

C++ notes:-

hello.cpp :-

// C++ program to display "Hello World"

// Header file for input output functions

#include <iostream>

using namespace std;

// Main() function: where the execution of program begins

int main()

{

 // prints hello world

 cout << "Hello World";

 return 0;

}

Output:-

program1.cpp (number example) :-

#include <iostream>

using namespace std;

int main() {

 int myNum = 15;

 cout << myNum;

 return 0;

}

Output:-

program2.cpp (user input example):-

#include <iostream>

using namespace std;

int main() {

 int x;

 cout << "Type a number: "; // Type a number and press enter

 cin >> x; // Get user input from the keyboard

 cout << "Your number is: " << x;

 return 0;

}

Create and Write To a File

To create a file, use either the ofstream or fstream class, and specify the name

of the file.

To write to the file, use the insertion operator (<<).

Program3.cpp (create a file):-

#include <iostream>

#include <fstream>

using namespace std;

int main() {

 // Create and open a text file

 ofstream MyFile("filename.txt");

 // Write to the file

 MyFile << "Files can be tricky, but it is fun enough!";

 // Close the file

 MyFile.close();

}

Output:-

Read a File

To read from a file, use either the ifstream or fstream class, and the name of

the file.

Note that we also use a while loop together with the getline() function (which

belongs to the ifstream class) to read the file line by line, and to print the

content of the file:

program3.py file:-

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main () {

 // Create a text file

 ofstream MyWriteFile("filename.txt");

 // Write to the file

 MyWriteFile << "Files can be tricky, but it is fun enough!";

 // Close the file

 MyWriteFile.close();

 // Create a text string, which is used to output the text file

 string myText;

 // Read from the text file

 ifstream MyReadFile("filename.txt");

 // Use a while loop together with the getline() function to read the file line

by line

 while (getline (MyReadFile, myText)) {

 // Output the text from the file

 cout << myText;

 }

 // Close the file

 MyReadFile.close();

}

Output:-

C++ Exceptions

When executing C++ code, different errors can occur: coding errors made by
the programmer, errors due to wrong input, or other unforeseeable things.

When an error occurs, C++ will normally stop and generate an error message.
The technical term for this is: C++ will throw an exception (throw an error).

C++ try and catch

Exception handling in C++ consist of three keywords: try, throw and catch:-

The try statement allows you to define a block of code to be tested for errors

while it is being executed.

The throw keyword throws an exception when a problem is detected, which lets

us create a custom error.

The catch statement allows you to define a block of code to be executed, if an

error occurs in the try block.

The try and catch keywords come in pairs:

Example

try {

 // Block of code to try

 throw exception; // Throw an exception when a problem arise

}

catch () {

 // Block of code to handle errors

}

Consider the following example:-

program4.cpp:-

#include <iostream>

using namespace std;

int main() {

 try

 {

 int age = 15;

 if (age >= 18) {

 cout << "Access granted - you are old enough.";

 } else {

 throw (age);

 }

 }

 catch (int myNum)

 {

 cout << "Access denied - You must be at least 18 years old.\n";

 cout << "Age is: " << myNum;

 }

 return 0;

}

Output:-

Example explained

We use the try block to test some code: If the age variable is less than 18, we

will throw an exception, and handle it in our catch block.

In the catch block, we catch the error and do something about it.

The catch statement takes a parameter: in our example we use

an int variable (myNum) (because we are throwing an exception of int type in

the try block (age)), to output the value of age.

If no error occurs (e.g. if age is 20 instead of 15, meaning it will be be greater

than 18), the catch block is skipped.

#include <iostream>

using namespace std;

int main() {

 try {

 int age = 20;

 if (age >= 18) {

 cout << "Access granted - you are old enough.";

 } else {

 throw (age);

 }

 }

 catch (int myNum) {

 cout << "Access denied - You must be at least 18 years old.\n";

 cout << "Age is: " << myNum;

 }

 return 0;

}

output:-

