21

THE BUILDER PATTERN

We have already seen that the Factory Pattern returns one of several different
subclasses depending on the data passed to in arguments to the creation
methods. But suppose we don't want just a computing agorithm, but awhole
different user interface depending on the data we need to display. A typical
example might be your E-mail address book. Y ou probably have both people
and groups of people in your address book, and you would expect the display
for the address book to change so that the People screen has places for first
and last name, company, E-mail address and phone number.

On the other hand if you were displaying a group address page, you'd like to
see the name of the group, its purpose, and alist of members and their E-mail
addresses. You click on a person and get one display and on a group and get
the other display. Let’s assume that all E-mail addresses are kept in an object
called an Address and that people and groups are derived from this base class
as shown below:

Address
Person Group

Depending on which type of Address object we click on, we'd liketo seea
somewhat different display of that object’s properties. Thisis alittle more
than just a Factory pattern, because we aren’t returning objects which are
simple descendents of a base display object, but totally different user
interfaces made up of different combinations of display objects. The Builder
Pattern assembles a number of objects, such as display widgets, in various
ways depending on the data. Furthermore, since Javais one of the few
languages where you can cleanly separate the data from the display methods
into simple objects, Javais the idea language to implement Builder patterns.

22

An Investment Tracker

Let’s consider a somewhat simpler case where it would be useful to have a
class build our Ul for us. Suppose we are going to write a program to keep
track of the performance of our investments. We might have stocks, bonds
and mutual funds, and we'd like to display alist of our holdingsin each
category so we can select one or more of the investments and plot their
comparative performance.

Even though we can't predict in advance how many of each kind of
investment we might own at any given time, we'd like to have a display that
is easy to use for either alarge number of funds (such as stocks) or a small
number of funds (such as mutual funds). In each case, we want some sort of a
multiple-choice display so that we can select one or more fundsto plot. If
thereis alarge number of funds, we'll use a multi-choice list box and if there
are 3 or fewer funds, we'll use a set of check boxes. We want our Builder
classto generate an interface that depends on the number of itemsto be
displayed, and yet have the same methods for returning the results.

Our displays are shown below. Thefirst display contains alarge number of
stocks and the second a small number of bonds.

[wealth Builder I [=]

Baonds
Mutual Funds

Zoca Cola
zeneral Electric
Harley Davidsan
1B

Harley Davidsan

ot

23

=3 Wealth Builder I [=]

W eretaa i
Mutual Funds [V fiew York GO 2005!

im GE Corp Bonds

ot

Now, let’'s consider how we can build the interface to carry out this variable
multiChoice abstract class that defines the methods

we need to implement:

abstract class nulti Choice

{

//This is the abstract base class

//that the |listbox and checkbox choi ce panels

//are derived from

Vect or choi ces; /larray of |abels
e

public mul ti Choi ce(Vector choicelLi st)

{

choi ces = choi celLi st; //save |ist

//to be inplenmented in derived cl asses
abstract public Panel getU (); //return a Panel of conponents
abstract public String[] getSelected(); //get list of itens
abstract public void clearAll(); //clear selections

}

The getUI method returns a Panel container with a multiple-choice display.
The two displays we're using here -- a checkbox panel or alist box panel --
are derived from this abstract class:

class |istboxChoi ce extends multi Choice
or

cl ass checkBoxChoi ce extends multi Choi ce
Then we create a simple Factory class that decides which of these two classes
to return:

cl ass choi ceFactory

{

24

mul ti Choi ce ui;

/1 This class returns a Panel containing

/la set of choices displayed by one of
//several U nethods.

publ i c mul ti Choi ce get Choi ceU (Vector choi ces)

i f(choices.size() <=3)
//return a panel of checkboxes
ui = new checkBoxChoi ce(choi ces);
el se
/lreturn a multi-select |ist box panel
ui = new |l istboxChoice(choices);
return ui;

}
}
In the language of Design Patterns, this factory classis called the Director,

and the actual classes derived from multiChoice are each Builders.

Calling the Builders

Since we're going to need one or more builders, we might have called our
main class Architect or Contractor, but since we're dealing with lists of
investments, we'll just call it WealthBuilder. In this main class, we create the
user interface, consisting of a BorderLayout with the center divided into a 1 x
2 GridLayout. The left part contains our list of investment types and the right
an empty panel that we'll fill depending on which kind of investments are

selected.
publ i c weal t hBui | der ()
{
super ("Weal th Buil der"); //frame title bar
set QU (); //set up display
bui | dSt ockLi sts(); //create stock lists
choi ceFactory cfact; //the factory
}
Rt

private void set QU ()

set Layout (new Bor der Layout ());
Panel p = new Panel ();
add("Center", p);

//center contains left and right panels
p. set Layout (new GridLayout (1, 2));

I1left is list of stocks
st ockLi st= new Li st (10);
st ockLi st. addl t enLi st ener (this);
p. add(st ockLi st);
st ockLi st. add(" St ocks");

st ockLi st. add("Bonds") ;
st ockLi st.add("Mutual Funds");
st ockLi st. addl t enLi st ener (this);

//Plot button along bottom of display
Panel pl = new Panel ();
pl. set Backgr ound(Col or. i ght Gray);
add(" Sout h", pl);
Pl ot = new Button("Plot");

25

Pl ot . set Enabl ed(fal se); //disabled until stock picked

Pl ot . addAct i onLi st ener (this);
pl. add(Pl ot);

[lright is enpty at first
choi cePanel = new Panel ();
choi cePanel . set Backgr ound(Col or. | i ght Gray);
p. add(choi cePanel) ;

w = new Wnder(); //intercepts Wndowd osi ng
addW ndowLi st ener (W) ;

set Bounds(100, 100, 300, 200);
setVisible(true);

}

In this ssimple pro gram, we keep our three lists of investments in three
Vectors called Stocks, Bonds and Mutuals. We load them with arbitrary
values as part of program initialization:

Mitual s = new Vector();

Mit ual s. addEl enent ("Fi del ity Magel | an");
Miut ual s. addEl enent ("T Rowe Price");

Miut ual s. addEl enent (" Vanguard PrinmeCap");
Mut ual s. addEl enent (" Li ndner Fund");

and so forth. In area system, we' d probably read them in from afile or
database. Then, when the user clicks on one of the three investment typesin
the left list box, we pass the equivalent vector to our Factory, which returns
one of the builders:

private void stockList_dick()

{

Vector v = null;
int index = stockList.get Sel ect edl ndex();
choi cePanel . renmoveAl | (); //renmove previous ui panel

//this just switches among 3 different Vectors
/'l and passes the one you select to the Builder pattern
swi t ch(i ndex)

case O:

26

v = Stocks; break;
case 1:

v = Bonds; br eak;
case 2:

v = Miutual s;
}
ncthoi ce = cfact. get Choi ceUl (v); //get one of the Us
choi cePanel . add(nthoi ce. get Ul ()); [linsert in right panel
choi cePanel . val i date(); //re-1layout and display
Pl ot . set Enabl ed(true); /lallowplots

}

We do save the multiChoice panel the factory creates in the mchoice variable
SO we can passit to the Plot dialog.

TheList Box Builder

The smpler of the two buildersisthe List box builder. It returns a panel
containing alist box showing the list of investments.

class |istboxChoi ce extends multi Choice

{

List list; /linvestnent |ist goes here

public |istboxChoi ce(Vector choices)

{

super (choi ces) ;

public Panel getU ()

//create a panel containing a list box
Panel p = new Panel ();
list = new List(choices.size()); //list box
list.setMiltipleMde(true); /1 multiple
p. add(list);

//add investnents into list box
for (int i=0; i< choices.size(); i++)

list.addltem((String)choices.elenmentAt(i));
return p; /lreturn the panel
}
The other important method is the getSelected method that returns a String

array of the investments the user selects:
public String[] getSelected()
{

int count =0;

//count the selected |istbox |ines

for (int i=0; i < list.getltenCount(); i++)
{

if (list.islndexSelected(i))
count ++;
}

//create a string array big enough for those sel ected

String[] slist = new String[count];

//copy list elenents into string array
int j =0;

for (int i=0; i < list.getltenCount(); i++)

{
if (list.islndexSelected(i))
slist[j++] = list.getlten(i);

return(slist);

}
The Checkbox Builder

The Checkbox builder is even simpler. Here we need to find out how many
elements are to be displayed and create a horizontal grid of that many

divisions. Then we insert a check box in each grid line:
publ i ¢ checkBoxChoi ce(Vector choi ces)
super (choi ces) ;

count = O;
p = new Panel ();

}
e R T
public Panel getU ()
{
String s;
/lcreate a grid layout 1 colum by n rows
p. set Layout (new Gri dLayout (choi ces. si ze(),
//and add | abel ed check boxes to it
for (int i=0; i< choices.size(); i++)
s =(String)choices.elementAt(i);
p. add(new Checkbox(s));
count ++;
}
return p;
}

1));

The getSelected method is analogous to the one we showed above, and is

included in the example code on the CDROM.

27

28

Consequences of the Builder Pattern

1. A Builder letsyou vary the internal representation of the product it
builds. It aso hides the details of how the product is assembled.

2. Each specific builder is independent of the others and of the rest of the
program. Thisimproves modularity and makes the addition of other
builders relatively smple.

3. Because each builder constructs the final product step-by-step, depending
on the data, you have more control over each final product that a Builder
constructs.

A Builder pattern is somewhat like an Abstract Factory pattern in that both
return classes made up of a number of methods and objects. The main
difference is that while the Abstract Factory returns afamily of related
classes, the Builder constructs a complex object step by step depending on the
data presented to it.

Thought Questions

1. Some word-processing and graphics programs construct menus
dynamically based on the context of the data being displayed. How could
you use a Builder effectively here?

2. Not al Builders must construct visual objects. What might you use a
Builder to construct in the personal finance industry? Suppose you were
scoring atrack meet, made up of 5-6 different events? Can you use a
Builder there?

