
29

THE PROTOTYPE PATTERN

The Protoype pattern is used when creating an instance of a class is very
time-consuming or complex in some way. Then, rather than creating more
instances, you make copies of the original instance, modifying them as
appropriate.

Prototypes can also be used whenever you need classes that differ only in the
type of processing they offer, for example in parsing of strings representing
numbers in different radixes. In this sense, the prototype is nearly the same as
the Examplar pattern described by Coplien [1992].

Let’s consider the case of an extensive database where you need to make a
number of queries to construct an answer. Once you have this answer as a
table or ResultSet, you might like to manipulate it to produce other answers
without issuing additional queries.

In a case like one we have been working on, we’ll consider a database of a
large number of swimmers in a league or statewide organization. Each
swimmer swims several strokes and distances throughout a season. The “best
times” for swimmers are tabulated by age group, and many swimmers will
have birthdays and fall into new age groups within a single season. Thus the
query to determine which swimmers did the best in their age group that
season is dependent on the date of each meet and on each swimmer’s
birthday. The computational cost of assembling this table of times is therefore
fairly high.

Once we have a class containing this table, sorted by sex, we could imagine
wanting to examine this information sorted just by time, or by actual age
rather than by age group. It would not be sensible to recompute these data,
and we don’t want to destroy the original data order, so some sort of copy of
the data object is desirable.

Cloning in Java
You can make a copy of any Java object using the clone method.

Jobj j1 = (Jobj)j0.clone();

The clone method always returns an object of type Object. You must cast it to
the actual type of the object you are cloning. There are three other significant
restrictions on the clone method:

30

1. It is a protected method and can only be called from within the same class
or the module that contains that class.

2. You can only clone objects which are declared to implement the
Cloneable interface.

3. Objects that cannot be cloned throw the CloneNotSupported Exception.

This suggests packaging the actual clone method inside the class where it can
access the real clone method:

public class SwimData implements Cloneable
{
 public Object clone()
 {
 try{
 return super.clone();
 }
 catch(Exception e)

 {System.out.println(e.getMessage());
 return null;
 }
 }
}

This also has the advantage of encapsulating the try-catch block inside the
public clone method. Note that if you declare this public method to have the
same name “clone,” it must be of type Object, since the internal protected
method has that signature. You could, however, change the name and do the
typecasting within the method instead of forcing it onto the user:

public SwimData cloneMe()
 {
 try{
 return (SwimData)super.clone();
 }
 catch(Exception e)

 {System.out.println(e.getMessage());
 return null;
 }
 }

You can also make special cloning procedures that change the data or
processing methods in the cloned class, based on arguments you pass to the
clone method. In this case, method names such as make are probably more
descriptive and suitable.

31

Using the Prototype
Now let’s write a simple program that reads data from a database and then
clones the resulting object. In our example program, SwimInfo, we just read
these data from a file, but the original data were derived from a large database
as we discussed above.

Then we create a class called Swimmer that holds one name, club name, sex
and time

class Swimmer
{ String name;
 int age;
 String club;
 float time;
 boolean female;

and a class called SwimData that maintains a vector of the Swimmers we read
in from the database.

public class SwimData implements Cloneable
{
 Vector swimmers;
 public SwimData(String filename)
 {
 String s = "";
 swimmers = new Vector();
 //open data file
 InputFile f = new InputFile(filename);
 s= f.readLine(); //read in and parse each line
 while(s != null)
 {
 swimmers.addElement(new Swimmer(s));
 s= f.readLine();
 }
 f.close();
 }
We also provide a getSwimmer method in SwimData and getName, getAge
and getTime methods in the Swimmer class. Once we’ve read the data into
SwimInfo, we can display it in a list box.

 swList.removeAll(); //clear list
 for (int i = 0; i < sdata.size(); i++)
 {
 sw = sdata.getSwimmer(i);
 swList.addItem(sw.getName()+" "+sw.getTime());
 }

Then, when the user clicks on the Clone button, we’ll clone this class and sort
the data differently in the new class. Again, we clone the data because

32

creating a new class instance would be much slower, and we want to keep the
data in both forms.

 sxdata = (SwimData)sdata.clone();
 sxdata.sortByTime(); //re-sort
 cloneList.removeAll(); //clear list

 //now display sorted values from clone
 for(int i=0; i< sxdata.size(); i++)
 {
 sw = sxdata.getSwimmer(i);
 cloneList.addItem(sw.getName()+" "+sw.getTime());
 }

In the original class, the names are sorted by sex and then by time, while in
the cloned class, they are sorted only by time. In the figure below, we see the
simple user interface that allows us to display the original data on the left and
the sorted data in the cloned class on the right:

The left-hand list box is loaded when the program starts and the right-hand
list box is loaded when you click on the Clone button. Now, let’s click on the
Refresh button to reload the left-hand list box from the original data.

33

Why have the names in the left-hand list box also been re-sorted?. This
occurs in Java because the clone method is a shallow copy of the original
class. In other words, the references to the data objects are copies, but they
refer to the same underlying data. Thus, any operation we perform on the
copied data will also occur on the original data in the Prototype class.

In some cases, this shallow copy may be acceptable, but if you want to make
a deep copy of the data, there is a clever trick using the serializable interface.
A class is said to be serializable if you can write it out as a stream of bytes
and read those bytes back in to reconstruct the class. This is how Java remote
method invocation (RMI) is implemented. However, if we declare both the
Swimmer and SwimData classes as Serializable,

public class SwimData
 implements Cloneable, Serializable

class Swimmer implements Serializable

we can write the bytes to an output stream and reread them to create a
complete data copy of that instance of a class:

public Object deepClone()
 {
 try{
 ByteArrayOutputStream b = new ByteArrayOutputStream();
 ObjectOutputStream out = new ObjectOutputStream(b);
 out.writeObject(this);
 ByteArrayInputStream bIn = new

 ByteArrayInputStream(b.toByteArray());

34

 ObjectInputStream oi = new ObjectInputStream(bIn);
 return (oi.readObject());
 }
 catch (Exception e)
 { System.out.println("exception:"+e.getMessage());
 return null;
 }
 }

This deepClone method allows us to copy an instance of a class of any
complexity and have data that is completely independent between the two
copies. The program SwimInfo on the accompanying CD-ROM contains the
complete code for this example, showing both cloning methods.

Consequences of the Prototype Pattern
Using the Prototype pattern, you can add and remove classes at run time by
cloning them as needed. You can revise the internal data representation of a
class at run time based on program conditions. You can also specify new
objects at run time without creating a proliferation of classes and inheritance
structures.

One difficulty in implementing the Prototype pattern in Java is that if the
classes already exist, you may not be able to change them to add the required
clone or deepClone methods. The deepClone method can be particularly
difficult if all of the class objects contained in a class cannot be declared to
implement Serializable. In addition, classes that have circular references to
other classes cannot really be cloned.

Like the registry of Singletons discussed above, you can also create a registry
of Prototype classes which can be cloned and ask the registry object for a list
of possible prototypes. You may be able to clone an existing class rather than
writing one from scratch.

Note that every class that you might use as a prototype must itself be
instantiated (perhaps at some expense) in order for you to use a Prototype
Registry. This can be a performance drawback.

Finally, the idea of having prototype classes to copy implies that you have
sufficient access to the data or methods in these classes to change them after
cloning. This may require adding data access methods to these prototype
classes so that you can modify the data once you have cloned the class.

