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Abstract: Expected value of CDO satisfies a simple integro-differential equation if 

cumulative default loss process is Markovian.  We show how it is derived and is solved 

numerically. 

 

 

1.  Derivation 
 

Copula models equate expected values of the protection leg (V ) and the premium leg 

(W ) to back out CDO tranche premium.  Following standard treatment, 

 

(1)  ( ) ( )∫∫ +=




=

T

t

T

t
dsstBstfsMETMETtBsdMstBEtlV ),(),()()(),()(),(),(  

 

(2)  ( )∑
=

⋅⋅⋅=
n

i

ii tNEttBptlW
1

)(),(),( ω  

 

where ( ) ( )++
−−−= βα )()()( tltltM , ( ) ( )++

−−−= )()()( tltltN αβ ; )(tl  is the 

cumulative default loss at time t ; α  and β  denote the tranche attachment and 

detachment points , respectively; ),( stB  is the time- t  price of a pure discount bond 

maturing at time- s , and ),( stf  the instantaneous forward rate; ω  is the payment interval 

for tranche premium p ; tt =0 , Ttn = ; and wlog, all notionals are unitary. 

 

Let )(tl  be Markovian, and consider replacing the copula in ( )⋅E  with transition 

probability ),|,( tlsLP .  By the backward Chapman-Kolmogorov equation, 
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where the propagator, ),|,( tldttlP ++ ξ , conditional on whether jump occurs, can be 

written as 

 

(4) ( ) ),|(),()(),(1),|,( tlwdttlhldttlhtldttlP ξδξ ⋅+⋅−=++ . 

 

In (4), h  is the jump intensity, δ  is the Dirac delta function, and w  is the conditional 

distribution density of jump size ξ .  Applying (4) in (3) leads to the backward master 

equation 
2
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For simplicity, assume constant riskfree rate r .  Differentiate both sides of (1) with 

respect to t  and use (5); it is straightforward to derive 
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Similarly, 
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Boundary and terminal (jump) conditions for Equations (6) and (7) are 
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By linear superposition, expected value of the tranche to a buyer, WVU −=: , follows 
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subject to 

 

(10) αββ −=),( sU  and 

(11) [ ] ppLLTLU ωαβωβα )()1()()(),( −−+−−−= ++ . 
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Fair premium p  can be backed out by adjusting the terminal condition (11) so that 

solution to ),( tlU  is zero. 

 

 

2.  Numerical Solution 
 

In general, Equation (9) needs to be solved numerically.  Discretize the spatial domain 

),[ βl  to ∆+ il , Ni ,...,1,0=  with Nl /)( −=∆ β , and use simple trapezoidal rule to 

resolve the integral 
3
; we have 
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where ),( tilUU i ∆+= , )( ∆+= ilhhi  and ),|()(
tiljww

i

j ∆+∆=  for 1,...,1,0 −= Ni .  

This is a system of N  first-order ODEs that can be easily solved once the functions h  

and )(i
w  ( 1,...,1,0 −= Ni ) are specified.  To back out p , we can use a root searching 

algorithm such as Brent’s method. 

 

For a toy example, consider htlh =),(  and 1)1(),|( −−= ltlw ξ .  Then  
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−−+= .  Table 1 reports premium estimates to various tranches.  

Figure 1 gives the solution profile to the junior mezzanine tranche. 

 

 

Table 1: Tranche premium 

 

tranche )03.0,0[  )07.0,03.0[  )1.0,07.0[  )15.0,1.0[  )3.0,15.0[  ]1,0[  

Premium (bps) 491 471 456 430 355 2 

 

Note: %5=r , 05.0=h , 0=t , 0)0( =l , 1=T  and 25.0=ω . 
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Realistic estimates might be found by choosing appropriate functional forms (or 

dynamics) for h  and w .  Potentially, CDO option could also be priced if we discretize 

the time dimension to allow for dynamic programming.  

 

 

Figure 1: Solution profile to tranche )07.0,03.0[  

0

0.02

0.04

0.06

0.08

0
0.2

0.4
0.6

0.8
1

-0.01

0

0.01

0.02

0.03

0.04

lt

U

 
 

 

3.  CDS 
 

Similar integrodifferential equations exist for expected values of the protection leg (V ) 

and the premium leg (W ) of CDS.  Using the following equalities, 
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where τ  is default time, R  the recovery 
5
 and )(1 ⋅  the indicator function 

6
, we have 
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and 
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With the notion that ( ) ∫ ⋅= dLtlsLPLslE ),|,()(  
7
, we can differentiate V  ( )W  with 

respect to t  and apply (5) 
8
, which gives 
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Boundary and terminal (jump) conditions are found as: 
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Naturally, expected value of CDS to a buyer, WVU −=: , satisfies  

 

                                                 
5
 Assume R  is fixed for now. 

6
 Other variables/functions are similarly defined as before. 

7
 Abbreviate )(tl  to l . 

8
 After replacing h  and w  in (5) with jump intensity and jump distribution for the individual obligor. 



 6 
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Again, we back out CDS spread p  by making 0),( =tlU .  Jump distribution w  in (18), 

(19) and (21) does not have to be Dirac delta, since recovery R  can be stochastic.  

Therefore, boundary conditions could be slackened to 1),1( =sV , 0),1( =sW  and 

1),1( =sU . 

 

Denote h  and w  in (9) as Ωh  and Ωw , and those in (21) as )(ih  and )(iw  for obligor i .  

Clearly there should be some constraint(s) between the aggregate functions Ωh  and Ωw  

and the individual )(ih  and )(iw  ( Ω∈i ). 
9
  These relations may help identifying their 

appropriate functional forms (or dynamics) to fit tranche prices. 
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