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In this paper we use the rescaled range analysis to study the spacings between the eigenvalues
of the adjacency matrices of different types of complex networks. The distribution seems to be of
the persistent fractional Brownian motion type. The spacings have a Hurst exponent varying from
0.5 to 0.9 for the networks studied. This range implies a positive correlation between successive
increments in the sequence of eigenvalues. For Hurst exponents at the lower end, a change in the
parameters could lead to negative correlations.
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I. INTRODUCTION

Recent years have seen much use of complex networks
[1–8] in the quantitative study of a variety of complex
systems, including social networks [6], biochemical net-
works [9–11], and information networks such as the web
[12]. In this paper we use the rescaled range analysis to
study the spacings between the eigenvalues of the adja-
cency matrix of different types of complex networks. Our
motivation comes from an earlier work [13] which found
that the application of this method of analysis to the
Riemann zeta function [14, 15] and Dirichlet L-functions
uncovered several intriguing results. Given the close re-
lation of these functions [16] to the theory of random
matrix models [17–25], it seems interesting to study the
random matrices which arise in other contexts. This pa-
per investigates the random matrices which arise in the
study of complex networks.

II. TYPES OF COMPLEX NETWORKS

In this section we establish the required notation and
introduce the types of network models that we have stud-
ied. The origin of the theory of networks is often credited
to Euler’s celebrated solution in 1735 of the Königsberg
bridge problem. The availability of powerful comput-
ers and communication networks in recent days has re-
sulted in the focus shifting from the analysis of single
small graphs to consideration of large-scale statistical
properties of graphs. The networks studied in the lit-
erature can be classified in many ways, e.g., directed vs.
undirected networks, network growth mechanisms, the
processes taking place on the networks, etc. In this paper
we study the Poisson random graph models of Rapoport
[26, 27] and Erdős and Rényi [28, 29], the “small-world
model” of Watts and Strogatz [30–32], and the Barabási
and Albert [33, 34] model incorporating the mechanisms
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of growth and preferential attachment and leading to
scale-free power law degree distributions.

The random graph models that we study here are the
Gn,m of Erdős and Rényi, which is the ensemble of all
graphs having n vertices and exactly m edges, each pos-
sible graph appearing with equal probability. Random
graphs are parametrized by:

size = N, and (1a)
edges = m. (1b)

Solomonoff and Rapoport [26] and independently Erdős
and Rényi [28] proposed the very similar and simple
model called Gn,p by Erdős and Rényi. This is defined
as a network having some number n of vertices, and each
pair is connected with probability p (or else the pair is
disconnected).

The “small-world model” of Watts and Strogatz is a
model with high transitivity. It is useful for networks that
may have a geographical component to them (e.g., the
vertices are related to positions in space and geographical
proximity plays a role in deciding which vertices are con-
nected to which others). The small-world model starts
with a network built on a low-dimensional regular lat-
tice. One then moves edges to create a low density of
“shortcuts” that join remote parts of the lattice to one
another. The best studied case is the one-dimensional
lattice. The starting network is a one-dimensional lat-
tice of N vertices with periodic boundary conditions, (a
ring). Each vertex is joined to its neighbors k or fewer
lattice spacings away, which results in a system with Nk
edges. The small-world model is created by taking each
edge in turn and, with probability p, moving one end of
that edge to a new location chosen uniformly at random
from the lattice, except that no double edges or self-edges
are created.

The rewiring process allows the small-world model to
interpolate between a regular lattice and a network which
is similar to a random graph. When the rewiring prob-
ability p = 0, we have a regular lattice. When p = 1,
every edge is rewired to a new random location and the
graph is almost a random graph. Watts and Strogatz
showed by numerical simulation that there exists a re-
gion in between these two extremes for which the model
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has both low path lengths and high transitivity. Watts
and Strogatz graphs are parametrized by:

size = N, (2a)
neighbours = k, and (2b)

rewiringprobability = p. (2c)

The model of Barabási and Albert starts with a small
initial network of m0 unconnected nodes. New vertices
are added to the network with degree m. The other end
of each newly added edge is attached to an existing vertex
with probability proportional to the degree of that ver-
tex. The edges are undirected. Each vertex in the graph
appears with initial degree m, and hence automatically
has a non-zero probability of receiving new links.

Let pk be the fraction of vertices in the network with
degree k, so that

∑
k pk = 1. The probability that a new

edge attaches to a vertex of degree k is

kpk/
∑

k

kpk = kpk/2m. (3)

The sum in the denominator is equal to the mean degree
of the network, which is 2m, since there are m edges for
each vertex added, and each edge contributes two ends
to the degrees of network vertices. This type of growth
leads to a scale-free power law degree distribution. Watts
and Strogatz graphs are parametrized by:

size = N, (4a)
initialnodes = m0, and (4b)

degree = m. (4c)

We study the spectra of the the adjacency matrix A,

Aij =

{
1 if there is an edge joining vertices i, j,
0 otherwise.

(5)

(for undirected networks A is symmetric). We use House-
holder transformations to convert the matices to Hessen-
berg form, and we use the QR algorithm to find the eigen-
values. We use the central 70 per cent of the eigenvalues
for the analysis. In what follows we apply the rescaled
range analysis to study the distribution of the spacings
of the adjacency matrix for these three types of graphs.

III. ANALYSIS OF EIGENVALUE
DISTRIBUTIONS

In this section we define the notation for rescaled
range analysis [35–39] and apply it to study the eigen-
vlaues of the adjacency matrices of complex networks.
This method has been widely used, and it is suited for
phenomena which exhibit a combination of random (or
pseudo-random) behaviour and regular behaviour. The
observed value in the series of observations is commonly
denoted by ξ(t), where t is the ordinate of the observa-
tion. Rescaled range analysis studies the correlations and

the distribution of the ξ by boxing the observed data into
bins of different sizes (the bin size being denoted by τ),
and by studying the scaling behaviour of the statistical
parameters with the bin size τ . The results of the analy-
sis are summarized by the Hurst exponent H, defined
below. Most natural phenomenon seem to have a value
of about 0.72 for H.

Let the mean value of ξ for a given bin be denoted by
〈ξ〉τ . We define X(t, τ) as

X (t, τ) =
t∑

u=1

(ξ(u)− 〈ξ〉τ ) . (6)

The range R(τ) is Max(X(t, τ))−Min(X(t, τ)) and S(τ)
denotes the standard deviation of the ξ. Then, as ex-
plained by Mandelbrot and Ness [40, 41], under quite
general conditions the dimensionless rescaled range R/S
varies with τ as τ →∞ according to the scaling law

(R/S) = (cτ)H
, (7)

where H is defined as the Hurst exponent. One can use
linear regression analysis on a log-log plot of R/S against
τ to estimate the Hurst exponent H as the best fit slope
of the log-log plot. If the ξ behave like normal Brownian
motion, then the Hurst exponent is 0.5. Any deviation
from this value implies that the values of the observable
are not independent of each other. Mandelbrot intro-
duced a generalized form of the Brownian motion model,
the fractional Brownian motion [40, 41], as a typical sim-
ple family of random functions that models asymptotic
dependence. In this model the Hurst exponent lies in the
range 0 < H < 1. H is related to the fractal dimension
of the graph of the series of observations. A low value
of H implies a large fractal dimension, namely, a curve
which shows a lot of detailed structure. There are three
types of generalized fractional Brownian motion: (a) the
persistent, for values of H in the range 0.5 < H < 1, (b)
the case H = 0.5 which corresponds to the independent
white noise processes of ordinary Brownian motion, and
(c) the anti-persistent, for 0 < H < 0.5.

A persistent type of fractional Brownian motion im-
plies that the increments persistence is maintained over
longer periods of time, depending on the excess of the
Hurst exponent value over 0.5. If at some time in the
past there was a positive increment i. e., an increase, it
is more likely that there will be an increase in the future.
A decreasing trend in the past implies the likelihood of
a decreasing trend in the future.

In the anti-persistent range any increasing trend in the
past makes a decreasing trend in the future more proba-
ble, and vice versa. The strength of this anti-correlation
depends on the extent to which H is lower than 0.5. The
graph for an anti-persistent process shows a lot of jumps.
We find that the spacings of the eigenvalues of the adja-
cency matrix for all the networks studied show a positive
correlation, i.e., they are of the persistent type.

We applied the rescaled range analysis to the follow-
ing networks: a) Erdős and Rényi, b) Watts and Stro-
gatz, and c) Barabási and Albert. Table I shows the
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results of the analysis for the three models. For compar-
ision, it may be mentioned that regular Brownian mo-
tion leads to an exponent of 0.5, and that most analy-
ses in the literature find a value around 0.72 for many
natural phenomenon. Fig. 1 shows the regression analy-
sis for eigenvalues of the Barabasi Albert network with
N = 400,m = m0 = 5. The horizontal axis is the log of
the bin size ( log2(τ) ), and the vertical axis is the log of
the mean R/S(log2(R/S)) for the given values of τ . The
slope of the best fit line (also shown in the figure) gives
the value of the Hurst exponent. In the next section we
conclude by comparing the results with the results for
the Riemann zeta function.

IV. CONCLUSIONS

Our study of the spectra of the adjacency matrices of
different types of complex networks indicates that the dis-
tribution seems to be of the persistent fractional Brown-
ian motion type. The spacings have a Hurst exponent H
varying from 0.5 to 0.9 for the networks studied. This
range implies a positive correlation between successive
increments in the sequence of eigenvalues (H > 0.5). For
Hurst exponents at the lower end, a change in the para-
meters could lead to negative correlations.

The zeroes of the generalised zeta functions are ex-
pected to be closely related to the eigenvalues of random
matrices chosen from different ensembles. While those
ensembles are different from the ones which arise in com-
plex networks, it is instructive to compare the results and
note the differences. Our study for the generalised zeta
functions showed that the Hurst exponent is remarkably
constant for the different zeta functions. We found a vari-
ation in H for the Riemann zeta function from 0.09 to
0.0997, for zeroes covering the range 107 to 1022 (fifteen
orders of magnitude)! The low value of the exponent is
interesting. It implies that there is a large degree of anti-
persistence. There is a significant amount of self-affinity
in the distribution of the zeroes. The fractal dimension is
very close to 1.9, indicating a very noisy behaviour. The
distribution for different Dirichlet-L functions at the in-
termediate range of zeroes also shows values for the Hurst
exponent which are very close to the values found for the
Riemann function zeroes. Thus, though the zeros are ex-
pected to be related to random matrices, the behaviour
is quite different from the behaviour of the random ma-
trices which appear in studying the spectra of complex
networks.
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TABLE I: Hurst Coefficient for different models.

Network parameters Rescaled Range results
Model Size N Other parameters H Standard error

Barabási and Albert 400 m = 5, m0 = 5 0.88 0.05
Barabási and Albert 514 m = 5, m0 = 5 0.87 0.09

Erdős and Rényi 200 m = 400 0.65 0.04
Erdős and Rényi 200 m = 2000 0.57 0.08

Watts and Strogatz 200 k = 10, p = 0.1 0.90 0.04
Watts and Strogatz 200 k = 10, p = 0.3 0.71 0.04
Watts and Strogatz 200 k = 10, p = 0.7 0.62 0.03
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FIG. 1: Rescaled Range Analysis for the Barabasi Albert network with N = 400, m = m0 = 5.
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