP). Therefore, the maintenance and evolution of web
applications is an important topic for software developers and the
software research community. The proposed architecture
combines the n-tier, broker, and blackboard architectural patterns.

1. THE ARCHITECTURE
A 3-layered architecture [1] separates the system functionality
into user interface, business logic, and persistency. Brokers [4]
encapsulate the interface between layers. Finally, a blackboard
class repository models entities that do not naturally belong to
any of the three layers. Figure 1 abstractly illustrates this hybrid
architecture.

The interface layer is responsible only for validating the user
interface input (e.g. verifying if all required fields have been
provided). It does not perform any business operation.
Technologies generally used in this layer include HTML, Java
Servlets, and JSP.

The business layer models the business logic, independently from
the access interfaces and persistency models. This layer focuses
on the system behavior – the business rules – and not on the data
being manipulated, which is modeled by blackboard classes.

The persistency layer is responsible for the physical storage of
the data. It may use a wide variety of persistency models, from
flat files to complex frameworks for handling heterogeneous
databases [3].

The brokers that implement the interlayer communication are

responsible for selecting the required information and converting it
to an appropriate format. One of the main responsibilities of the
interface-business broker is the conversion between strings that
come from web forms into business objects that will handle the
HTTP request. The business-persistency broker is responsible for
manipulating persistent data to fulfill requests from business
objects.

Business

 Interface

Persistency

Layers

Blackboard

Broker

Broker

Blackboard
Module

Interface - Business

Business - Persistency

Figure 1. The architecture

Classes that do not belong to neither the three layers nor the
brokers are placed in the blackboard module. These classes model
real-world objects, such as employees and managers. Generally
they represent persistent information and are used in the business-
persistency communication protocol.

This architecture separates data from functionality: the data is
provided by the blackboard classes while each of the three layers
provides the appropriate functionality. Another important aspect
is data conversion. In general the business layer and the blackboard
will be implemented using OO technology (e.g. Java) while the
interface and persistency layers may use other approaches (e.g.
events and relational databases). The brokers are the entities that
should make the appropriate conversions, making the interlayer
communication independent of the technologies used to implement
each layer.

The loose-coupled nature of this architecture makes it possible to
evolve each layer independently from the others. This is
especially useful for web applications, for which new techniques
and tools are released constantly and no standards are defined yet.
Figure 2 illustrates abstractly the evolution of an access control

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
OOPSLA 2000 Companion Minneapolis, Minnesota

system [2]. It was first developed with Java Servlets as the user
interface and flat files as the persistency model. A second version
of the system was then developed with JSP and relational
database. The architecture allowed no changes to be made to the
business layer and blackboard classes, when evolving the system.

Servlets

Flat Files

JSP

Relational
Database

Business

 Interface

Persistency

Blackboard
Module

Interface - Business

Business - Persistency

Business

 Interface

Persistency

Blackboard
Module

Interface - Business

Business - Persistency

Version 1 Version 2

Figure 2. System evolution example

2. OBSERVED ADVANTAGES
We have successfully applied this architecture to several large
web-based systems [2]. These experiments have shown us some
advantages of this approach, which include:

• Database changes: within the proposed architecture, changes
on the data model require modifications only on the
persistence layer, the business-persistency broker, and on the
blackboard data classes. In the case that business logic and
interface are mixed with the persistency code, any changes in
the data model may require changes of several parts of the
system. In the case of a drastic change (e.g. changing from
relational to OO database systems) the complete redesign of
the system may be required;

• Interface changes: changes are confined to the interface layer
and to the interface-business broker (e.g. changing from a Java
Servlet to a JSP solution should not result in a general
reengineering of the system - the business layer, persistency
layer, business-persistency broker and blackboard should
remain the same);

• Legacy system integration: legacy systems can be treated as
data repositories, and their integration with the rest of the
system can be made through specific business-persistency
brokers that act as system wrappers. Figure 3 illustrates this
situation;

• Maintainability and evolution: addition (or elimination) of
features and changes of implementation technology are
facilitated through the use of the architecture, since changes
are encapsulated in layers and the system functionality is
well distributed in proper modules;

• Concurrency: the architecture allows better concurrency
control, due to the low granularity of data and functionality
(e.g. access policies for handling data concurrent requests
may be encapsulated on the blackboard module);

• Performance issues: since the system is well organized,
performance bottlenecks can be more easily identified.
Moreover, optimizations are confined to specific layers;

• Management issues: aspects such as team division, code
ownership, cost control, and progress measurement, are also
better implemented when a well-defined architecture is used.

Database

Business

Persistency

Business - Pers.

Persistency

System Wrapper

Legacy
System

Figure 3. Legacy system integration

3. CONCLUSIONS AND FUTURE WORK
Several case studies have shown that the proposed architecture is
effective for the development of web-based applications [2]. It
accommodates drastic changes to the data and user interface
models smoothly. It also allows for better development practices.

We plan to extend UML case tools to support the proposed
architecture directly. One approach to do that is to mark
architectural information in UML class diagrams, and use this
information to generate code with respect to the architecture. We
have already started this work using Rational Rose
(http://www.rational.com/products/rose) as the UML case tool.

4. ACKNOWLEDGMENTS
We would like to thank Prof. Sergio Carvalho (in memorian) for
his immense contribution to this work.

5. REFERENCES
[1] F. Buschman, R. Meunier, P. Sommerlad, and M. Stal,

Pattern-Oriented Software Architecture, A system of Patterns,
John Wiley & Sons, 1996

[2] P. Caroli, An Object-Oriented Methodology for Software
Projects, M.Sc. Dissertation, Computer Science Department,
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
1999 (in Portuguese).

[3] E. Uchôa and R. Melo, HEROS: A Framework for
Heterogeneous Database Systems Integration, in Proceedings
of the Tenth International Conference on Database and
Expert Systems Applications (DEXA’99), LNCS 1677, 656-
667, Springer-Verlag, Florence, Italy, 1999.

[4] M. Shaw and D. Garlan, Software Architecture - Perspectives
on an Emerging Discipline, Prentice Hall, 1996.

