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A simple analysis of the gaps in primes shows an interesting correlation between neigh-
bouring primes. Neighbouring primes are more likely to have differing remainders on
being divided by 6 (the remainders can be 1 or 5). We give a heuristic argument for the
observed correaltion. We apply the tool of rescaled range analysis to study the statistical
properties.
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1. Introduction

We report an interesting correlation between neighbouring primes uncovered during
an analysis of the prime number gaps. While the distribution of prime number gaps
has been studied extensively, the particular correlation reported here doesn’t seem
to have been documented.

Section 2 analyses the distribution of prime numbers, and finds that neighbour-
ing primes are more likely to have differing remainders on being divided by 6 (the
remainders can be 1 or 5). A heuristic model is presented to explain the correla-
tion, and the need for further investigation is pointed out. Section 3 applies rescaled
range analysis to the prime number gaps. Sections 4 and 5 apply it to the zeros
of the L-functions. Finally the conclusions are presented, followed by an appendix
which considers the rescaled range analysis for zeros of the Hermite Polynomials.

2. Distribution of Prime Numbers

We study the statistical properties of the distribution of prime number gaps. Earlier
studies of the gaps give detailed information on the asymptotic behaviour of the
distribution 1,2,3,4,5,6,7,8. A strong form of the k-tuple conjecture 9 leads to an
explicit asymptotic formula for the frequency with which an integer D appears
as the difference of consecutive primes ≤ x. Brent 4 was the first to suggest this
formula and gave an algorithm for computing certain coefficients that arise in the
formula. In this paper we present numerical evidence and a heuristic model for a
correlation between neighbouring primes. These results provide information about
the statistical properties of the prime number gap distribution which is additional
to that provided by the quantitative form of the k-tuple conjecture.
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Fig. 1. Histogram of prime number differences for fiftieth million set of primes. The y axis is the
frequency and the x axis is the difference between neighbouring primes.

Figure 1 shows the histogram of the prime number differences for the fitftieth
million set of primes. We observe that the histogram shows structure. The peaks
at differences which are multiples of 6 is the most obvious feature, and is easily
explained by the fact that when a prime number is divided by 6, the remainder is
either 1 or 5. However, what is interesting and new in the results presented here
is that an analysis of the peaks shows correlations between the probability of the
remainder being 1 or 5 for a particular prime number and the remainder for the
next prime number. From the histogram we get the following probabilities:

Prob(diff = 6k + 2) = Prob(diff = 6k + 4) = .276; (1)

Prob(diff = 6k) = 0.448; (2)

If there were no correlations between neighbouring primes, then the values would
be

Prob(diff = 6k + 2) = Prob(diff = 6k + 4) = .25; (3)

Prob(diff = 6k) = 0.50; (4)

We find that the probabilities for neighbouring primes are correlated. Ta-
ble 1 shows the joint probabilities between the remainder for a given prime
on division by 6 and the remainder for the next prime, for the fiftieth
million set of primes (961748941 . . . 982451653) and the tenth million set of
primes(160481219 . . . 179424673) 10. The remainders for the first prime are shown
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in the rows, while the remainder for the second prime are shown in the columns.
Note that the remainder for the next prime has a higher likelihood of being differ-
ent from the first remainder. We see that the ratio of the number of neighbouring
primes with the same remainder to the number of neighbouring primes with dif-
ferent remainders is 0.811 for the fiftieth million set of primes. Further evidence of
this striking result comes from Table 2 which shows the correlations on division by
4 (which can give the remainders 1 and 3) .

One can give a heuristic argument for the correlation. All primes will be of the
type 6k + 1 or 6k + 5. These two arithmetic progressions are interlaced. We know
that the density of primes at N is of order 1/ln(N). Let us consider a heuristic
model, i.e., each term in either of the arithmetic progressions has a ”probability”
3/ln(N) of being prime. The heuristic model predicts that the the ratio of the
number of neighbouring prime pairs with the same remainders to the number of
neighbouring prime pairs with different remainders is (1− 3/ln(N)), which numer-
ically is 0.85 for the fiftieth million set of primes, almost the observed value. While
the heuristic model is quite interesting, it is not a rigorous proof for the correlation.
Further, it cannot be the complete story, since it predicts that the a gap of 6 will
be the most likely gap, while the work on jumping champions 1 (an integer D is
called a jumping champion if D is the most frequently occurring difference between
consecutive primes ≤ x for some x ) shows that for very large numbers the most
likely gap will be a primorial larger than 6. Thus, the correlation reported here and
the heuristic explanation point to areas that ought to be investigated further.

3. Rescaled Range Analysis

An useful tool for studying correlation in series is rescaled range analysis. An analy-
sis of the zeros of the Riemann zeta function using rescaled range analysis 11 gave
some remarkable results. The differences of the zeros were found to have a strong
anti-correlation, implying a large fractal dimension for the zero distribution. In this
section we give a brief review of rescaled range analysis and apply it to the prime
number gaps. In the next section we apply it to degree 1 and degree 2 L functions.

Rescaled range analysis 12,13,14,15 is a tool to study series of observations which
exhibit a combination of random or pseudo-random behaviour and regular behav-
iour. In particular, it shows whether the successive observations of the variable
under study are correlated or independent. It is based on the process of fractional
Brownian motion. A time series observable X(t) is said to undergo fractional Brown-
ian motion of order α if X(t) has the properties:

(1) With probability 1 X(t) is a continuous function of t which is nowhere differ-
entiable.

(2) For any t ≥ 0 and h > 0, the increment X(t+h)−X(t) is normally distributed
with mean 0 and variance proportional to h2α. With suitable normalisation,

Prob(X(t + h)−X(t) ≤ x) = (2π)−1/2h−α

∫ x

−∞
exp(−u2/2h2α)du. (5)
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The increments X(t+h)−X(t) and X(t)−X(t−h) are not independent unless
α is 1/2. If α > 1/2 then the increments tend to be of the same sign. α = 1/2
is the case of normal Brownian motion. If α < 1/2 then the increments tend to
differ in sign. α is called the Hurst exponent. With probability 1 X(t) has Hausdorff
dimension and box dimension both equal to 2−α. Rescaled range analysis makes use
of Eqn. 5 and determines the order of the fractional Brownian motion by studying
how the vertical range X scales with the horizontal range h. It has been applied to
fluctuations in the stock market, financial analysis, analysis of annual variations in
river flood levels, study of the zero distribution of the Riemann zeta function, etc.

We denote the series of increments ocurring in the rescaled range analysis by δj .
Rescaled range analysis studies the correlations of the δj by boxing the observed
data into bins of different sizes (the bin size being denoted by h), and by studying
how the vertical range scales as the bin size h is varied.

In terms of the mean value of δj for a given bin of size h, 〈δ〉, we define X(t) by

X (t) =
t∑

u=1

(δu − 〈δ〉) . (6)

The range R for the bin under consideration is defined as Max(X(t)) −
Min(X(t)) where the maximum and minimum are taken for t between 1 and h. S

denotes the standard deviation of the δj for the chosen bin.
In general the dimensionless rescaled range R/S varies with h for large h ac-

cording to the scaling law 16,17

(R/S) = (ch)α
, (7)

where α is the Hurst exponent. One can use linear regression analysis on a log-log
plot of R/S against h to estimate the Hurst exponent α as the best fit slope of the
log-log plot.

There are three types of generalized fractional Brownian motion:

• the persistent, for values of α in the range 0.5 < α < 1,
• the case α = 0.5 is ordinary Brownian motion, and
• the (anti-)persistent, for 0 < α < 0.5.

A persistent type of fractional Brownian motion implies that the increments’ per-
sistence is maintained over longer periods of time, depending on the excess of the
Hurst exponent value over 0.5. If at some time in the past there was an increase,
it is more likely that there will be an increase in the future. A decreasing trend
in the past implies the likelihood of a decreasing trend in the future. In the (anti-
)persistent range any increasing trend in the past makes a decreasing trend in the
future more probable, and vice versa.

Figure 2 shows the rescaled range regression analysis for the prime numbers in
the range 961748941 . . . 982451653. These constitue the fiftieth million set of prime
numbers. The horizontal axis is the log of the bin size ( log2(h) ), and the vertical
axis is the log of the mean R/S (log2(R/S)) for the given values of h. The slope of
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Fig. 2. Hurst exponent estimate for prime number differences for fiftieth million set of primes. The
y axis is log(R/S) and the x axis is the log of the bin size.

the best fit line gives the value of the Hurst exponent. The best fit line is also shown
in the figure. The data is fairly linear. For lower values of h the scaling behaviour
is not expected to hold, since it is an asymptotic phenomenon.

Table 3 presents the Hurst exponent for the twenty-fifth million and the fiftieth
million primes. The number of zero differences used in the analysis was one million.
The Hurst exponent is slightly below 0.5. Though the difference is small, it may
be interesting given the evidence for a correlation between neighbouring prime
numbers.
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Table 1. Correlation between neighbouring primes, in the remainder on division by 6, for the
fiftieth million and the tenth million set of primes.

Range Remainder 1 5
of Primes

961748941 . . . 1 0.224 0.276
982451653 5 0.276 0.224

160481219 . . . 1 0.222 0.278
179424673 5 0.278 0.222

Table 2. Correlation between neighbouring primes, in the remainder on division by 4, for the
fiftieth million and the tenth million set of primes.

Range Remainder 1 3
of Primes

961748941 . . . 1 0.226 0.274
982451653 3 0.274 0.226

160481219 . . . 1 0.224 0.276
179424673 3 0.276 0.224

Table 3. Hurst exponent for distribution of prime numbers.

Range Hurst Standard
of Primes exponent error

Twenty-fifth million 0.463 0.003
Fiftieth million 0.457 0.004
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Table 4. Hurst exponent for degree 1 and degree 2 L-functions. r is an index to which of the group
character representations is being considered.

Order of Function Hurst Fractal
largest zero exponent Dimension

Riemann Zeta

35161820 0.091 1.909
1012 0.093 1.907
1021 0.094 1.906
1022 0.100 1.900

Degree 1 L-function, Conductor 3

31712310 0.092 1.908

Degree 1 L-function, Conductor 4

32457680 0.092 1.908

Degree 1 L-function, Conductor 9

Dirichlet Character
10000000 r=2 conjugate pair, negative roots 0.094 1.906
10000000 r=2 conjugate pair, positive roots 0.097 1.903
10000000 r=3 conjugate pair, negative roots 0.114 1.886
10000000 r=3 conjugate pair, positive roots 0.084 1.916

Degree 1 L-function, Conductor 19

Dirichlet Character
1000000 r=2 conjugate pair, negative roots 0.105 1.895
1000000 r=2 conjugate pair, positive roots 0.116 1.884
1000000 r=3 conjugate pair, negative roots 0.123 1.877
1000000 r=3 conjugate pair, positive roots 0.103 1.897
1000000 r=4 conjugate pair, negative roots 0.096 1.904
1000000 r=4 conjugate pair, positive roots 0.112 1.888
1000000 r=5 conjugate pair, negative roots 0.094 1.906
1000000 r=5 conjugate pair, positive roots 0.105 1.895
1000000 r=6 conjugate pair, negative roots 0.125 1.875
1000000 r=6 conjugate pair, positive roots 0.099 1.901
1000000 r=7 conjugate pair, negative roots 0.100 1.900
1000000 r=7 conjugate pair, positive roots 0.106 1.894
1000000 r=8 conjugate pair, negative roots 0.116 1.884
1000000 r=8 conjugate pair, positive roots 0.104 1.896
1000000 r=9 conjugate pair, negative roots 0.098 1.902
1000000 r=9 conjugate pair, positive roots 0.121 1.879
1000000 r=10 real representation 0.089 1.911

Degree 2 Elliptic curve L-function
Conductor 11 Isogeny class A

100000 0.158 1.842

Degree 2 Elliptic curve L-function
Conductor 19 Isogeny class A

100000 0.151 1.849

Degree 2 L-function, Ramanujan tau
associated cusp form weight 12, level 1

284410 0.108 1.892
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Fig. 3. Hurst exponent estimate for Riemann zeta zeros of height 1021. The y axis is the base 2
log of the rescaled range and the x axis is the log of the bin size. The slope is 0.1

4. L-functions of degree 1 and degree 2

Given the interesting correlation observed in the distribution of prime numbers,
and the relation of the distribution to the zeros of the Riemann zeta function and
related L-functions, we now study these functions. Figure 3 is the rescaled range
plot for Riemann zeta zeros of height 1021, which gives a Hurst exponent of 0.1.
Contrasting Figure 3 with Figure 2 highlights the unusual nature of the results for
the L-functions.
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The Riemann Zeta function is defined for Re(s) > 1 by

ζ(s) =
∞∑

n=1

n−s =
∏
p

(
1− p−s

)−1
. (8)

The product expression over the primes was first given by Euler. Eq. (8) con-
verges for Re(s) > 1. It was shown by Riemann 18,19,20,21 that ζ(s) has a continu-
ation to the complex plane and satisfies a functional equation

ξ(s) := π−s/2 Γ(s/2) ζ(s) = ξ(1− s); (9)

ξ(s) is entire except for simple poles at s = 0 and 1. The zeros of the Riemann zeta
function are related to the distribution of prime numbers.

The remarkable properties of the Riemann Zeta Function can be generalised
to a host of other zeta and L-functions, the study of whose properties pervades
analytic number theory 23. The simplest of the generalisations are for the Dirichlet
L-functions L(s, χ) defined as follows: q ≥ 1 is an integer and χ is a primitive
character of the Abelian group formed by all integers smaller than and relatively
prime to q. χ is extended to all integer values by making it periodic, and χ(m) = 0
if m and q have a common factor. Then

L(s, χ) =
∞∑

n=1

χ(n)n−s =
∏
p

(
1− χ(p)p−s

)−1
. (10)

The analogue of the functional equation Eq. (9) is known for the generalised zeta
functions, and they also seem to satisfy the generalised Riemann Hypothesis. q is
called the conductor of the L-function. The Riemann zeta function and Dirichlet
L-functions are the degree 1 L-functions. Degree 2 L-functions 22 are asociated
with cusp forms, and we study in particular the zeros of the degree 2 L-function
associated with Ramanujan’s τ(n).

We write the zeroes of the functions as 1/2 + iγ. The generalised Riemann
Hypothesis asserts that γ is real for the non-trivial zeroes. We order the γs in
increasing order, with

. . . . . . γ−1 < 0 < γ1 ≤ γ2 . . . . (11)

Then for the Riemann zeta function γj = −γ−j for j = 1, 2, . . . , and γ1, γ2, . . . are
roughly 14.1347, 21.0220, . . .. For the Dirichlet L-functions associated with complex
character pairs, the positive and negative roots are not symmetrical, but are related
by complex conjugation to the zeros of the L-function with the conjugate character.
We apply the rescaled range analysis to study the distribution of the spacings
δj = γj+1 − γj . The application of rescaled range analysis to the Riemann zeta
function gave a variation in the Hurst exponent from 0.09 to 0.1 for zeroes covering
the range 107 to 1022, for sample sizes of 10000 zeros. This shows that there is a
significant amount of self-affinity in the distribution of the zeroes. The low value of
the exponent is interesting. It implies that there is a large degree of anti-persistence.
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Because of this rather striking result, we apply the analysis to other functions which
satisfy the generalised Riemann hypothesis.

We analyse the zeros of the Dirichlet L-function of conductor 9 and 19, and the
Ramanujan tau L-function. Table 4 presents the Hurst exponent for these functions.
The number of zero differences used in the analysis varied from 1000 to 5000. As
we see from the table, these functions also show the same low Hurst exponents that
was noticed for the Riemann zeta function. It is interesting that all the functions we
have studied which satisfy the generalised Riemann hypothesis show a large degree
of self-affinity and a large anti-correlation as shown by the low Hurst exponent.
All distributions seem to have a high fractal dimension, 1.9. In view of the deep
role of L-functions, and the fact that many of the L-functions show the property
of a large negative correlation in the zero differences, it seems important to study
the phenomenon further. A promising avenue may be the hypothesised relation to
the semi-classical theory of classically chaotic quantum systems 24,25,26,27 and the
relation to the spectra of random matrix theories (RMT) 28,29,30,31.

5. Formula for number variance of zeros

Given the low value for the Hurst exponent for the L-functions, the question arises
as to what conclusion we can draw. One possible explanation is that the zeros
indeed represent a long range anti-correlation. However, one has to be careful in
coming to that conclusion, since a low Hurst exponent is rather special 33. A proper
interpretation of the results is based on some properties of rescaled range analysis
which we explained in Section 3.

In this section we study the Riemann zeta zeros as a typical example. We
show that the explanation is related to the the slow rate of growth of the func-
tion S(t) 32,21, defined by

S(t) := π−1 arg ζ(
1
2

+ it), (12)

rather than to true long-range anti-correlation. We use the formulae for the num-
ber variance of the zeros 24,25,26,27. Asymptotically, for the Riemann zeta function
the mean number of zeros with height less than γ (the smoothed Riemann zeta
staircase) is 21

< NR(γ) >= (γ/2π)(ln(γ/2π)− 1)− 7
8
. (13)

The interesting aspect of Eq. 13 is that for zeros of large height γ, the log term
varies very little, and the behaviour for reasonable sample sizes is essentially linear.
From the discussion in Section 3, it follows that Eq. 13 does not contribute to the
rescaled range analysis, and the Hurst exponent depends on the fluctuations of
NR(γ) from the smooth approximation < NR(γ) > in Eq. 13. The fluctuating part
of the Riemann staircase function can be written as 25

NR,osc(γ) = NR(γ)− < NR(γ) >= − 1
π

limη→0Im ln ζ(
1
2
− i(γ + iη)). (14)
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Fig. 4. Rescaled range analysis for Riemann zeta zeros of height 35161820. The y axis is the base
2 log of the rescaled range and the x axis is the log of the bin size.

The range of variation for this term is known to change very slowly with height γ,
which accounts for the observed small value for the Hurst exponent.

In order to verify the explanation, we need to extend the sample size considered
in the analysis so that the sample size is not too small compared to the height of
the zeros. In Fig. 4 we show the result of the analysis for zeros of the Riemann
zeta function of height 35161820. As can be seen from the figure, the effects of the
non-linearity due to Eq. 13 raise the slope of the rescaled range curve when the
sample size is not small compared to the height of the zeros. These considerations
also predict that the range of zeros over which the low Hurst exponent is found
increases with the height of the zeros. Thus, for the large height zeros the low
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Hurst exponent will prevail for a very large range of zeros.
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6. Conclusions

An analysis of the structure in the distribution of prime number gaps leads to
the interesting result that the properties of a prime number are corelated with the
properties of the preceeding prime number. A heuristic model has been presented to
explain the correlation, and it has also been pointed out that further investigations
are needed, particularly because the heuristic model does not explain the jumping
champions phenomenon in the distribution of prime number gaps. The results for
the L-functions are also interesting. All the functions we have studied which satisfy
the generalised Riemann hypothesis show a large degree of self-affinity and a large
anti-correlation as shown by the low Hurst exponent. All distributions seem to have
a high fractal dimension, 1.9.

Appendix. Hermite Polynomials

Table 5. Hurst exponent for Hermite Polynomials.

order Hurst Standard
exponent error

257 0.852 0.017
350 0.836 0.014

In this appendix, for completeness we briefly consider the rescaled range analysis
for the zeros of the Hermite polynomials and Farey series. The local spacings of the
zeroes of the Riemann Zeta function obey the laws for the (scaled) spacings between
the eigenvalues of a typical large unitary matrix. That is, they obey the laws of the
Gaussian Unitary Ensemble (GUE) 28,29,30,31. The joint probability distributions 34

for the GUE eigenvalues for matrices of size N λ1 ≥ λ2 . . . ≥ λN is

2N(N−1)/2exp
(
−

∑
λ2

i

) ∏

i<j

(λi − λj)
2

/

(
πN/2

N∏

i=1

Γ(i)

)
. (A.1)

Edelman 34 shows that for large N the average characteristic polynomial approaches
the Hermite polynomial of order N . Also, the set of eigenvalues λi which maximizes
the joint probability distribution is given by the roots of the Hermite polynomial.
We therefore consider the statistical properties of the roots of the Hermite polyno-
mial.

Figure 5 shows the histogram of the zero differences for the Hermite polynomial
of order 350. We observe that the histogram shows a sharp peak. There are no dif-
ferences below a threshold value of 0.8. This is quite different from the distribution
of differences for the eigenvalues of the GUE matrices.

The threshold for the zero differences can be understood in terms of the recursion
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Fig. 5. Histogram of zero differences for Hermite polynomial of order 350. The y axis is the
frequency and the x axis is the difference between neighbouring zeros.

relation for the Hermite polynomials. The recursion relation is

Hn+1 = xHn − n

2
Hn−1 (A.2)

This implies that the zero of Hn+1 is bounded from below by a zero of Hn, a
property which holds for all the well-known orthogonal polynomials of mathematical
physics. What is special to the Hermite polynomials is that the upper bound, which
is normally the next zero of the lower order orthogonal polynomial, can be made
stronger for Hermite polynomials. The upper bound is given by a zero of Hn−1.
Thus, the bounds show that there the zeros of the Hermite polynomials are well-
separated, accounting for the threshold in the histogram in Figure 5.

Table 5 presents the Hurst exponent for the Hermite polynomials of different
order. The Hurst exponent is large, of order 0.8. The successive zero differences
seem correlated positively.

Table 6. Hurst exponent for Farey Sequence.

order Number Hurst Standard
of terms exponent error

256 19949 0.432 0.003
512 79852 0.434 0.002
1025 319765 0.437 0.002
2048 1275587 0.440 0.002
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The Farey sequence of order n is the sequence of completely reduced fractions
between 0 and 1 which, when expressed in lowest terms, have denominators less
than or equal to n, arranged in order of increasing size. Farey sequences can be used
to give equivalent formulations of the Riemann hypothesis 21. We apply rescaled
range analysis to the Farey sequences of different order. Table 6 presents the Hurst
exponent. The number of terms used in the analysis is also shown in the table. The
Hurst exponent is slightly below 0.5. It is consistent with the successive differences
not being correlated either positively or negatively.
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