27

THE ITERATOR PATTERN

The Iterator is one of the simplest and most frequently used of the
design patterns. The Iterator pattern allows you to move through alist or
collection of data using a standard interface without having to know the
details of the internal representations of that data. In addition you can also
define special iterators that perform some special processing and return only
specified elements of the data collection.

M otivation

The Iterator is useful because it provides a defined way to move
through a set of data elements without exposing how it doesit. Since the
Iterator is an interface, you can implement it in any way that is convenient for
the data you are returning. Design Patter ns suggests that a suitable interface
for an Iterator might be

public interface Iterator

{

public Object First();
public Object Next();

publ i ¢ bool ean i sDone();
public Qoject Currentlten();

}
where you can move to the top of the list, move through the list, find out if

there are more elements and find the current list item. Thisinterface is easy to
implement and it has certain advantages, but the Iterator of choicein Javais
Java s built-in Enumeration type.

public interface Enuneration

{

publ i ¢ bool ean hasMor eEl enent s();
publ i c Qbj ect nextEl enment();

}
While not having a method to move to the top of alist may seem

restrictive afirgt, it is not a serious problem in Java, because it is customary
to obtain a new instance of the Enumeration each time you want to move
through alist. One disadvantage of the Java Enumeration over similar
constructs in C++ and Smalltalk is the strong typing of the Java language.
This prevents the hasMoreElements() method from returning an object of the
actual type of the data in the collection without an annoying requirement to
cast the returned Object type to the actua type. Thus, while the Iterator or

28

Enumeration interface is that is intended to be polymorphic, thisis not
directly possible in Java.

Enumerationsin Java

The Enumeration type is built into the Vector and Hashtable classes.
Rather than the Vector and Hashtable implementing the two methods of the
Enumeration directly, both classes contain an elements method that returns an
Enumeration of that class' s data:

public Enuneration el ements();

This elements() method isreally a kind Factory method that produces
instances of an Enumeration class.

Then, you move through the list with the following ssmple code:

Enuneration e = vector. el enents();
whi |l e (e. hasMoreEl enents())

{

String name = (String)e.nextEl enent();
System out. printl n(nane);

}

In addition, the Hashtable also has the keys method, which returns an
enumeration of the keysto each element in the table:

publ i c Enuneration keys();

Thisisthe preferred style for implementing Enumerationsin Java and
has the advantage that you can have any number of simultaneous active
enumerations of the same data.

Filtered Iterators

While having a clearly defined method of moving through a
collection is helpful, you can aso define filtered Enumerations that perform
some computation on the data before returning it. For example, you could
return the data ordered in some particular way, or only those objects that
match a particular criterion. Then, rather than have alot of very similar
interfaces for these filtered enumerations, you simply provide a method
which returns each type of enumeration, with each one of these enumerations
having the same methods.

29

Sample Code

Let'sreuse the list of swimmers, clubs and times we described in the
Interpreter chapter, and add some enumeration capabilities to the KidData
class. This classis essentially a collection of Kids, each with aname, club
and time, and these Kid objects are stored in a Vector.

public class KidData

{
Vect or ki ds;

public KidData(String fil ename) {

/lread in the kids fromthe text file
ki ds = new Vector();
InputFile f = new I nputFile(fil enane);
String s = f.readLine();
while(s !'= null)

if(s.trim).length() > 0) {

Kid k = new Kid(s);

ki ds. addEl erment (k) ;

}

s = f.readLine();

}

}

L e

publ i c Enuneration el ements() {
//return an enuneration of the kids
return kids.elements();

}

To obtain an enumeration of al the Kids in the collection, we simply
return the enumeration of the Vector itself.

The Filtered Enumeration

Suppose, however, that we wanted to enumerate only those kids who
belonged to a certain club. This necessitates a special Enumeration class that
has access to the data in the KidData class. Thisis very smple, because the
elements() method we just defined gives us that access. Then we only need to
write an Enumeration that only returns kids belonging to a specified club:

public class kidd ub
i mpl enents Enumeration

{
String cl ubMask; /I name of club
Kid kid; //next kid to return
Enuner ati on ke; /lgets all kids
Ki dDat a kdat a; //class containing kids
R e

public ki dd ub(Ki dData kd, String club) {

30

cl ubMask = cl ub; //save the club
kdata = kd; [/ copy the class
kid = null; / / def aul t
ke = kdata.elenments(); //get Enunerator
}
e T
publ i ¢ bool ean hasMor eEl ement s() {
/lreturn true if there are any nore kids
/I bel onging to the specified club
bool ean found = fal se;
whi | e(ke. hasMor eEl enents() && ! found) {
kid = (Kid)ke. nextEl enent();
found = kid. getd ub().equal s(cl ubMask);
}
i f(! found)
kid = null; //set to null if none |eft
return found;
}
R T
publ i c Obj ect nextEl enment () {
if(kid !'= null)
return kid;
el se
/lthrow exception if access past end
t hr ow new NoSuchEl ement Excepti on();
}
}

All of the work is done in the hasMoreElements() method, which
scans through the collection for another kid belonging to the club specified in
the constructor, and saves that kid in the kid variable, or setsit to null. Then,
it returns either true or false. The nextElement() method either returns that
next kid variable or throws an exception if there are no more kids. Note that
under normal circumstances, this exception is never thrown, since the
hasMor eElements boolean should have aready told you not to ask for another
element.

Finally, we need to add a method to KidData to return this new
filtered Enumeration:

publ i c Enuneration kidslnC ub(String club) {
return new ki dC ub(this, club);
}

This simple method passes the instance of KidClub to the
Enumeration class kidClub along with the club initials. A simple program is
shown below, that displays al of the kids on the left side and those belonging
to asingle club on the right.

31

EE% Enumeration demo

Arnanda McCarthy =

Jamie Falco hﬂmm

Meaghan C'Dannell Rhiannon Jeffrey
Greer Gibbs Sarah Treichel
Rhiannon Jeffrey | |Tara Schoen
Sophie Connolly Elizabeth Rice
Dana Helyer Caitlin Gillen
Lindsay Marotta Hayley Walfgruber

Sarah Treichel
Ashley McEntee
Rachel Brookman
Michelle Ducharme
Karleen Danais
Megan Loock
Kaitlyn Ament _j

Consequence of the Iterator Pattern

1. Data modification. The most significant question iterators may raise is
the question of iterating through data while it is being changed. If your
code is wide ranging and only occasionally moves to the next element, it
is possible that an element might be added or deleted from the underlying
collection while you are moving through it. It is also possible that another
thread could change the collection. There are no simple answers to this
problem. Y ou can make an enumeration thread-safe by declaring the loop
to be synchronized, but if you want to move through aloop using an
Enumeration, and delete certain items, you must be careful of the
consequences. Deleting or adding an element might mean that a particular
element is skipped or accessed twice, depending on the storage
mechanism you are using.

2. Privileged access. Enumeration classes may need to have some sort of
privileged access to the underlying data structures of the original
container class, so they can move through the data. If the datais stored in
a Vector or Hashtable, thisis pretty easy to accomplish, but if itisin
some other collection structure contained in a class, you probably have to
make that structure available through a get operation. Alternatively, you
could make the Iterator a derived class of the containment class and
access the data directly. The friend class solution available in C++ does
not apply in Java. However, classes defined in the same module as the
containing class do have access to the containing classes variables.

32

3. External versusInternal Iterators. The Design Patterns text describes
two types of iterators: external and internal. Thus far, we have only
described external iterators. Internal iterators are methods that move
through the entire collection, performing some operation on each element
directly, without any specific requests from the user. These are less
common in Java, but you could imagine methods that normalized a
collection of data values to lie between 0 and 1 or converted all of the
strings to a particular case. In general, external iterators give you more
control, because the calling program accesses each element directly and
can decide whether to perform an operation on.

Composites and Iterators

Iterators, or in our case Enumerations, are also an excellent way to
move through Composite structures. In the Composite of an employee
hierarchy we developed in the previous chapter, each Employee contains a
Vector whose elements() method allows you to continue to enumerate down
that chain. If that Employee has no subordinates, the hasMoreElements()
method correctly returns false.

