
21

THE BUILDER PATTERN

We have already seen that the Factory Pattern returns one of several different
subclasses depending on the data passed to in arguments to the creation
methods. But suppose we don’t want just a computing algorithm, but a whole
different user interface depending on the data we need to display. A typical
example might be your E-mail address book. You probably have both people
and groups of people in your address book, and you would expect the display
for the address book to change so that the People screen has places for first
and last name, company, E-mail address and phone number.

On the other hand if you were displaying a group address page, you’d like to
see the name of the group, its purpose, and a list of members and their E-mail
addresses. You click on a person and get one display and on a group and get
the other display. Let’s assume that all E-mail addresses are kept in an object
called an Address and that people and groups are derived from this base class
as shown below:

Address

Person Group

Depending on which type of Address object we click on, we’d like to see a
somewhat different display of that object’s properties. This is a little more
than just a Factory pattern, because we aren’t returning objects which are
simple descendents of a base display object, but totally different user
interfaces made up of different combinations of display objects. The Builder
Pattern assembles a number of objects, such as display widgets, in various
ways depending on the data. Furthermore, since Java is one of the few
languages where you can cleanly separate the data from the display methods
into simple objects, Java is the ideal language to implement Builder patterns.

22

An Investment Tracker
Let’s consider a somewhat simpler case where it would be useful to have a
class build our UI for us. Suppose we are going to write a program to keep
track of the performance of our investments. We might have stocks, bonds
and mutual funds, and we’d like to display a list of our holdings in each
category so we can select one or more of the investments and plot their
comparative performance.

Even though we can’t predict in advance how many of each kind of
investment we might own at any given time, we’d like to have a display that
is easy to use for either a large number of funds (such as stocks) or a small
number of funds (such as mutual funds). In each case, we want some sort of a
multiple-choice display so that we can select one or more funds to plot. If
there is a large number of funds, we’ll use a multi-choice list box and if there
are 3 or fewer funds, we’ll use a set of check boxes. We want our Builder
class to generate an interface that depends on the number of items to be
displayed, and yet have the same methods for returning the results.

Our displays are shown below. The first display contains a large number of
stocks and the second a small number of bonds.

23

Now, let’s consider how we can build the interface to carry out this variable
multiChoice abstract class that defines the methods

we need to implement:

abstract class multiChoice
{
 //This is the abstract base class
 //that the listbox and checkbox choice panels
 //are derived from
 Vector choices; //array of labels
//--
 public multiChoice(Vector choiceList)
 {
 choices = choiceList; //save list
 }
 //to be implemented in derived classes
 abstract public Panel getUI(); //return a Panel of components
 abstract public String[] getSelected(); //get list of items
 abstract public void clearAll(); //clear selections
}

The getUI method returns a Panel container with a multiple-choice display.
The two displays we’re using here -- a checkbox panel or a list box panel --
are derived from this abstract class:

class listboxChoice extends multiChoice

or

class checkBoxChoice extends multiChoice

Then we create a simple Factory class that decides which of these two classes
to return:

class choiceFactory
{

24

 multiChoice ui;
 //This class returns a Panel containing
 //a set of choices displayed by one of
 //several UI methods.
 public multiChoice getChoiceUI(Vector choices)
 {
 if(choices.size() <=3)
 //return a panel of checkboxes
 ui = new checkBoxChoice(choices);
 else
 //return a multi-select list box panel
 ui = new listboxChoice(choices);
 return ui;
 }
}

In the language of Design Patterns, this factory class is called the Director,
and the actual classes derived from multiChoice are each Builders.

Calling the Builders
Since we’re going to need one or more builders, we might have called our
main class Architect or Contractor, but since we’re dealing with lists of
investments, we’ll just call it WealthBuilder. In this main class, we create the
user interface, consisting of a BorderLayout with the center divided into a 1 x
2 GridLayout. The left part contains our list of investment types and the right
an empty panel that we’ll fill depending on which kind of investments are
selected.

public wealthBuilder()
 {
 super("Wealth Builder"); //frame title bar
 setGUI(); //set up display
 buildStockLists(); //create stock lists

 choiceFactory cfact; //the factory
 }
 //----------------------------------
 private void setGUI()
 {
 setLayout(new BorderLayout());
 Panel p = new Panel();
 add("Center", p);
 //center contains left and right panels
 p.setLayout(new GridLayout(1,2));

 //left is list of stocks
stockList= new List(10);
stockList.addItemListener(this);

 p.add(stockList);
 stockList.add("Stocks");

25

 stockList.add("Bonds");
 stockList.add("Mutual Funds");
 stockList.addItemListener(this);

 //Plot button along bottom of display
 Panel p1 = new Panel();
 p1.setBackground(Color.lightGray);
 add("South", p1);
 Plot = new Button("Plot");
 Plot.setEnabled(false); //disabled until stock picked
 Plot.addActionListener(this);
 p1.add(Plot);

 //right is empty at first
 choicePanel = new Panel();
 choicePanel.setBackground(Color.lightGray);
 p.add(choicePanel);

 w = new Winder(); //intercepts WindowClosing
 addWindowListener(w);
 setBounds(100, 100, 300, 200);
 setVisible(true);
 }

In this simple pro gram, we keep our three lists of investments in three
Vectors called Stocks, Bonds and Mutuals. We load them with arbitrary
values as part of program initialization:

Mutuals = new Vector();
 Mutuals.addElement("Fidelity Magellan");
 Mutuals.addElement("T Rowe Price");
 Mutuals.addElement("Vanguard PrimeCap");
 Mutuals.addElement("Lindner Fund");

and so forth. In a real system, we’d probably read them in from a file or
database. Then, when the user clicks on one of the three investment types in
the left list box, we pass the equivalent vector to our Factory, which returns
one of the builders:

private void stockList_Click()
{
 Vector v = null;
 int index = stockList.getSelectedIndex();
 choicePanel.removeAll(); //remove previous ui panel

 //this just switches among 3 different Vectors
 //and passes the one you select to the Builder pattern
 switch(index)
 {
 case 0:

26

 v = Stocks; break;
 case 1:
 v = Bonds; break;
 case 2:
 v = Mutuals;
 }
 mchoice = cfact.getChoiceUI(v); //get one of the UIs
 choicePanel.add(mchoice.getUI()); //insert in right panel
 choicePanel.validate(); //re-layout and display
 Plot.setEnabled(true); //allow plots
 }

We do save the multiChoice panel the factory creates in the mchoice variable
so we can pass it to the Plot dialog.

The List Box Builder
The simpler of the two builders is the List box builder. It returns a panel
containing a list box showing the list of investments.

class listboxChoice extends multiChoice
{
 List list; //investment list goes here
//--
 public listboxChoice(Vector choices)
 {
 super(choices);
 }
//--
 public Panel getUI()
 {
 //create a panel containing a list box
 Panel p = new Panel();
 list = new List(choices.size()); //list box
 list.setMultipleMode(true); //multiple
 p.add(list);
//add investments into list box
 for (int i=0; i< choices.size(); i++)
 list.addItem((String)choices.elementAt(i));
 return p; //return the panel
 }

The other important method is the getSelected method that returns a String
array of the investments the user selects:

public String[] getSelected()
 {
 int count =0;
 //count the selected listbox lines
 for (int i=0; i < list.getItemCount(); i++)
 {

27

 if (list.isIndexSelected(i))
 count++;
 }
 //create a string array big enough for those selected
 String[] slist = new String[count];

 //copy list elements into string array
 int j = 0;
 for (int i=0; i < list.getItemCount(); i++)
 {
 if (list.isIndexSelected(i))
 slist[j++] = list.getItem(i);
 }
 return(slist);
 }

The Checkbox Builder
The Checkbox builder is even simpler. Here we need to find out how many
elements are to be displayed and create a horizontal grid of that many
divisions. Then we insert a check box in each grid line:

public checkBoxChoice(Vector choices)
 {
 super(choices);
 count = 0;
 p = new Panel();
 }
//--
 public Panel getUI()
 {
 String s;

 //create a grid layout 1 column by n rows
 p.setLayout(new GridLayout(choices.size(), 1));

 //and add labeled check boxes to it
 for (int i=0; i< choices.size(); i++)
 {
 s =(String)choices.elementAt(i);
 p.add(new Checkbox(s));
 count++;
 }
 return p;
 }

The getSelected method is analogous to the one we showed above, and is
included in the example code on the CDROM.

28

Consequences of the Builder Pattern
1. A Builder lets you vary the internal representation of the product it

builds. It also hides the details of how the product is assembled.

2. Each specific builder is independent of the others and of the rest of the
program. This improves modularity and makes the addition of other
builders relatively simple.

3. Because each builder constructs the final product step-by-step, depending
on the data, you have more control over each final product that a Builder
constructs.

A Builder pattern is somewhat like an Abstract Factory pattern in that both
return classes made up of a number of methods and objects. The main
difference is that while the Abstract Factory returns a family of related
classes, the Builder constructs a complex object step by step depending on the
data presented to it.

Thought Questions
1. Some word-processing and graphics programs construct menus

dynamically based on the context of the data being displayed. How could
you use a Builder effectively here?

2. Not all Builders must construct visual objects. What might you use a
Builder to construct in the personal finance industry? Suppose you were
scoring a track meet, made up of 5-6 different events? Can you use a
Builder there?

