
33

THE MEDIATOR PATTERN

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more of
these isolated classes are developed in a program, the problem of
communication between these classes become more complex. The more each
class needs to know about the methods of another class, the more tangled the
class structure can become. This makes the program harder to read and harder
to maintain. Further, it can become difficult to change the program, since any
change may affect code in several other classes. The Mediator pattern
addresses this problem by promoting looser coupling between these classes.
Mediators accomplish this by being the only class that has detailed
knowledge of the methods of other classes. Classes send inform the mediator
when changes occur and the Mediator passes them on to any other classes
that need to be informed.

An Example System
Let’s consider a program which has several buttons, two list boxes

and a text entry field:

When the program starts, the Copy and Clear buttons are disabled.

34

1. When you select one of the names in the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right hand list box, and
the Clear button is enabled.

3. If you click on the Clear button, the right hand list box and the text field
are cleared, the list box is deselected and the two buttons are again
disabled.

User interfaces such as this one are commonly used to select lists of
people or products from longer lists. Further, they are usually even more
complicated than this one, involving insert, delete and undo operations as
well.

Interactions between Controls
The interactions between the visual controls are pretty complex, even

in this simple example. Each visual object needs to know about two or more
others, leading to quite a tangled relationship diagram as shown below.

35

name text Copy Clear

Kid list Picked list

The Mediator pattern simplifies this system by being the only class
that is aware of the other classes in the system. Each of the controls that the
Mediator communicates with is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This simpler interaction
scheme is illustrated below:

name text Copy Clear

Kid list

Picked list

Mediator

The advantage of the Mediator is clear-- it is the only class that
knows of the other classes, and thus the only one that would need to be
changed if one of the other classes changes or if other interface control
classes are added.

36

Sample Code
Let’s consider this program in detail and decide how each control is

constructed. The main difference in writing a program using a Mediator class
is that each class needs to be aware of the existence of the Mediator. You start
by creating an instance of the Mediator and then pass the instance of the
Mediator to each class in its constructor.

 Mediator med = new Mediator();
 kidList = new KidList(med);
 tx = new KTextField(med);

Move = new MoveButton(this, med);
 Clear = new ClearButton(this, med);
 med.init();

Since, we have created new classes for each control, each derived
from base classes, we can handle the mediator operations within each class.

Our two buttons use the Command pattern and register themselves
with the Mediator during their initialization. Here is the Copy button:

public class CopyButton extends JButton
implements Command

{
 Mediator med; //copy of the Mediator
public CopyButton(ActionListener fr, Mediator md)
 {
 super("Copy"); //create the button
 addActionListener(fr); //add its listener
 med = md; //copy in Mediator instance
 med.registerMove(this); //register with the Mediator
 }
 public void Execute()
 { //execute the copy
 med.Copy();
 }
}
The Clear button is exactly analogous.

The Kid name list is based on the one we used in the last two
examples, but expanded so that the data loading of the list and registering the
list with the Mediator both take place in the constructor. In addition, we make
the enclosing class the ListSelectionListener and pass the click on any list
item on to the Mediator directly from this class.

public class KidList extends JawtList
 implements ListSelectionListener
{

37

 KidData kdata; //reads the data from the file
 Mediator med; //copy of the mediator

 public KidList(Mediator md)
 {
 super(20); //create the JList
 kdata = new KidData ("50free.txt");
 fillKidList(); //fill the list with names
 med = md; //save the mediator
 med.registerKidList(this);
 addListSelectionListener(this);
 }
 //----------------------------------
 public void valueChanged(ListSelectionEvent ls)
 {
 //if an item was selected pass on to mediator
 JList obj = (JList)ls.getSource();
 if (obj.getSelectedIndex() >= 0)
 med.select();
 }
 //----------------------------------
 private void fillKidList()
 {
 Enumeration ekid = kdata.elements();
 while (ekid.hasMoreElements()) {
 Kid k =(Kid)ekid.nextElement();
 add(k.getFrname()+" "+k.getLname());
 }
 }
}

The text field is even simpler, since all it does is register itself with
the mediator.

public class KTextField extends JTextField
{
 Mediator med;
 public KTextField(Mediator md) {
 super(10);
 med = md;
 med.registerText(this);
 }
}

The general point of all these classes is that each knows about the
Mediator and tells the Mediator of its existence so the Mediator can send
commands to it when appropriate.

The Mediator itself is very simple. It supports the Copy, Clear and
Select methods, and has register methods for each of the controls:

public class Mediator

38

{
 private ClearButton clearButton;
 private CopyButton copyButton;
 private KTextField ktext;
 private KidList klist;
 private PickedKidsList picked;

public void Copy() {
 picked.add(ktext.getText()); //copy text
 clearButton.setEnabled(true);//enable Clear
 }
//------------------------------------
 public void Clear() {
 ktext.setText(""); //clear text
 picked.clear(); //and list
//disable buttons
 copyButton.setEnabled(false);
 clearButton.setEnabled(false);
 klist.clearSelection(); //deselect list
}
 //------------------------------------
 public void Select() {
 String s = (String)klist.getSelectedValue();
 ktext.setText(s); //copy text
 copyButton.setEnabled(true); //enable Copy
}
 //-----------copy in controls-------------------------
 public void registerClear(ClearButton cb) {
 clearButton = cb; }
 public void registerCopy(CopyButton mv) {
 copyButton = mv; }
 public void registerText(KTextField tx) {
 ktext = tx; }
 public void registerPicked(PickedKidsList pl) {
 picked = pl; }
 public void registerKidList(KidList kl) {
 klist = kl; }
}

Initialization of the System
One further operation that is best delegated to the Mediator is the

initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these states
may change as the program evolves, we simply create an init method in the
Mediator, which sets them all to the desired state. In this case, that state is the
same as is achieved by the Clear button and we simply call that method:

public void init() {
 Clear();

39

 }

Mediators and Command Objects
The two buttons in this program are command objects, and we

register the main user interface frame as the ActionListener when we initialize
these buttons. Just as we noted earlier, this makes processing of the button
click events quite simple:

public void actionPerformed(ActionEvent e) {
 Command comd = (Command)e.getSource();
 comd.Execute();
 }
Alternatively, we could register each derived class as its own listener and
pass the result directly to the Mediator.

In either case, however, this represents the solution to one of the
problems we noted in the Command pattern chapter; each button needed
knowledge of many of the other user interface classes in order to execute its
command. Here, we delegate that knowledge to the Mediator, so that the
Command buttons do not need any knowledge of the methods of the other
visual objects.

Consequences of the Mediator Pattern
1. The Mediator makes loose coupling possible between objects in a

program. It also localizes the behavior that otherwise would be
distributed among several objects.

2. You can change the behavior of the program by simply changing or
subclassing the Mediator.

3. The Mediator approach makes it possible to add new Colleagues to a
system without having to change any other part of the program.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become monolithic in complexity, making it hard to
change and maintain. Sometimes you can improve this situation by
revising the responsibilities you have given the Mediator. Each object
should carry out it’s own tasks and the Mediator should only manage the
interaction between objects.

40

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has available.
This makes it difficult to reuse Mediator code in different projects. On the
other hand, most Mediators are quite simple and writing this code is far
easier than managing the complex object interactions any other way.

Implementation Issues
The Mediator pattern we have described above acts as a kind of

Observer pattern, observing changes in the Colleague elements. Another
approach is to have a single interface to your Mediator, and pass that method
various constants or objects which tell the Mediator which operations to
perform. In the same fashion, you could have a single Colleague interface that
each Colleague would implement, and each Colleague would then decide
what operation it was to carry out.

Mediators are not limited to use in visual interface programs,
however, it is their most common application. You can use them whenever
you are faced with the problem of complex intercommunication between a
number of objects.

