ANALYSE MATHÉMATIQUE. - Sur une gé néralisation des polynomes d'Hermite. Note de M.Krawtchouk, transmise par M.  Émile Borel.

M. Krawtchouk. C.R.Acad. Sci. 1929. T.189, No.17. P.620 - 622.




MATHEMATICAL ANALYSIS. - On one generalization of Hermite polynomials. Note 1 by M. Krawtchouk, submitted by M.  Émile Borel.

.

Let's assume that the polynomial ym(x) of the mth degree is defined by the following equalities







u-1

i = 0 
piyl(xi)ym(xi) = 0(l m),    = 1  (l = m)

xi+1-xi = 1,    pi o,    u-1

i = 0 
pi = 1
.
(1)

Then we have





xym(x) = m-1ym-1(x)+m0ym(x)+m1ym+1(x)

mj = u-1

i = 0 
pixiym(xi)ym+j(xi)
and the minimum of the expression
Jk(T0,T1,,Tk-1) = u-1

i = 0 
pi[T0y0(xi)++Tk-1yk-1(xi)-y(xi)]2    (k u)
(2)
is equal to
Jk(A0,A1,,Ak-1) = u-1

i = 0 
piy2(xi)-A02--AN-12
where
Am = u-1

i = 0 
piy(xi)ym(xi).
(3)

In the important case p0 = p1 = = pu-1 which has been studied by P. Tchebycheff the polynomials ym represent the generalization of the Legendre polynomials. We want to consider other important case where

pi = P(i,u;p,q) =

u-1
i


piqu-1-i,    xi = i   (p > 0,  q > 0,  p+q = 1).
(4)

It is possible to prove that the functions ym have according to this hypothesis the following simple form:

jm(x,u;p,q)
=
  �
 �




u-1
m


(pq)m
 
  DmP(x-m,u-m;p,q):P(x,u;p,q)
(5)
=
  �
 �




u-1
m


-1

 
(pq)-m
 
m

i = o 
(-1)i

u-x-1
m-i




x
i


pm-iqi
concerning the limiting cases of the polynomials
const. x!
ax
Dm

ax-m
(x-m)!


    (u ),  p(u-1) = a = const.)
(6)
and the Hermite polynomials
const.et2 dm
dtm
( e-t2)    
u ,  x = p(u-1)+t   _______
2pq(u-1)
 

.
(7)

In accordance with (4) the formulas (*) and (3) are conversed respectively to

  ____________
(m+1)(u-m-1)pq
 
 jm+1(x)
=
[ p(u-1)+(q-p)m-x] jm(x)-   _______
m(u-m)pq
 
jm-1(x),
Am
=
  �
 �




u-1
m


(pq)m
 
u-1

i = 0 
y(xi)DmP(xi-m,  u-m;  p,q)
(8)
=
(-1)m   �
 �




u-1
m


(pq)m
 
u-1

i = 0 
P(i-m,u-m;p,q)Dmy(i-m),

Appendices. - 1. Calculation of the incomplete generalized moments

Rm(x) = x-1

i = 0 
P(i,u;p,q)jm(i,u;p,q)    (m = 1,2,,k)
of function (4) gives
Rm(x) =   �
 �




u-1
m


(pq)m
 
Dm-1P(x-m,u-m;p,q)   (m = 1,2,,k)
(9)

As to kth incomplete factorial moment

rk(x) = x-1

i = 0 
P(i,u;p,q)

p( u-1) -x
k


   (k = 0,1,2,),
it is equal to the linear combination of expressions (9) and moment R0(x) [the result is trivial in a limiting case (7)]. Equality by M.R. Frisch2 follows from the formula (9) as a special case at (m = 1).

- 2. It is necessary to note the following expansion

P(x,u1;p1,q1)
=
P(x,u;p,q) u-1

m = 0 
  �
 �


(u-m-1)!
m!(u-1)!
(pq)-m
 
jm(x,u;p,q)
× m

i = 0 
(-1)m-i

m
i


pm-iqi

dm[su-m(p1t+q1s)u1]
dtidsm-i




s,t = 1 
(u
u1),
with the limiting cases which correspond to the polynomials (6) and (7) and are well known.


Footnotes:

1Submitted on September 23, 1929.

2See Ch. Jordan, Statistique math., 1927, p. 85


File translated from TEX by TTH, version 2.57.
On 28 Mar 2000, 14:22.
Hosted by www.Geocities.ws

1