33

THE MEDIATOR PATTERN

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more of
these isolated classes are developed in a program, the problem of
communication between these classes become more complex. The more each
class needs to know about the methods of another class, the more tangled the
class structure can become. This makes the program harder to read and harder
to maintain. Further, it can become difficult to change the program, since any
change may affect code in severa other classes. The Mediator pattern
addresses this problem by promoting looser coupling between these classes.
Mediators accomplish this by being the only class that has detailed
knowledge of the methods of other classes. Classes send inform the mediator
when changes occur and the Mediator passes them on to any other classes
that need to be informed.

An Example System

Let’s consider a program which has severa buttons, two list boxes
and atext entry field:

E_%Mediatur demo =] B3

Armanda MoCarthy
Jamie Falco
Meaghan O'Connell
Grear Gibbs
Rhiannon Jeffrey
Sophie Connolly
Dana Helyer
Lindsay Maratto
Sarah Treichel
\Ashley McEntee
iRacheI Brookrman
[Michelle Ducharme
iKarIeen Danais .:l

-
p—

When the program starts, the Copy and Clear buttons are disabled.

1. When you select one of the namesin the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right hand list box, and
the Clear button is enabled.

E%:Mediatur demo [_ O] x|
JLindsay Marotto 1 Cclear |
Armanda MeCarthy (=] Endsay Marotto
Jamie Falco
Meaghan O'Donnell
Greer Gibbs

Rhiannon Jeffrey
Saophie Cannally
Dana Helyer
Lindsay Marotto

|Sarah Treichel

| Ashley McEnter

iRacheI Brookman

[Michelle Ducharme

| i}

iI«<arleen Danais __ﬂ

3. If you click on the Clear button, the right hand list box and the text field
are cleared, the list box is deselected and the two buttons are again
disabled.

User interfaces such as this one are commonly used to select lists of
people or products from longer lists. Further, they are usualy even more
complicated than this one, involving insert, delete and undo operations as
well.

I nter actions between Controls

The interactions between the visual controls are pretty complex, even
in this simple example. Each visual object needs to know about two or more
others, leading to quite a tangled relationship diagram as shown below.

name text

Kid list

The Mediator pattern simplifies this system by being the only class
that is aware of the other classesin the system. Each of the controls that the

Copy

Clear

Picked list

35

Mediator communicates with is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This simpler interaction

schemeisillustrated below:

name text

Copy

Clear

Kid list

Picked list

Mediator

The advantage of the Mediator is clear-- it is the only class that
knows of the other classes, and thus the only one that would need to be
changed if one of the other classes changes or if other interface control

classes are added.

36

Sample Code

Let’s consider this program in detail and decide how each control is
constructed. The main difference in writing a program using a Mediator class
is that each class needs to be aware of the existence of the Mediator. Y ou start
by creating an instance of the Mediator and then pass the instance of the
Mediator to each classin its constructor.

Medi at or med = new Medi ator ();

ki dLi st = new Ki dLi st(ned);

tx = new KText Fi el d(ned) ;

Move = new MoveButton(this, med);
Clear = new U earButton(this, ned);
med.init();

Since, we have created new classes for each control, each derived
from base classes, we can handle the mediator operations within each class.

Our two buttons use the Command pattern and register themselves
with the Mediator during their initialization. Here is the Copy button:

public class CopyButton extends JButton
i mpl enents Conmand

Medi at or ned; [/ copy of the Medi ator
publ i ¢ CopyButton(ActionListener fr, Mediator nd)
super (" Copy"); //create the button
addActionListener(fr); //add its listener
nmed = nd; //copy in Mediator instance

ned. regi sterMove(this); //register with the Mediator

public void Execute()
/ l execut e the copy
med. Copy() ;

}
The Clear button is exactly analogous.

The Kid name list is based on the one we used in the last two
examples, but expanded so that the data loading of the list and registering the
list with the Mediator both take place in the constructor. In addition, we make
the enclosing class the ListSelectionListener and pass the click on any list
item on to the Mediator directly from this class.

public class KidList extends Jaw Li st
i mpl enent s Li st Sel ecti onLi st ener
{

Ki dDat a kdat a; //reads the data fromthe file
Medi at or ned; // copy of the nediator

public KidLi st (Mediator nd)

super (20); /lcreate the JList
kdata = new KidData ("50free.txt");
fillKidList(); /1fill the list with names
med = nd; // save the nedi at or

ned. regi sterKi dLi st (t his);
addLi st Sel ecti onLi stener(this);
}
R R
public void val ueChanged(Li st Sel ecti onEvent 1|5s)
{
//if an itemwas sel ected pass on to nedi ator
JList obj = (JList)ls.getSource();
i f (obj.getSelectedl ndex() >= 0)
ned. sel ect () ;

}
Rt
private void fillKidList()
{
Enuneration ekid = kdata. el enents();
whi | e (ekid. hashoreEl enents()) {
Kid k =(Kid)ekid. nextEl ement ();
add(k. get Frnanme() +" "+k.getLname());
}

}
Thetext field is even simpler, since al it does is register itself with
the mediator.

public class KTextField extends JTextField

Medi at or ned;
publ i c KTextField(Mediator nd) {
super (10);
med = nd;
nmed. regi st er Text (thi s);
}
}

The general point of al these classesis that each knows about the
Mediator and tells the Mediator of its existence so the Mediator can send
commands to it when appropriate.

The Mediator itself is very simple. It supports the Copy, Clear and
Select methods, and has register methods for each of the controls:

public class Mediator

37

38

private C earButton clearButton;
private CopyButton copyButton;
private KTextField ktext;
private KidLi st klist;
private PickedKi dsLi st picked;

public void Copy() {
pi cked. add(kt ext. get Text()); //copy text
cl earButt on. set Enabl ed(true); //enabl e O ear

}
e T
public void Cear() {
kt ext.set Text(""); //clear text
pi cked. cl ear () ; /land list

// di sabl e buttons
copyBut t on. set Enabl ed(f al se);
cl ear But t on. set Enabl ed(f al se);
kl'ist.clearSelection(); / /I desel ect i st

e R T

public void Select() {
String s = (String)klist.getSel ectedVal ue();
kt ext . set Text (s); /'l copy text
copyButton. set Enabl ed(true); //enable Copy

I copy incontrols--------mmmmmmmaaa oo

public void registerCear(d earButton ch) {
clearButton = cb; }

public void registerCopy(CopyButton nv) {
copyButton = nv,

public void registerText(KTextField tx) {
ktext = tx; }

public void registerPicked(Pi ckedKi dsList pl) {
picked = pl; }

public void registerKidList(KidList kl) {
klist = kI; }

Initialization of the System

One further operation that is best delegated to the Mediator is the
initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these states
may change as the program evolves, we ssimply create an init method in the
Mediator, which sets them all to the desired state. In this case, that state is the
same asis achieved by the Clear button and we simply call that method:

public void init() ({
Cear();

39

}

Mediators and Command Objects

The two buttons in this program are command objects, and we
register the main user interface frame as the ActionListener when we initialize
these buttons. Just as we noted earlier, this makes processing of the button
click events quite smple:
public void actionPerforned(Acti onEvent e) {

Command cond = (Conmand) e. get Source() ;
cond. Execut e() ;

Alternatively, we could register each derived class asits own listener and
pass the result directly to the Mediator.

In either case, however, this represents the solution to one of the
problems we noted in the Command pattern chapter; each button needed
knowledge of many of the other user interface classes in order to execute its
command. Here, we delegate that knowledge to the Mediator, so that the
Command buttons do not need any knowledge of the methods of the other
visual objects.

Consequences of the Mediator Pattern

1. The Mediator makes |oose coupling possible between objectsin a
program. It also localizes the behavior that otherwise would be
distributed among severa objects.

2. You can change the behavior of the program by simply changing or
subclassing the Mediator.

3. The Mediator approach makes it possible to add new Colleaguesto a
system without having to change any other part of the program.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become monolithic in complexity, making it hard to
change and maintain. Sometimes you can improve this situation by
revising the responsibilities you have given the Mediator. Each aobject
should carry out it’s own tasks and the Mediator should only manage the
interaction between objects.

40

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has available.
This makesit difficult to reuse Mediator code in different projects. On the
other hand, most Mediators are quite smple and writing this code is far
easier than managing the complex object interactions any other way.

I mplementation | ssues

The Mediator pattern we have described above acts as a kind of
Observer pattern, observing changes in the Colleague elements. Another
approach is to have a single interface to your Mediator, and pass that method
various constants or objects which tell the Mediator which operationsto
perform. In the same fashion, you could have a single Colleague interface that
each Colleague would implement, and each Colleague would then decide
what operation it wasto carry out.

Mediators are not limited to use in visual interface programs,
however, it istheir most common application. Y ou can use them whenever
you are faced with the problem of complex intercommunication between a
number of objects.

