
32

THE FA ÇADE PATTERN

Frequently, as your programs evolve and develop, they grow in
complexity. In fact, for all the excitement about using design patterns, these
patterns sometimes generate so many classes that it is difficult to understand
the program’s flow. Furthermore, there may be a number of complicated
subsystems, each of which has its own complex interface.

The Façade pattern allows you to simplify this complexity by
providing a simplified interface to these subsystems. This simplification may
in some cases reduce the flexibility of the underlying classes, but usually
provides all the function needed for all but the most sophisticated users.
These users can still, of course, access the underlying classes and methods.

Fortunately, we don’t have to write a complex system to provide an
example of where a Facade can be useful. Java provides a set of classes that
connect to databases using an interface called JDBC. You can connect to any
database for which the manufacturer has provided a JDBC connection class --
almost every database on he market. Some databases have direct connections
using JDBC and a few allow connection to ODBC driver using the JDBC-
ODBC bridge class.

These database classes in the java.sql package provide an excellent
example of a set of quite low level classes that interact in a convoluted
manner, as shown below.

Connection
Database
Metadata

Statement

ResultSet
ResultSet
Metadata

Create

get create

Execute

get

33

To connect to a database, you use an instance of the Connection
class. Then, to find out the names of the database tables and fields, you need
to get an instance of the DatabaseMetadata class from the Connection. Next,
to issue a query, you compose the SQL query string and use the Connection
to create a Statement class. By executing the statement, you obtain a
ResultSet class, and to find out the names of the column rows in that
ResultSet, you need to obtain an instance of the ResultsetMetadata class.
Thus, it can be quite difficult to juggle all of these classes and since most of
the calls to their methods throw Exceptions, the coding can be messy at least.

Connection
Database
Metadata

Statement

ResultSet
ResultSet
Metadata

Create

get create

Execute

get

Database resultSet

resultSet class (note the lowercase “r”), we can build a much more usable
system.

Building the Façade Classes
Let’s consider how we connect to a database. We first must load the

database driver:

try{Class.forName(driver);} //load the Bridge driver
 catch (Exception e)
 {System.out.println(e.getMessage());}

34

and then use the Connection class to connect to a database. We also obtain
the database metadata to find out more about the database:

try {con = DriverManager.getConnection(url);
 dma =con.getMetaData(); //get the meta data
 }
 catch (Exception e)
 {System.out.println(e.getMessage());}

If we want to list the names of the tables in the database, we then
need to call the getTables method on the database metadata class, which
returns a ResultSet object. Finally, to get the list of names we have to iterate
through that object, making sure that we obtain only user table names, and
exclude internal system tables.

Vector tname = new Vector();
try {
 results = new resultSet(dma.getTables(catalog,

null, "%", types));
 }
 catch (Exception e) {System.out.println(e);}
 while (results.hasMoreElements())
 tname.addElement(

results.getColumnValue("TABLE_NAME"));

This quickly becomes quite complex to manage, and we haven’t even
issued any queries yet.

One simplifying assumption we can make is that the exceptions that
all these database class methods throw do not need complex handling. For the
most part, the methods will work without error unless the network connection
to the database fails. Thus, we can wrap all of these methods in classes in
which we simply print out the infrequent errors and take no further action.

This makes it possible to write two simple enclosing classes which
contain all of the significant methods of the Connection, ResultSet, Statement
and Metadata classes. These are the Database class:

Class Database {
 public Database(String driver)()//constructor
 public void Open(String url, String cat);
 public String[] getTableNames();
 public String[] getColumnNames(String table);
 public String getColumnValue(String table,

String columnName);
 public String getNextValue(String columnName);
 public resultSet Execute(String sql);
}

and the resultSet class:

35

class resultSet
{
 public resultSet(ResultSet rset) //constructor
 public String[] getMetaData();
 public boolean hasMoreElements();
 public String[] nextElement();
 public String getColumnValue(String columnName);
 public String getColumnValue(int i);
}

These simple classes allow us to write a program for opening a
database, displaying its table names, column names and contents, and running
a simple SQL query on the database.

The dbFrame.java program accesses a simple database containing
food prices at 3 local markets:

Clicking on a table name shows you the column names and clicking
on a column name shows you the contents of that column. If you click on Run
Query, it displays the food prices sorted by store for oranges:

36

This program starts by connecting to the database and getting a list of
the table names:

db = new Database("sun.jdbc.odbc.JdbcOdbcDriver");
db.Open("jdbc:odbc:Grocery prices", null);
String tnames[] = db.getTableNames();
loadList(Tables, tnames);

Then clicking on one of the lists runs a simple query for table column
names or contents:

public void itemStateChanged(ItemEvent e) {
//get list box selection
 Object obj = e.getSource();
 if (obj == Tables)
 showColumns();
 if (obj == Columns)
 showData();
}
//------------------------------------
private void showColumns() {
//display column names
String cnames[] =

db.getColumnNames(Tables.getSelectedItem());
loadList(Columns, cnames);
}
//------------------------------------
private void showData() {
//display column contents
String colname = Columns.getSelectedItem();
String colval =

db.getColumnValue(Tables.getSelectedItem(),
colname);

Data.removeAll(); //clear list box
colval = db.getNextValue(Columns.getSelectedItem());

while (colval.length()>0) {

37

//load list box
 Data.add(colval);
 colval = db.getNextValue(Columns.getSelectedItem());
 }
}

Consequences of the Façade
The Façade pattern shields clients from complex subsystem

components and provides a simpler programming interface for the general
user. However, it does not prevent the advanced user from going to the
deeper, more complex classes when necessary.

In addition, the Façade allows you to make changes in the underlying
subsystems without requiring changes in the client code, and reduces
compilation dependencies.

