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Earlier studies of a parametrized class of models, the shortcut models, whose fractal di-
mension transitions between integer values indicated that the transition occurs infinitely
sharply at the parameter value p = 0, as the system size increases to infinity. In this
work we prove the property. The sharp transition occurs because of the combinatorially
large increase in the available number of paths connecting a pair of points as the path
length is increased.
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1. Introduction

The shortcut model was introduced 1,2 while studying the dimension 3 of com-
plex networks (graphs) 4,5,6,7,8,9,10,11,12,13. The model interpolates between discrete
regular lattices. It was observed that the fractal dimension apparently transitions
sharply 14,15 from 1 to 2 dimensions at the probability of shortcuts p = 0. In this
work we provide a proof of this property. The sharp transition occurs because of
the combinatorially large increase in the available number of paths connecting a
pair of points as the path length is increased. We also study the mean path length
and consider some generalisations of the model.

The model is defined by starting with a regular discrete lattice of dimension d
with periodic boundary conditions, and adding shortcuts between remote vertices in
the lattice. If the shortcuts connect vertices a constant distance apart in one of the
d dimensions, then the resulting complex network transitions from a d-dimensional
regular lattice to a (d+1)-dimensional regular lattice as the number of shortcuts is
increased. The case of the transition from a one-dimensional to a two-dimensional
lattice has been well-studied.

Section 2 reviews the shortcut model and proposes a possible generalisation. It
also reviews the complex network zeta function. Section 3 studies the mean path
length. Section 4 presents the proof that the dimension transitions infinitely sharply
in the model as p increases from zero. Finally the conclusions are presented.

2. Shortcut Model

In this section we give a brief definition of the shortcut model 1,2, and we specify a
possible generalisation. The model has fractal dimension as defined by the complex
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Fig. 1. Shortcut model, p = 0.

Fig. 2. Shortcut model, p = 1.

network zeta function 2, and transitions from a one-dimensional system to a two-
dimensional system. The starting network is a one-dimensional lattice of N vertices
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Fig. 3. Shortcut model, 0 < p < 1.

with periodic boundary conditions. Each vertex is joined to its neighbors on either
side, which results in a system with N edges. The network is extended by taking
each node in turn and, with probability p, adding an edge to a new location m nodes
ahead. We require that N >> m >> 1, say m =

√
N . The graphs are parametrized

by:

size = N, (1)

shortcut distance = m, and (2)

shortcut probability = p. (3)

When the shortcut probability p = 0 (Figure 1), we have a one-dimensional
regular lattice of size N . The nodes are connected by edges represented by the arcs
of the circle. When p = 1 (Figure 2), every node is connected by a shortcut edge
to a new location. Each node now has edges in two directions, the first along the
original direction (on the circle), and the second along the shortcut edges. The graph
is essentially a two-dimensional graph with m and N/m nodes in each direction.
For p between 0 and 1 (Figure 3), we have a graph which interpolates between the
one and two dimensional systems.

It is interesting to note the difference between the shortcut model and the
“small-world model” of Watts and Strogatz 16,17,18. In the small world model also
one starts with a regular lattice and adds shortcuts with probability p. However, the
shortcuts are not constrained to connect to a node a fixed distance ahead. Instead,
the other end of the shortcut can connect to any randomly chosen node. As a result,
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the small world model tends to a random graph rather than a two-dimensional graph
as the shortcut probability is increased.

One possible generalisation of the shortcut model is to have a hierarchy of
shortcuts. For example, the network can be extended by taking each node in turn
and, with probability p1, adding an edge to a new location m1 nodes ahead, and
with probability p2, adding an edge to a new location m2 nodes ahead. We require
that N >> m1 >> m2 >> 1. The dimension of the extended model would lie
between d and d+ 2, where d is the dimension of the starting lattice.

The dimension of a complex network is defined as the value at which the com-
plex network zeta function transitions from non-convergence to convergence in the
infinite system limit. For completeness, the complex network zeta function is defined
below. The complex network zeta function ζG(α) is defined as

ζG(α) :=
1
N

∑

i

∑

j 6=i
r−αij , (4)

where N is the graph size, measured by the number of nodes. The definition Eq. 4
can be expressed as a weighted sum over the node distances. The graph surface
function, S(r), is defined as the number of nodes which are exactly at a distance r
from a given node, averaged over all nodes of the network. This gives the Dirichlet
series expression for the complex network zeta function:

ζG(α) =
∑
r

S(r)/rα. (5)

When the exponent α tends to infinity, the sum in Eq. 4 gets contributions only
from the nearest neighbours of a node. The other terms tend to zero. Thus, ζG(α)
tends to the average vertex degree for the complex network. When α is zero the
sum in Eq. 4 gets a contribution of one from each node. This means that ζG(α) is
N − 1, and hence tends to infinity as the system size increases.

Furthermore, ζG(α) is a decreasing function of α. Thus, if it is finite for any value
of α, it will remain finite for all higher values of α. If it is infinite for some value of
α, it will remain infinite for all lower values of α. Thus, there is at most one value
of α, αtransition, at which ζG(α) transitions from being infinite to being finite. This
is reminiscient of the behaviour of Hausdorff dimension3. We define the complex
network dimension as the value of the exponent α at which ζG(α) transitions from
being infinite to being finite. For regular discrete d-dimensional lattices Zd with
distance defined using the L1 norm

‖~n‖1 = ‖n1‖+ · · ·+ ‖nd‖, (6)

the transition from non-convergence to convergence of the complex network zeta
function occurs at α = d, as one would expect.

In section 3 we study the mean path length. The average path length is given
in terms of the graph surface function or the complex network zeta function by

` =
∑
r

rS(r)/
∑
r

S(r) = lim
N→∞

ζG(−1)/ζG(0). (7)
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In Eq. 7 we have normalised the mean path length using the number of nodes N in
the denominator, rather than the maximum possible number of edges, N(N −1)/2.
For the scaling behaviour of the mean path length with N , this just results in
the scaling exponent increasing by one. We do this merely for the convenience of
working with positive scaling exponents.
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Table 1. Scaling Exponent for Mean Path Length

Probability Scaling Exponent Dimension

0.002 0.95 1.05
0.006 0.86 1.16
0.1 0.74 1.35
0.2 0.62 1.61
0.4 0.48 2.08
0.6 0.50 2.00
0.8 0.50 2.00
1.0 0.51 1.96
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Fig. 4. Scaling exponent for mean path length vs. shortcut probability.

3. Mean Path Length

In this section we calculate the mean path length for the shortcut model. For a d-
dimensional system we expect the mean path length ` to scale with size N as N1/d.
We show that the scaling exponent changes sharply as p increases from 0. This
provides further evidence for the sharp transition of the dimension of the shortcut
model at p = 0, a property which we prove in Section 4.

When the shortcut probability p = 0 the mean path length scales linearly. We
calculated the mean path lengths using Eq. 7 for different p for N varying from
1000 to 16384. Table 1 shows the scaling exponent for `. Figure 4 shows a plot of
the scaling exponent vs. shortcut probability. Note, in particular, the rather sharp
drop in the exponent from the value 1 as p increases from 0. The scaling exponent
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shows the change in behaviour from a one dimensional system to a two dimensional
system.

In the next section we provide a proof for the sharp transition of the dimension
at p = 0.
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4. Proof of Sharp Transition

In this section we show that the dimension of the shortcut model transitions sharply
at p = 0. The sharp transition is related to the combinatorially large increase in
the available number of paths connecting a pair of points as the path length is
increased, as explained below.

For a one-dimensional regular lattice the graph surface function S1(r) in Eq. 5
is exactly two for all values of r. This is because there are two nearest neighbours,
two next-nearest neighbours, etc. Thus, the complex network zeta function ζG(α)
of Eq. 4 is equal to 2ζ(α), where ζ(α) is the usual Riemann zeta function. Thus,
the transition from non-convergence to convergence occurs at α = 1. The graph
surface function Sd(r) for a lattice of dimension d scales aymptotically as Sd(r)→
2drd−1/Γ(d) for large r. r → ∞ corresponds to α → αtransition. Thus, ζG(α) →
2dζ(α− d+ 1)/Γ(d) as α→ αtransition. The largest pole of ζG(α) occurs for α = d.

Now consider the shortcut model which starts with a one-dimensional regular
lattice. When p = 0 the graph surface function is constant as the path length is
varied. When p = 1 the graph surface function increases linearly with the path
length r. The increase in the graph surface function arises because points which
were far apart when p = 0 are brought closer together by the shortcut edges when
p = 1. This much is fairly straightforward. The interesting question is the behaviour
when p lies between 0 and 1. Let us consider a pair of points which are separated by
i shortcut edges and r−i normal edges when p = 1. There are ( ri ) possible different
paths connecting the two points, corresponding to all the possible ways of choosing
the i shortcut edges in the total path of length r. This is a very large number
when r and i are large. Consider a particular path from among this large set. When
p lies between 0 and 1 the probability that this particular path will have all the
i shortcut edges present is given by pi. The probability that the particular path
does not have all the required shortcut edges is (1− pi). Thus, any one particular
path will have a small probability of having all the required shortcut edges present.
However, we need only one from among the huge number of available paths to have
all the required shortcuts. The probability that none of the possible paths have the
required shortcuts is (1− pi)( ri ). When p lies strictly between 0 and 1 this rapidly
goes to zero because of the combinatorially large value of the exponent ( ri ). Thus,
the probability that there is at least one path which has all the i required shortcuts
is given by

1− (1− pi)( ri ), (8)

which is very close to 1. Thus, when p lies strictly between zero and one, the graph
surface function becomes essentially the same as for the case p = 1. This accounts
for the sudden transition observed empirically in earlier studies for the dimension,
when p increases from 0.
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5. Conclusions

In this work we showed that the dimension of shortcut model shows a sharp tran-
sition at p = 0. The sharp transition had been conjectured earlier, based on the
study of the complex network zeta function, and on processes like the random walk.
The proof of this property is now provided.
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