Computer Architecture Namiq Sultan

Basic Computer Organization and Design

1. Instruction Representation

The processor we consider will be a simple accumulator-based system having a 16-bit word and 4096 (212) words of memory. Because our word size is 16 bits, instructions must fit within that space; as we need 12 bits to represent a memory address, we have only 4 bits remaining to indicate the opcode and any other per-instruction information we need. We'll use a 3-bit opcode, and use the remaining bit to distinguish between direct and indirect memory addressing.

Here is our basic instruction layout:

[image: image1.png]
The opcode of an instruction is a group of bits that define specific operations such as add, subtract, shift, and complement.

When the I (indirect) bit is 0, the value in AD is the actual address of the operand (direct addressing). When I is one, AD contains the address of an indirect word, which in turn will contain the actual operand address (indirect addressing).

2. Register Structure

Our simple machine will have the following registers. Sizes are determined directly from the intended use of that register - e.g., a register which only holds addresses will be the size of an address.

Symbol Length
Name

Function

==

AR
 12
 Address Register Holds address to be accessed in memory

PC
 12
 Program Counter Holds address of next instruction to be fetched

DR
 16 Data Register
 Holds data moved into/from memory

AC
 16
 Accumulator
 General-purpose processor register

TR
 16
 Temporary Reg
 Holds intermediate results

IR
 16
 Instruction Reg
 Holds fetched instruction for decoding

INPR
 8
 Input Register
 Holds data read from input device

OUTR
 8
 Output Register
 Holds data to be written to output device

E
 1 Error Register
 Holds error indication from the ALU

To simplify the connection logic between the registers, we'll use a common bus structure. The bus will be 16 bits wide (size of a word of memory); we'll need to connect six registers and memory to it, so we'll need three selection inputs to the bus controller logic.

[image: image3.png]
 Mano Machine
This structure allows us to move information between the major elements of the CPU. Registers are connected to the bus as follows:

Register(s)
 To bus
 From bus

Notes

==

AR, PC
 Lower 12 bits same

Other bus lines cleared

DR, IR, TR
 All bits
 same

 -

AC

 All bits
 None Input to AC is through ALU

INPR

 All bits
 None

Input passed to AC is through ALU

OUTR

 None

 Lower 8 bits
-

The ALU takes two 16-bit inputs and 8-bit input, and produces 17 (one to E, 16 to AC). ALU inputs come from the AC (allows AC complementation, and use of AC contents in arithmetic/logic/shift operations), from DR, and from the INPR (input is moved through the ALU into the AC). This design also allows for multiple parallel hardware operations - e.g., information can be moved onto/from the bus while the ALU is performing an operation.

3. Instruction Set

One potential problem with our instruction word is that there are only three bits available for the opcode. Normally, this would limit us to a total of eight instructions, which is too few to provide a meaningful set of operations. However, we can take advantage of the fact that not all instructions require the use of a memory operand. If we can design the instruction decoding logic in the CU properly, we can arrange to use a single opcode for all these instructions, and use the 12 bits in the AC field to distinguish between the operations. We can even use the I field here - as there is no memory operand, using indirect addressing doesn't make any sense, so we can use that additional bit to help extend the instruction set.

We'll use opcode 7 to represent all the "extended" instructions, leaving opcodes 0 through 6 for the "memory reference" instructions. Further, we'll use the I bit to distinguish between "register'' instructions and "i/o'' instructions.

[image: image4.png]
The instructions for the computer are listed in Table 5-2

TABLE 5-2 Basic Computer Instructions

===

Symbol
 Hex Code

Description

I = 0
 I = 1

--

AND

0xxx
 8xxx

AC (AC /\ M[EA]

ADD

1xxx
 9xxx

AC (AC + M[EA]

LDA

2xxx
 Axxx

AC (M[EA]

STA

3xxx
 Bxxx

M[EA] (AC

BUN

4xxx
 Cxxx
PC (EA

BSA

5xxx
 Dxxx
Branch and save return address **
ISA

6xxx
 Exxx

Increment and skip if zero **
[image: image5.png]
CLA

 7800

AC (0

CLE

 7400

E (0

CMA

 7200

AC (AC'

CME

 7100

E (E'

CIR

 7080

AC (shr AC, E (AC(0), AC(15) (E

CIL

 7040

AC (shl AC, E (AC(15), AC(0) (E

INC

 7020

AC (AC + 1

SPA

 7010

Skip next instruction if AC is positive **
SNA

 7008

Skip next instruction if AC is negative **
SZA

 7004

Skip next instruction if AC is zero **
SZE

 7002

Skip next instruction if E is zero **
[image: image6.png]
INP

 F800

Input character to AC **
OUT

 F400

Output character from AC **
SKI

 F200

Skip if input pending **
SKO

 F100

Skip if output pending **
ION

 F080

Enable (turn on) interrupts **
IOF

 F040

Disable (turn off) interrupts **
[image: image7.png]
Although our simple instruction set is complete, it is fairly inefficient - there are no subtract, multiply, divide, or other similar operations. All of these operations can be performed by combining the existing instructions in different sequences (subtraction by using ADD after moving the second operand to the AC, then using CMA and INC on it); while a more complete set would have made programming easier, it would also have increased the complexity of the machine to the point where it would not be understandable.

Direct and Indirect modes
Example: Assume that the memory of mano machine contains the following data

400:
0404 F000 0A01 0200 0A00 1234

 and the accumulator contains 0111.

a) direct ADD

ADD
400

The code of the instruction is 1400

The contents of AC after executing the instruction is 0515

b) indirect ADD

ADD 400 I

The code of the instruction is 9400

The contents of AC after executing the instruction is 0B11
4. The Control Unit (Hardwired design)
We next need to consider the structure of the CU. In essence, the CU is a large sequential circuit. It must be able to sequence the execution of micro-ops, as well as fetch, decode, and execute instructions. All CPU registers are controlled by a single master clock. While all registers are connected to this clock, none will change state unless the other control inputs are present to initiate the change at the arrival of a clock pulse.

The two major data sources on which CU decisions are based are decoded information from the instruction being executed, and timing information which allows the sequencing of micro-ops to support instruction execution. Instruction decoding is handled quite easily. Once an instruction is moved into the IR, the opcode can be taken from that register and fed into a 3 x 8 decoder to generate separate output signals (Di) for each of the eight possible opcode values. Similarly, the I bit can be moved into a special I register for later use.

Timing signals will be generated by feeding the output of an N-bit sequence counter, SC, into an Nx2N decoder; this will generate 2N timing signals (Ti) which will be used in control functions for micro-ops to limit their operation to particular units of time. The number of timing signals required depends on the longest sequence of micro-ops required for any single instruction. We'll use a clearable counter, and add a micro-op to the system's repertoire which "resets" the counter to 0; we'll use this at the end of each instruction's micro-op sequence to avoid having the system move through all 2N timing values, which will speed up execution of instructions.

Here's a block diagram of the basic CU, assuming a four-bit counter as the timing

sequence generator:

[image: image8.png]5. The Fetch/Execute Cycle (Instruction cycle)

Our CPU's fetch/execute cycle will look like this:

1. Fetch an instruction from memory to IR.

2. Increment the PC so that it points to the next instruction.

3. Decode the instruction.

4. If the instruction is indirect addressing, then get effective address from memory.

5. Execute the instruction.

The fetch and decode phases of the cycle can be specified by the following RTL expressions:

Expression

Meaning

T0:
AR (PC

move address of instruction to AR

T1:
IR (M[AR], PC (PC +1

retrieve instruction, bump PC

T2:
D0, . . . , D7 (Decode IR(12-14),
 decode opcode and I, operand address

 AR (IR(0 -11), I (IR(15)

into AR

At time T0, we must move the PC into the AR; thus, the bus select inputs must be 010, and we must enable the LD input of AR. The double transfer occurs at the next clock pulse, which also advances SC to 1.

At time T1, we must move memory into the IR (bus select 111, LD input of IR enabled); also, we must increment PC (INR input of PC enabled). The next clock pulse triggers both actions, and advances SC to 2.

6. Decoding and Executing the Instruction

We feed IR(14 -12) into a 3 x 8 decoder, which produces outputs D0 through D7. These control signals will directly indicate the opcode to be executed.

There are four basic paths through the instruction execution portion of the CU logic: register; i/o; memory direct; and memory indirect. The path is chosen based on the opcode and I values. Memory reference instructions differ only in the determination of the effective address for the operand. For indirect references, one additional clock pulse is required (to move the address of the indirect word to AR, so that the actual operand retrieval logic will find the final EA in AR. This is handled by either doing that move at time T3, or doing nothing at all. Thus, we will execute particular instructions under the following conditions:

Control

Activity

[image: image9.png]
D'7.I.T3

AR (M[AR]
Indirect mem-ref instruction

D'7.I'.T3

Do nothing (direct mem-ref instruction)
D7.I'.T3

Execute a reg-ref instruction

D7.I.T3

Execute an I/O instruction

Note that the "execution" steps all execute SC (0 to reset the timer to T0 ; this moves the CU back to the fetch phase after the execution of the previous instruction.

[image: image10.png]
6.1. Instructions: Register Reference

If D7 is true, the opcode must be 111, and thus we have either a register or an I/O instruction. If I is 0, D7 indicates a register instruction; we represent this in a control function as I'D7.

Register instructions use the AD field to specify the particular operation to be performed. All these operations are implemented in terms of the basic arithmetic and logic operations of the ALU, or the control inputs of the various registers, as follows:

D7I'T3 = r (common to all register-reference instructions)

IR(i) = Bi (i = bit position in IR = 0, 1, 2, . . . , 11)

CLA

rB11:
AC (0, SC (0

CLE

rB10:
E (0, SC (0

CMA

rB9:
AC (AC', SC (0

CME

rB8:
E (E', SC (0

CIR

rB7:
AC (shr AC, AC(15) (E, E (AC(0) , SC (0

CIL

rB6:
AC (shl AC, AC(0) (E, E (AC(15) , SC (0

INC

rB5:
AC (AC + 1, SC (0

HLT

rB0:
S (0

S is a one-bit register which controls the INR input of SC; initially, it contains 1 (causing SC to count time units), but changing it to 0 effectively prevents the computer from moving beyond the current time unit, therefore halting it.

6.2. Instructions : Memory Reference

The execution of the memory-reference instruction starts with timing signal T4 . If D'7IT3 = 1, then the micro-op AR (M[AR] is executed, which moves the indirect address into the AR, so the AR contains the final EA of the operand.

To retrieve the operand, then, we need to perform DR (M[AR] for those instructions which require the operand. This is AND, ADD, LDA, and ISZ; thus, the full RTL expression is

(D0+D1+D2+D6).T4: DR (M[AR]

Individual instructions are implemented as follows:

AND
 D0T4:
DR (M[AR]

 D0T5:
AC (AC Λ DR, SC (0

ADD
 D1T4:
DR (M[AR]

 D1T5:
AC (AC+DR, E (Cout , SC (0

LDA
 D2T4:
DR (M[AR]

 D2T5:
AC (DR, SC (0

STA
 D3T4:
M[AR] (AC , SC (0

BUN
 D4T4:
PC (AR, SC (0

BSA
 D5T4:
M[AR] (PC, AR (AR + 1

 D5T5:
PC (AR, SC (0

ISZ
 D6T4:
DR (M[AR]

 D6T5:
DR (DR + 1

 D6T6:
M[AR] (DR, if (DR = 0) then (PC (PC + 1), SC (0

[image: image11.png]6.3. Instructions : I/O and Interrupt

Our computer must also have i/o and interrupt control instructions. For the sake of time, we won't discuss them here, but will represent them in later discussions. An interrupt flip-flop is included in the computer. When R = 0, the computer goes through an instruction cycle. If R is set to 1, the computer goes to an interrupt cycle instead of an instruction cycle.

7. The Complete Machine

Here is the full control function/micro-op description of the computer:

Fetch

R'T0:
AR (PC

R'T1:
IR (M[AR], PC (PC +1

Decode

R'T2:
D0, . . . , D7 (Decode IR(12-14), AR (IR(0-11), I (IR(15)

Indirect

D'7IT3:
AR (M[AR]

Interrupt:

 T'0T'1T'2(IEN)(FGI+FGO):
R (1

RT0:
AR (0, TR (PC

RT1:
M[AR] (TR, PC (0

RT2:
PC (PC+1, IEN (0, R (0, SC (0

Memory-reference:

AND
 D0T4:
DR (M[AR]

 D0T5:
AC (AC /\ DR, SC (0

ADD
 D1T4:
DR (M[AR]

 D1T5:
AC (AC+DR, E (Cout , SC (0

LDA
 D2T4:
DR (M[AR]

 D2T5:
AC (DR, SC (0

STA
 D3T4:
M[AR] (AC , SC (0

BUN
 D4T4:
PC (AR, SC (0

BSA
 D5T4:
M[AR] (PC, AR (AR + 1

 D5T5:
PC (AR, SC (0

ISZ
 D6T4:
DR (M[AR]

 D6T5:
DR (DR + 1

 D6T6:
M[AR] (DR, if (DR = 0) then (PC (PC + 1), SC (0

Register-reference:

D7I'T3 = r (common to all register-reference instructions)

IR(i) = Bi (i = bit position in IR = 0, 1, 2, . . . , 11)

 r :
SC (0

CLA

rB11:
AC (0

CLE

rB10:
E (0

CMA

 rB9:
AC (AC'

CME

 rB8:
E (E'

CIR

 rB7:
AC (shr AC, AC(15) (E, E (AC(0)

CIL

 rB6:
AC (shl AC, AC(0) (E, E (AC(15)

INC

 rB5:
AC (AC + 1

SPA

 rB4:
if (AC(15) = 0) then (PC (PC + 1)

SNA

 rB3:
if (AC(15) = 1) then (PC (PC + 1)

SZA

 rB2:
if (AC = 0) then (PC (PC + 1)

SZE

 rB1:
if (E=0) then (PC (PC +1)

HLT

 rB0:
S (0

Input-output:

D7IT3 = p (common to all input-output instructions)

IR(i) = Bi (i = bit position in IR = 6, 7, 8, 9, 10, 11)

 p:
SC (0

INP

pB11:
AC(0-7) (INPR, FGI (0

OUT

pB10:
OUTR (AC(0-7), FGO (0

SKI

pB9:
if(FGI = 1) then (PC (PC + 1)

SKO

pB8:
if(FGO = 1) then (PC (PC +1)

ION

pB7:
IEN (1

IOF

pB6:
IEN (0

8. Design

The basic computer consists of these components:

Memory
4k x 16 RAM

Registers
AC, PC, DR, AR, IR, TR, OUTR, INPR, SC

Flip-flops
I, S, E, R, IEN, FGI, FGO

Decoders
3 x 8 (opcode), 4 x 16 (timing)

Bus

16-bit

Misc. gates
For control logic

ALU

Arithmetic and logic circuits

We need control signals for the following:

control inputs of nine registers
read and write inputs of memory
set, clear, and complement the seven flip-flops
bus selection inputs
control inputs of arithmetic/logic circuits

8.1. Design of Control Logic

[image: image12.png]Design of registers requires that we scan the control table to locate all micro-ops which modify the contents of that register. The p, r, and Bi functions are implemented as follows:

8.2. Design of TR

TR is modified in only one situation:

Micro-op:

RT0: TR (PC

Implementation diagram:

[image: image13.png]
8.3. Design of AC

AC is a bit more complicated:

D0T5:
AC (AC Λ DR

D1T5:
AC (AC + DR

D2T5:
AC (DR

rB11:
AC (0

rB9:
AC (AC'

rB7:
AC (shr AC, AC(15) (E

rB6:
AC (shl AC, AC(0) (E

rB5:
AC (AC + 1

pB11:
AC(7-0) (INPR

From this, we can derive:

INR(AC) = rB5
CLR(AC) = rB11
LD(AC) = T5(D0+D1+D2) + r(B9+B7+B6)+pB11
Implementation of AC control logic:

Implementation of AC and ALU connections:

[image: image2.png]
Connections to AR would be designed in a similar fashion.

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

PAGE
13

_1208078245

_1208079140

_1208069155

