
49

THE OBSERVER PATTERN

In our new, more sophisticated windowing world, we often would
like to display data in more than one form at the same time and have all of the
displays reflect any changes in that data. For example, you might represent
stock price changes both as a graph and as a table or list box. Each time the
price changes, we’d expect both representations to change at once without
any action on our part.

We expect this sort of behavior because there are any number of
Windows applications, like Excel, where we see that behavior. Now there is
nothing inherent in Windows to allow this activity and, as you may know,
programming directly in Windows in C or C++ is pretty complicated. In Java,
however, we can easily make use of the Observer Design Pattern to cause our
program to behave in this way.

The Observer pattern assumes that the object containing the data is
separate from the objects that display the data, and that these display objects
observe changes in that data. This is simple to illustrate as we see below.

Graphic
Display

List
Display

Data

User

When we implement the Observer pattern, we usually refer to the
data as the Subject and each of the displays as Observers. Each of these
observers registers its interest in the data by calling a public method in the
Subject. Then, each observer has a known interface that the subject calls
when the data change. We could define these interfaces as follows:

50

abstract interface Observer {
//notify the Observers that a change has taken place
 public void sendNotify(String s);
}
//===
abstract interface Subject {
//tell the Subject you are interested in changes
 public void registerInterest(Observer obs);
}

The advantage of defining these abstract interfaces is that you can
write any sort of class objects you want as long as they implement these
interfaces, and that you can declare these objects to be of type Subject and
Observer no matter what else they do.

Watching Colors Change
Let’s write a simple program to illustrate how we can use this

powerful concept. Our program shows a display frame containing 3 radio
buttons named Red, Blue and Green as shown below:

This main window is the Subject or data repository object. We create
this window using the JFC classes in the following simple code:

public class Watch2L extends JFrame
 implements ActionListener, ItemListener, Subject {
 Button Close;
 JRadioButton red, green, blue;
 Vector observers;
//--
 public Watch2L() {
 super("Change 2 other frames");
//list of observing frames
 observers = new Vector();
//add panel to content pane
 JPanel p = new JPanel(true);
 p.setLayout(new BorderLayout());
 getContentPane().add("Center", p);

//vertical box layout

51

 Box box = new Box(BoxLayout.Y_AXIS);
 p.add("Center", box);
//add 3 radio buttons
 box.add(red = new JRadioButton("Red"));
 box.add(green = new JRadioButton("Green"));
 box.add(blue = new JRadioButton("Blue"));

 //listen for clicks on radio buttons
 blue.addItemListener(this);
 red.addItemListener(this);
 green.addItemListener(this);

 //make all part of same button group
 ButtonGroup bgr = new ButtonGroup();
 bgr.add(red);
 bgr.add(green);
 bgr.add(blue);

Note that our main frame class implements the Subject interface. That
means that it must provide a public method for registering interest in the data
in this class. This method is the registerInterest method, which just adds
Observer objects to a Vector:

public void registerInterest(Observer obs) {
 //adds observer to list in Vector
 observers.addElement(obs);
 }

Now we create two observers, once which displays the color (and its
name) and another which adds the current color to a list box.

//---------create observers---------
 ColorFrame cframe = new ColorFrame(this);
 ListFrame lframe = new ListFrame(this);

When we create our ColorFrame window, we register our interest in
the data in the main program:

class ColorFrame extends Jframe
 implements Observer {
 Color color;
 String color_name="black";
 JPanel p = new JPanel(true);
//--------------------------------------
 public ColorFrame(Subject s) {
 super("Colors"); //set frame caption
 getContentPane().add("Center", p);
 s.registerInterest(this); //register with Subject
 setBounds(100, 100, 100, 100);
 setVisible(true);

52

 }
//--------------------------------------
 public void sendNotify(String s) {

//Observer is notified of change here
 color_name = s; //save color name

//set background to that color
 if(s.toUpperCase().equals("RED"))
 color = Color.red;
 if(s.toUpperCase().equals("BLUE"))
 color =Color.blue;
 if(s.toUpperCase().equals("GREEN"))
 color = Color.green;
 setBackground(color);
 }
//--------------------------------------
 public void paint(Graphics g) {
 g.drawString(color_name, 20, 50);
 }

Meanwhile in our main program, every time someone clicks on one
of the radio buttons, it calls the sendNotify method of each Observer who has
registered interest in these changes by simply running through the objects in
the observers Vector:

 public void itemStateChanged(ItemEvent e) {
 //responds to radio button clicks
 //if the button is selected
 if(e.getStateChange() == ItemEvent.SELECTED)
 notifyObservers((JRadioButton)e.getSource());
 }
 //---
 private void notifyObservers(JRadioButton rad) {
 //sends text of selected button to all observers
 String color = rad.getText();
 for (int i=0; i< observers.size(); i++) {

((Observer)(observers.elementAt(i))).sendNotify(color);
 }
 }

In the case of the ColorFrame observer, the sendNotify method
changes the background color and the text string in the frame panel. In the
case of the ListFrame observer, however, it just adds the name of the new
color to the list box. We see the final program running below:

53

The Message to the Media
Now, what kind of notification should a subject send to its observers?

In this carefully circumscribed example, the notification message is the string
representing the color itself. When we click on one of the radio buttons, we
can get the caption for that button and send it to the observers. This, of
course, assumes that all the observers can handle that string representation.
In more realistic situations, this might not always be the case, especially if the
observers could also be used to observe other data objects. Here we undertake
two simple data conversions:

1. we get the label from the radio button and send it to the
observers, and

2. we convert the label to an actual color in the ColorFrame
observer.

In more complicated systems, we might have observers that demand specific,
but different, kinds of data. Rather than have each observer convert the
message to the right data type, we could use an intermediate Adapter class to
perform this conversion.

Another problem observers may have to deal with is the case where
the data of the central subject class can change in several ways. We could

54

delete points from a list of data, edit their values, or change the scale of the
data we are viewing. In these cases we either need to send different change
messages to the observers or send a single message and then have the
observer ask which sort of change has occurred.

Th JList as an Observer
Now, what about that list box in our color changing example? We

saved it for last because as we noted earlier in the Adapter class discussion,
the JList is rather different in concept than the List object in the AWT. You
can display a fixed list of data in the JList by simply putting the data into a
Vector or String array. However, if you want to display a list of data that
might grow or otherwise change, you need to put that data into a special data
object derived from the AbstractListModel class, and then use that class in
the constructor to the JList class. Our ListFrame class looks like this:

class ListFrame extends JFrame
 implements Observer {
 JList list;
 JPanel p;
 JScrollPane lsp;
 JListData listData;

 public ListFrame(Subject s) {
 super("Color List");
 //put panel into the frmae
 p = new JPanel(true);
 getContentPane().add("Center", p);
 p.setLayout(new BorderLayout());
 //Tell the Subject we are interested
 s.registerInterest(this);

 //Create the list
 listData = new JListData(); //the list model
 list = new JList(listData); //the visual list
 lsp = new JScrollPane(); //the scroller
 lsp.getViewport().add(list);
 p.add("Center", lsp);
 lsp.setPreferredSize(new Dimension(100,100));
 setBounds(250, 100, 100, 100);
 setVisible(true);
 }
 //--------------------------------
 public void sendNotify(String s) {
 listData.addElement(s);
 }
}

55

We name our ListModel class JListData. It holds the Vector that
contains the growing list of color names.

class JListData extends AbstractListModel {
 private Vector data; //the color name list
 public JListData() {
 data = new Vector();
 }
 public int getSize() {
 return data.size();
 }
 public Object getElementAt(int index) {
 return data.elementAt(index);
 }
 //add string to list and tell the list about it
 public void addElement(String s) {
 data.addElement(s);
 fireIntervalAdded(this, data.size()-1, data.size());
 }
}

Whenever the ColorList class is notified that the color has changed, it
calls the addElement method of the JListData class. This method adds the
string to the Vector, and then calls the fireIntervalAdded method. This base
method of the AbstractListModel class connects to the JList class, telling that
class that the data have changed. The JList class then redisplays the data as
needed. There are also equivalent methods for two other kinds of changes:
fireIntervalRemoved and fireContentsChanged. These represent the 3 kinds of
changes that can occur in a list box: here each sends its own message to the
JList display.

The MVC Architecture as an Observer
As we noted in Chapter 3, the JList, JTable, and JTree objects all

operate as observers of a data model. In fact, all of the visual components
derived from JComponent can have this same division of labor between the
data and the visual representation. In JFC parlance, this is referred to as the
Model-View-Controller (MVC) architecture, where the data are represented
by the Model, and the View by the visual component. The Controller is the
communication between the Model and View objects, and may be a separate
class or it may be inherent in either the model or the view. This is the case for
the JFC components, and they are all examples of the Observer pattern we’ve
just been discussing.

56

Consequences of the Observer Pattern
Observers promote abstract coupling to Subjects. A subject doesn’t

know the details of any of its observers. However, this has the potential
disadvantage of successive or repeated updates to the Observers when there
are a series of incremental changes to the data. If the cost of these updates is
high, it may be necessary to introduce some sort of change management, so
that the Observers are not notified too soon or too frequently.

When one client makes a change in the underlying data, you need to
decide which object will initiate the notification of the change to the other
observers. If the Subject notifies all the observers when it is changed, each
client is not responsible for remembering to initiate the notification. On the
other hand, this can result in a number of small successive updates being
triggered. If the clients tell the Subject when to notify the other clients, this
cascading notification can be avoided, but the clients are left with the
responsibility of telling the Subject when to send the notifications. If one
client “forgets,” the program simply won’t work properly.

Finally, you can specify the kind of notification you choose to send
by defining a number of update methods for the Observers to receive
depending on the type or scope of change. In some cases, the clients will thus
be able to ignore some of these notifications

