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Abstract

Large complex networks occur in many applications of computer science. The com-
plex network zeta function and the graph surface function have been used to charac-
terize these networks and to define a dimension for complex networks. In this work
we present three new results related to the complex network dimension. First, we
show the relationship of the concept to Kolmogorov complexity. Second, we show
how the definition of complex network dimension can be made more rigorous by
defining the concept for a single node, and then defining the complex network di-
mension as the supremum over all nodes. This makes the concept work better for
formally infinite graphs. Third, we study interesting parallels to zeta dimension, a
notion originally from number theory which has found connections to theoretical
computer science. These parallels lead to a deeper insight into the complex network
dimension, e.g., the formulation in terms of the entropy and a theorem relating
dimension to connectivity.
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1 Introduction

Large complex networks occur in several diverse applications of computer sci-
ence. Thus, measures relating to complex networks are of interest in computer
science. The dimension of a complex network (in the large system limit) can
be defined in different ways [14,15]. One common characteristic of dimension
is that the higher the dimension of a system, the more complex the system
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is. For graphs, one measure of complexity is the dependence of the average
number of paths on the length of the path. In section 2 we show the relation of
the definition of complex network dimension to the Kolmogorov complexity of
the graph [10] as defined in computational complexity theory. In section 3 we
show how the definition of complex network dimension can be made more rig-
orous by defining dimension for a single node, and then defining the complex
network dimension as the supremum over all nodes. In section 4 we relate the
definition of the dimension to an expression similar to entropy rates [16,17] as
used in computer science studies of dimension in discrete contexts. For graphs
we show that the analogous relation is to the number of paths. In section 5 we
show that a theorem for zeta dimension relating connectedness and dimension
can be extended to complex network dimension with minor modification in the
notation in the statement and the proof. We finally present the conclusions.

2 Relation to Kolmogorov Complexity

In this section we will show a relation between the complex network dimension
and Kolmogorov complexity. The complex network zeta function [14] and the
graph surface function [15] were introduced to characterize large graphs. They
can be used to define the dimension of a complex network, if one starts with
an arbitrarily large finite graph and defines the infinite limit by letting the size
tend to ∞. We assume that the number of nearest neighbours for any node
in the graph remains bounded as the graph size tends to ∞. If we define the
average degree 〈k〉 of the graph as the average over all nodes of the number of
nearest neighbours, then this means that the the average degree 〈k〉 is finite.
As an example, consider the regular discrete d-dimensional lattice Zd with L
nodes in each dimension as a graph with the edges being the links between
the nodes along the coordinate axes. The infinite size limit consists of letting
L tend to ∞. The definition of complex network dimension should give the
value d in this case.

In a graph, we denote by rij the distance from node i to node j, i.e., the
length of the shortest path connecting the first node to the second node. rij

is ∞ if there is no path from node i to node j. Simple generalisations of this
definition can be studied, e.g., we could consider weighted edges. The graph
surface function, S(r), is defined as the number of nodes which are exactly
at a distance r from a given node, averaged over all nodes of the network. In
what follows, we always start with a finite graph and consider the limit as the
size increases indefinitely. The complex network zeta function ζG(α) is defined
as

2



ζG(α) :=
1

N

∑

i

∑

j 6=i

r−α
ij , (1)

where N is the graph size, measured by the number of nodes. When α → 0 the
number of nodes contributing finite amounts to the sum in Eq. 1 is unbounded,
so the sum diverges (when taking the infinite size limit we first take α → 0
and then N →∞, so r−α

ij → 1). When we start with the finite graph, ζG(0) is
N − 1, and it diverges when N →∞. When the exponent α tends to infinity,
the sum in Eq. 1 gets contributions only from the nearest neighbours of a
node. The other terms tend to zero. Thus, ζG(α) tends to the average degree
〈k〉 for the graph as α →∞. The average degree 〈k〉 is related to the number
of edges e in the graph by 〈k〉 = 2e/N . Thus,

〈k〉 = lim
α→∞ ζG(α) = 2e/N. (2)

The definition Eq. 1 can be expressed as a weighted sum over the node dis-
tances. This gives the Dirichlet series relation

ζG(α) =
∑
r

S(r)/rα. (3)

ζG(α) is a decreasing function of α, ζG(α1) > ζG(α2), if α1 < α2. Since the
average degree of the nodes (〈k〉) is finite, as N goes to ∞ there is exactly
one value of α, αtransition, below which lim supN→∞ ζG(α) is infinite and above
which it is finite. This has been defined as the dimension of the complex net-
work [14]. For regular discrete d-dimensional lattices Zd with distance defined
using the L1 norm

‖~n‖1 = |n1|+ · · ·+ |nd|, (4)

the transition occurs at α = d. This is because for a discrete regular lattice
of dimension d S(r) grows asyptotically as rd−1, and hence the sum in the
complex network zeta function (Eq. 3) converges for α > d.

The dimension definition can be related to the Kolmogorov complexity of the
graph [10] as defined in computational complexity theory. To fix the notation,
we recall that a graph of size N can be represented by specifying the presence
or absence of the N(N − 1)/2 possible edges. Thus, it can be specified as
a binary string E of length N(N − 1)/2. The definition of the randomness
deficiency δ(N) of a graph (Definition 6.4.2 of [10]) is

C(E|N, δ) ≥ N(N − 1)/2− δ(N) (5)

where C(E|N, δ) is the conditional Kolmogorov complexity of E.

Theorem 1 A graph with finite dimension will have a large randomness de-
ficiency, δ(N) = Ω(N).
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PROOF. Lemma 6.4.2 of Ref. [10] states that the degree k of each node of
the graph satisfies

|k − (N − 1)/2| = O
(√

(δ(N) + log(N))N
)

. (6)

The dimension of the graph being finite implies that 〈k〉 is finite. Thus, Eq. 6
can be valid only if δ(N) = Ω(N). ¤

3 Node Based definition

The definition of dimension based on Eq. 3 involves considering a class of finite
large graphs, and taking the limit as the size of the graphs in the class tends
to ∞. It would be desirable to define the dimension without taking averages
over the nodes of the graph, e.g., for the graph surface function. In this section
we show that one can do so, by defining the dimension for a single node, and
defining the dimension for the graph as the supremum of the node dimensions.

For any given node i, let us define the node surface function Si(r) as the
number of nodes which are exactly at a distance r from the given node, and
the node zeta function ζi(α) as

ζi(α) :=
∑

j 6=i

r−α
ij . (7)

When α → 0 the number of nodes contributing finite amounts to the sum
in Eq. 7 is unbounded, so the sum diverges. When the exponent α tends to
infinity, the sum in Eq. 7 gets contributions only from the nearest neighbours
of the node. Thus, ζi(α) tends to the number of nearest neighbours of the node
as α →∞. The definition Eq. 7 can be expressed as a weighted sum over the
node distances. This gives the Dirichlet series relation

ζi(α) =
∑
r

Si(r)/r
α. (8)

ζi(α) is a decreasing function of α, ζi(α1) > ζi(α2), if α1 < α2. Since we require
that the number of nearest neighbours for every node be bounded, then there is
exactly one value of α, αtransition,i, at which the node zeta function transitions
from being infinite to being finite. The dimension of the complex network can
be defined as

lim sup
i

αtransition,i. (9)

This defintion of the dimension is not identical with the definition based on
Eq. 3, but its behaviour is similar to the earlier definition, and it is less sensitive
to the details of how the infinite size limit is approached.
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The properties of dimension like monotonicity (a subset has a lower or the
same dimension as its containing set), stability (a union of sets has the max-
imum dimension of the component sets forming the union) and Lipschitz in-
variance [7] depend on the details of the set operations. For example, if the
number of common edges and nodes in the sets whose union is being taken
is small compared to the total number of edges and nodes respectively, then
these properties are satisfied.

4 Entropy Characterization

In the theory of effective fractal dimensions [1,5,6,11–13], one can relate the
dimension to entropy rates [16,17] for one-sided infinite sequences. It is in-
teresting that one can derive a similar relation for the dimension of complex
networks as defined in section 2, with the path counts taking the place of
the entropy rates that occur in computer science applications. We will derive
the result in this section. It is essentially an application of Cahen’s result for
the convergence of Dirichlet’s series [4]. Let us define volume for a complex
network (see [15]) as

V (r) =
r∑

i=1

S(i). (10)

The analogue of entropy rate can then be defined as

γ = lim sup
r→∞

log V (r)

log r
. (11)

We will show that this is equal to the dimension defined in section 2. In the
proof one needs to use Abel’s lemma on partial summation [8]. The following
notation will be needed [8]. Let an represent a decreasing sequence. We define
the following:

• A(x) =
∑x

n=1 an,
• A(x, y) =

∑y
n=x an,

• ∆an = an − an+1.

Lemma 2 (Abel’s lemma)
∑y

n=x anbn =
∑y−1

n=x A(x, n)∆bn+A(x, y)by, for any
decreasing sequence bn.

In terms of the functions we are studying, Abel’s lemma can be written as

y∑

r=1

S(r)r−α =
y−1∑

r=1

V (r)∆(r−α) + V (y)y−α. (12)

The result of this section can be stated as the following theorem.
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Theorem 3 The transition of the series 3 from non-convergence to conver-
gence occurs when α crosses the value γ defined in Equation 11 from below,
i.e., αtransition = γ.

PROOF. The proof is in two parts. We first prove that the series 3 converges
for α = γ+δ, where δ is any positive number. Let us choose ε such that 0 < ε <
δ. From Equation 11, for n large enough we have log V (r) < (γ + δ − ε) log r,
i.e., V (r) < rγ+δ−ε. From Abel’s summation lemma,

n∑

r=1

S(r)r−α =
n−1∑

r=1

V (r)∆r−α + V (n)n−α. (13)

The second term goes to zero as n →∞, therefore we only need to prove the
convergence of the first term. By the definition of γ,

n−1∑

r=1

V (r)∆r−α <
n−1∑

r=1

rγ+δ−ε∆r−(γ+δ). (14)

Since (γ + δ − ε) is positive, the term in the sum on the right hand side can
be written as

rγ+δ−ε∆r−(γ+δ) = (γ + δ)
∫ log(r+1)

log r
e(γ+δ−ε) log r−(γ+δ)xdx (15)

which is less than (γ+δ)
∫ log(r+1)
log r e−εxdx, and the series (γ+δ)

∑n−1
r=1

∫ log(r+1)
log r e−εxdx

is obviously convergent. It follows that αtransition ≤ γ.

We next prove that if the series 3 converges, then α ≥ γ. Let us consider a
value of α for which

∑
S(r)r−α :=

∑∞
r=1 b(r) converges. Then

V (r) =
n∑

r=1

b(r)rα =
n−1∑

r=1

B(r)∆rα + B(n)nα. (16)

Since we are considering a value of α for which the sum
∑∞

r=1 b(r) converges,
B(n) in Eq. 16 is bounded. Thus, for n sufficiently large, we can find a constant
K such that V (r) < Knα, i.e.,

log V (r) < α log n + log K < (α + δ) log n, (17)

for any positive δ. Hence

α ≥ lim sup
n→∞

log V (n)

log n
= γ, (18)

and therefore αtransition ≥ γ.

Thus, we find that αtransition = γ, as stated in the theorem. ¤
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For completeness we mention that one can define a lower dimension by

lim inf
r→∞

log V (r)

log r
. (19)

This would be analogous to the box dimension defined in other discrete con-
texts (see [9] for a discussion of fractal dimensions in the computer science
context). Further study of the analogy may be interesting.

5 Connectedness

A theorem in classical fractal geometry states that any set of dimension less
than 1 is totally disconnected. This was extended to discrete regular lattices
Zd by Doty et al [6]. We show that the proof of [6] can be generalized to hold
for complex networks. For positive integers d, r, and points ~m,~n in Zd, Doty
et al [6] define an r-path from ~m to ~n as a sequence π = (~p0, . . . , ~pl) of points
~pi ∈ Zd such that ~p0 = ~m, ~pl = ~n, and ‖~pi − ~pi+1‖d ≤ r for all 0 ≤ i < l,
where the norm is for Zd and define a set A ⊆ Zd to be boundedly connected
if there exists a positive integer r such that, for all ~m,~n ∈ A, there is an
r-path π = (~p0, . . . , ~pl) from ~m to ~n in which ~pi ∈ A for all 0 ≤ i ≤ l. We will
extend these definitions to complex networks, as detailed below. For a given
complex network of dimension α and a positive integer r, and nodes m,n in
the graph, we define an r-path from m to n as a sequence π = (p0, . . . , pl) of
nodes pi belonging to the complex network, such that p0 = m, pl = n, and
‖pi − pi+1‖ ≤ r for all 0 ≤ i < l, where the norm is for the complex network.
We define a subset of the complex network A to be boundedly connected if
there exists a positive integer r such that, for all m, n ∈ A, there is an r-path
π = (p0, . . . , pl) from m to n in which pi ∈ A for all 0 ≤ i ≤ l. Then the
following theorem, and its proof, carry over almost unchanged from the Zd

results proved in [6], with appropriate re-interpretation of the meanings of the
symbols.

Theorem 4 Let A be a complex network. If dimension(A) < 1, then no
infinite subset of A is boundedly connected.

6 Conclusions

The complex network zeta function and the graph surface function have been
used in different applications, including defining the dimension of a large graph
or complex network. In this paper we showed the relation to concepts in com-
puter science. We studied the relation to Kolmogorov complexity. We formu-
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lated a definition of complex network dimension which uses limit supremum
to avoid averaging over all the nodes of the network, thus making the results
easier to apply to formally infinite graphs. The functions have interesting sim-
ilarities to the concepts used in the study of fractal dimension in computer
science studies, like complexity classes. For example, zeta dimension is related
to the entropy rate of infinite sequences. In searching for an analogous re-
sult for complex netwrk dimension we found a new result, that for graphs an
analogous role is played by the count of paths and the growth of the count
with the path length. Another new result that was shown by the analogy is
the relation between dimension and connectedness. It would be interesting to
pursue the analogies further. For example, it would be useful if one can find
a s-gale [10] characterization of complex network dimension, since the similar
characterization for zeta dimension reveals many properties of the dimension.
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