%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Save this file as 1929_e.tex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[12pt,a4paper]{article} \begin{document} \newcommand{\binom}[2]{{#1 \choose #2}} \begin{center} {\large {\bf 1929 \\[0pt] \vspace {15pt} {\sc deuxieme semestre} \\[0pt] \vspace {30pt} {\huge COMPTES RENDUS} \\[0pt] \vspace {10pt} {\sc hebdomadaires} \\[0pt] \vspace {10pt} {\Large DES S\'{E}ANCES \\[0pt] \vspace {10pt} DE L'ACAD\'{E}MIE DES SCIENCES} \\[0pt] \vspace {10pt} {\sc par mm. les secr\'{e}taires perp\'{e}tuels} \\[0pt] \vspace {20pt} TOME 189 \\[0pt] \vspace {20pt} {\huge N ${}^{\mbox {o}} $. 17 (21 Octobre 1929).} \\[0pt] \vspace {30pt} PARIS}} \end{center} \newpage \noindent ANALYSE MATH\'{E}MATIQUE. - {\it Sur une g\'{e}n\'{e}ralisation des polynomes} {\it d'Hermite.} Note de {\bf M.Krawtchouk}, transmise par M.\, \'{E}mile Borel.\vspace{1cm} \noindent M. Krawtchouk. C.R.Acad. Sci. 1929. T.189, No.17. P.620 - 622. \vspace {2cm} MATHEMATICAL ANALYSIS. - {\it On one generalization of Hermite polynomials.} Note \footnote{% Submitted on September 23, 1929.} by{\bf \ M.\, Krawtchouk}, submitted by M.\, \, \'{E}mile Borel.\vspace{1cm}.\noindent \vspace{1cm} Let's assume that the polynomial $\psi _{m}(x)$ of the $m^{\mbox{th}}$ degree is defined by the following equalities \begin{equation} \left\{ \begin{array}{c} \sum_{i=0}^{u-1}p_{i}\psi _{l}(x_{i})\psi _{m}(x_{i})=0(l\neq m),\quad =1\;(l=m) \\ \left( x_{i+1}-x_{i}=1,\quad p_{i}\geq o,\quad \sum_{i=0}^{u-1}p_{i}=1\right) . \end{array} \right. \label{1} \end{equation} Then we have \[ \left\{ \begin{array}{c} x\psi _{m}(x)=m_{-1}\psi _{m-1}(x)+m_{0}\psi _{m}(x)+m_{1}\psi _{m+1}(x)% \label{2} \\ \left[ m_{j}=\sum_{i=0}^{u-1}p_{i}x_{i}\psi _{m}(x_{i})\psi _{m+j}(x_{i})% \right] \end{array} \right. \] and the minimum of the expression \begin{equation} J_{k}(T_{0},T_{1},\ldots ,T_{k-1})=\sum_{i=0}^{u-1}p_{i}[T_{0}\psi _{0}(x_{i})+\ldots +T_{k-1}\psi _{k-1}(x_{i})-y(x_{i})]^{2}\quad (k\leq u)% \label{3} \end{equation} is equal to \[ J_{k}(A_{0},A_{1},\ldots ,A_{k-1})=\sum_{i=0}^{u-1}p_{i}y^{2}(x_{i})-A_{0}^{2}-\ldots -A_{N-1}^{2} \] where \begin{equation} A_{m}=\sum_{i=0}^{u-1}p_{i}y(x_{i})\psi _{m}(x_{i}).\label{4} \end{equation} In the important case $p_{0}=p_{1}=\ldots =p_{u-1}$ which has been studied by P.\, Tchebycheff the polynomials $\psi _{m}$ represent the generalization of the Legendre polynomials. We want to consider other important case where \begin{equation} p_{i}=P(i,u;p,q)=\binom{u-1}{i}p^{i}q^{u-1-i},\quad x_{i}=i\quad (p>0,\;q>0,\;p+q=1).\label{5} \end{equation} It is possible to prove that the functions $\psi _{m}$ have according to this hypothesis the following simple form: \begin{eqnarray} \varphi _{m}(x,u;p,q) &=&\sqrt{\binom{u-1}{m}(pq)^{m}}\;\Delta ^{m}P(x-m,u-m;p,q):P(x,u;p,q)\label{6} \\ &=&\sqrt{\binom{u-1}{m}^{-1}(pq)^{-m}}\sum_{i=o}^{m}(-1)^{i}\binom{u-x-1}{m-i% }\binom{x}{i}p^{m-i}q^{i} \nonumber \end{eqnarray} concerning the limiting cases of the polynomials \begin{equation} {\rm const.}\frac{x!}{a^{x}}\Delta ^{m}\left[ \frac{a^{x-m}}{(x-m)!}\right] \quad (u\rightarrow \infty),\;p(u-1)=a={\rm const.})\label{7} \end{equation} and the Hermite polynomials \begin{equation} {\rm const.}e^{t^{2}}\frac{d^{m}}{dt^{m}}\left( e^{-t^{2}}\right) \quad % \left[ u\rightarrow \infty ,\;x=p(u-1)+t\sqrt{2pq(u-1)}\right] . \label{8} \end{equation} In accordance with (\ref{5}) the formulas (\ref{2}) and (\ref{4}) are conversed respectively to \begin{eqnarray} &&\!\!\sqrt{(m+1)(u-m-1)pq}\,\varphi _{m+1}(x) \nonumber \\ &=&\left[ p(u-1)+(q-p)m-x\right] \varphi _{m}(x)-\sqrt{m(u-m)pq}\varphi _{m-1}(x), \nonumber \\ A_{m} &=&\sqrt{\binom{u-1}{m}(pq)^{m}}\sum_{i=0}^{u-1}y(x_{i})\Delta ^{m}P(x_{i}-m,\;u-m;\;p,q)\label{9} \\ &=&(-1)^{m}\sqrt{\binom{u-1}{m}(pq)^{m}}\sum_{i=0}^{u-1}P(i-m,u-m;p,q)\Delta ^{m}y(i-m), \nonumber \end{eqnarray} {\it Appendices}. --- 1. Calculation {\it of the incomplete generalized moments} \[ R_{m}(x)=\sum_{i=0}^{x-1}P(i,u;p,q)\varphi _{m}(i,u;p,q)\quad (m=1,2,\ldots ,k) \] of function (\ref{5}) gives \begin{equation} R_{m}(x)=\sqrt{\binom{u-1}{m}(pq)^{m}}\Delta ^{m-1}P(x-m,u-m;p,q)\quad (m=1,2,\ldots ,k)\label{10} \end{equation} As to $k^{\mbox{th}}$ incomplete factorial moment \[ \rho _{k}(x)=\sum_{i=0}^{x-1}P(i,u;p,q)\binom{p\left( u-1\right) -x}{k}\quad (k=0,1,2,\ldots ), \] it is equal to the linear combination of expressions (\ref{10}) and moment $% R_{0}(x)$ [the result is trivial in a limiting case (\ref{8})]. Equality by M.R.\, Frisch\footnote{% See {\sc Ch.\, Jordan}, {\it Statistique math.}, 1927, p. 85} follows from the formula (\ref{10}) as a special case at $(m=1)$. - 2. It is necessary to note the following expansion \begin{eqnarray} P(x,u_{1};p_{1},q_{1}) &=&P(x,u;p,q)\sum_{m=0}^{u-1}\sqrt{\frac{(u-m-1)!}{% m!(u-1)!}(pq)^{-m}}\varphi _{m}(x,u;p,q) \nonumber \\ &&\times \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i}p^{m-i}q^{i}\left[ \frac{{\it d}% ^{m}[s^{u-m}(p_{1}t+q_{1}s)^{u_{1}}]}{{\it d}t^{i}{\it d}s^{m-i}}\right] _{s,t=1} \nonumber \\ (u &\geq &u_{1}), \nonumber \end{eqnarray} with the limiting cases which correspond to the polynomials (\ref{7}) and (% \ref{8}) and are well known. \end{document} 1
Hosted by www.Geocities.ws