
24

THE DECORATOR PATTERN

The Decorator pattern provides us with a way to modify the behavior
of individual objects without having to create a new derived class. Suppose
we have a program that uses eight objects, but three of them need an
additional feature. You could create a derived class for each of these objects,
and in many cases this would be a perfectly acceptable solution. However, if
each of these three objects require different modifications, this would mean
creating three derived classes. Further, if one of the classes has features of
both of the other classes, you begin to create a complexity that is both
confusing and unnecessary.

For example, suppose we wanted to draw a special border around
some of the buttons in a toolbar. If we created a new derived button class, this
means that all of the buttons in this new class would always have this same
new border, when this might not be our intent.

Instead, we create a Decorator class that decorates the buttons. Then
we derive any number of specific Decorators from the main Decorator class,
each of which performs a specific kind of decoration. In order to decorate a
button, the Decorator has to be an object derived from the visual
environment, so it can receive paint method calls and forward calls to other
useful graphic methods to the object that it is decorating. This is another case
where object containment is favored over object inheritance. The decorator is
a graphical object, but it contains the object it is decorating. It may intercept
some graphical method calls, perform some additional computation and may
pass them on to the underlying object it is decorating.

Decorating a CoolButton
Recent Windows applications such as Internet Explorer and Netscape

Navigator have a row of flat, unbordered buttons that highlight themselves
with outline borders when you move your mouse over them. Some Windows
programmers call this toolbar a CoolBar and the buttons CoolButtons. There
is no analogous button behavior in the JFC, but we can obtain that behavior
by decorating a JButton. In this case, we decorate it by drawing plain gray
lines over the button borders, erasing them.

Let’s consider how to create this Decorator. Design Patterns suggests
that Decorators should be derived from some general Visual Component class

25

and then every message for the actual button should be forwarded from the
decorator. In Java, this is completely impractical, because there are literally
hundreds of method calls in the base JComponent class that we would have to
reimplement. Instead, while we will derive our Decorator from the
JComponent class, we will use its container properties to forward all method
calls to the button it will contain.

Design Patterns suggests that classes such as Decorator should be
abstract classes and that you should derive all of your actual working (or
concrete) decorators from the abstract class. In this Java implementation, this
is scarcely necessary since the base Decorator class has no public methods at
all other than the constructor, since all of them are methods of JComponent
itself.

public class Decorator extends Jcomponent {
 public Decorator(JComponent c) {
 setLayout(new BorderLayout());

//add component to container
 add("Center", c);
 }
}

Now, let’s look at how we could implement a CoolButton. All we
really need to do is to draw the button as usual from the base class, and then
draw gray lines around the border to remove the button highlighting.

//this class decorates a CoolButton so that
//the borders are invisible when the mouse
//is not over the button
public class CoolDecorator extends Decorator
{
 boolean mouse_over; //true when mouse over button
 JComponent thisComp;

 public CoolDecorator(JComponent c)
 {
 super(c);
 mouse_over = false;
 thisComp = this; //save this component
 //catch mouse movements in inner class
 c.addMouseListener(new MouseAdapter()
 {
 public void mouseEntered(MouseEvent e) {
 mouse_over=true; //set flag when mouse over
 thisComp.repaint();
 }
 public void mouseExited(MouseEvent e) {
 mouse_over=false; //clear if mouse not over
 thisComp.repaint();

26

 }
 });

 }
 //paint the button
 public void paint(Graphics g)
 {
 super.paint(g); //first draw the parent button
 if(! mouse_over) {
 //if the mouse is not over the button
 //erase the borders
 Dimension size = super.getSize();
 g.setColor(Color.lightGray);
 g.drawRect(0, 0, size.width-1, size.height-1);
 g.drawLine(size.width-2, 0, size.width-2,

size.height-1);
 g.drawLine(0, size.height-2, size.width-2,

size.height-2);
 }
 }
}

Using a Decorator
Now that we’ve written a CoolDecorator class, how do we use it? We

simply create an instance of the CoolDecorator and pass it the button it is to
decorate. We can do all of this right in the constructor. Let’s consider a
simple program with two CoolButtons and one ordinary JButton. We create
the layout as follows:

super ("Deco Button");
 JPanel jp = new JPanel();

 getContentPane().add(jp);
 jp.add(new CoolDecorator(new JButton("Cbutton")));
 jp.add(new CoolDecorator(new JButton("Dbutton")));
 jp.add(Quit = new JButton("Quit"));
 Quit.addActionListener(this);

This program is shown below, with the mouse hovering over one of
the buttons.

27

Now that we see how a single decorator works, what about multiple
decorators? It could be that we’d like to decorate our CoolButtons with
another decoration, say, a red diagonal line. Since the argument to any
Decorator is just a JComponent, we could create a new decorator with a
decorator as its argument.

Let’s consider the SlashDecorator, which draws that diagonal red
line:

public class SlashDecorator extends Decorator
{
 int x1, y1, w1, h1; //saved size and posn

 public SlashDecorator(JComponent c) {
 super(c);
 }
//--
 public void setBounds(int x, int y, int w, int h) {
 x1 = x; y1= y; //save coordinates
 w1 = w; h1 = h;
 super.setBounds(x, y, w, h);
 }
//--
 public void paint(Graphics g) {
 super.paint(g); //draw button
 g.setColor(Color.red); //set color
 g.drawLine(0, 0, w1, h1); //draw red line
 }
}

Here we save the size and position of the button when it is created,
and then use those saved values to draw the diagonal line.

You can create the JButton with these two decorators by just calling
one and then the other:

jp.add(new SlashDecorator(
new CoolDecorator(new JButton("Dbutton"))));

This gives us a final program that displays the two buttons like this:

28

Inheritance Order
Some people find the order of inheritance in Decorators confusing,

because we are surrounding a button with a decorator that inherits from a
JComponent. We illustrate this inheritance tree below.

JComponent

Decorator

CoolDecoratorSlashDecorator
JButton

A JButton is a child of JComponent, and is encapsulated in a
Decorator, which not only is a child of JComponent but encapsulates one as
well. The JComponent it encapsulates is, in this case, a JButton.

Decorating Borders in Java
One problem with this particular implementation of Decorators is that

it is not easy to expand the size of the component you are decorating, because
you add the component to a container and allow it to fill the container
completely. If you attempt to draw lines outside the area of this component,
they are clipped by the graphics procedure and not drawn at all.

The JFC provides its own series of Border objects that are a kind of
decorators. Like a Decorator pattern, you can add a new Border object to any
JComponent, and there also is a way to add several borders. However, unlike
the Decorator pattern, it is not a JComponent and you do not have the
flexibility to intercept and change specific events.

The JFC defines several standard border classes:

BevelBorder(n) Simple 2-line bevel, can be LOWERED or RAISED

29

CompoundBorder
(inner, outer)

Allows you to add 2 borders

EmptyBorder(top,
left, bottom, right)

Blank border width specified on each side.

EtchedBorder Creates etched norder.

LineBorder(width,
color)

Creates simple line border,

MatteBorder Creates a matte border of a solid color or a tiled icon.

SofBeveledBorder Creates beveled border with rounded corners.

TitledBorder Creates a border containing a title. Use this to
surround and label a JPanel.

These borders are simple to use, in conjunction with the setBorder
method of each JComponent. The illustration below shows a normal JButton
with a 2-pixel solid line border, combined with a 4-pixel EmptyBorder and an
EtchedBorder.

This was created with the following simple code:

 getContentPane().add(jp);
 jp.add(Cbutton = new JButton("Cbutton"));
 jp.add(Dbutton = new JButton("Dbutton"));
 EmptyBorder ep = new EmptyBorder(4,4,4,4);
 LineBorder lb = new LineBorder(Color.black, 2);
 Dbutton.setBorder(new CompoundBorder(lb, ep));
 jp.add(Quit = new JButton("Quit"));
 EtchedBorder eb = new EtchedBorder();
 Quit.addActionListener(this);
 Quit.setBorder(eb);

30

One drawback of these Border objects is that they replace the default
Insets values that determine the spacing around the component. Note that we
had to add a 4-pixel EmptyBorder to the Dbutton to make it similar in size to
the CButton. We did not do this for the Quit button, and it is therefore
substantially smaller than the others.

Non-Visual Decorators
Decorators, of course, are not limited to objects that enhance visual

classes. You can add or modify the methods of any object in a similar
fashion. In fact, non-visual objects are usually easier to decorate, because
there are usually fewer methods to intercept and forward.

While coming up with a simple example is difficult, a series of
Decorators do occur naturally in the java.io classes. Note the following in the
Java documentation:

The class FilterInputStream itself simply overrides
all methods of InputStream with versions that pass all
requests to the underlying input stream. Subclasses of
FilterInputStream may further override some of these
methods as well as provide additional methods and fields.

The FilterInputStream class is thus a Decorator that can be wrapped
around any input stream class. It is essentially an abstract class that doesn’t
do any processing, but provides a layer where the relevant methods have been
duplicated. It normally forwards these method calls to the enclosed parent
stream class.

The interesting classes derived from FilterInputStream include

BufferedInputStream Adds buffering to stream so that every call does
not cause I/O to occur.

CheckedInputStream Maintains a checksum of bytes as they are read

DataInputStream Reads primitive types (Long, Boolean, Float, etc.)
from the input stream.

DigestInputStream Computes a MessageDigest of any input stream.

InflaterInputStream Implements methods for uncompressing data.

PushbackInputStream Provides a buffer where data can be “unread,” if
during parsing you discover you need to back up.

31

These decorators can be nested, so that a pushback, buffered input
stream is quite possible.

Decorators, Adapters and Composites
There is an essential similarity among these classes that you may

have recognized. Adapters also seem to “decorate” an existing class.
However, their function is to change the interface of one or more classes to
one that is more convenient for a particular program. Decorators add methods
to particular instances of classes, rather than to all of them. You could also
imagine that a composite consisting of a single item is essentially a decorator.
Once again, however, the intent is different

Consequences of the Decorator Pattern
The Decorator pattern provides a more flexible way to add

responsibilities to a class than by using inheritance, since it can add these
responsibilities to selected instances of the class. It also allows you to
customize a class without creating subclasses high in the inheritance
hierarchy. Design Patterns points out two disadvantages of the Decorator
pattern One is that a Decorator and its enclosed component are not identical.
Thus tests for object type will fail. The second is that Decorators can lead to a
system with “lots of little objects” that all look alike to the programmer trying
to maintain the code. This can be a maintenance headache.

Decorator and Façade evoke similar images in building architecture,
but in design pattern terminology, the Façade is a way of hiding a complex
system inside a simpler interface, while Decorator adds function by wrapping
a class. We’ll take up the Façade next.

