Input-Output Organization

· The computer system’s I/O architecture is its interface to the outside world.

· Peripheral : Devices that are under the direct control of the CPU. Among the most common peripherals are keyboards, display units, printers, and auxiliary storage devices.

· [image: image1.png]Device 1 Device 2 Device 3

Interface Interface Interface

et
o fertey

'] Open
e \W Y

cpu

e
:

+5v (3) Daisy chain

et e
scknonmeas—= - \ Yo
pevoo i)
£ ey chain
i logic: !
| |
: |
T
|

() Logic

I/O module

· Why peripherals not connected directly to system bus :

- Wide variety of peripherals with various methods of operation (electromechanical, electromagnetic, ...)

- Peripherals are much slower than CPU or memory.

- Peripherals use different data format and word lengths than the computer to which they are attached.

· The following diagram shows an external device structure

[image: image2.png]DEVICED
FLAG
seT?

vEs

SERVICE
DEVICED
RETURN
vEs

SERVICE
DEVICE 1

i RETURN

SERVICE
DEVICET

o
RETURN
RETURN

SOFTWARE POLLING FLOWCHART

· control signals determine the function that the device will perform (e.g. INPUT,OUTPUT,READ status).

· Status signals indicate the state of the device (e.g. READY,NOT-READY)

· The transducer converts data from electrical to other forms of energy during output and from other forms to electrical during input.

· The buffer is temporarily holds data being transferred between I/O module and the external environment.

· I/O Module function

· Control and timing.

· Processor communication.

· Device communication.

· Data buffering.

· Error detection.

· Example for data transfer from external device to the processor.

1. Processor asks I/O module to check the status of the external device.

2. I/O module returns the device status.

3. If the device READY, the processor requests data.

4. I/O module obtains a unit of data (e.g. 8 or 16 bits) from the external device.

5. Data transferred from I/O module to the processor.

· I/O Module Structure

[image: image3.png]Dt fnes-

Deta
court

Address fnes

Deta
register

D recuest
D acknawisge:

address
register

Interrupt
Read

Wit

Cortral
logic:

· Data transferred to and from the module are buffered in one or more data registers.

· Status registers provide current status information. It may also function as control registers that accept control words from the processor.

· There are three principal I/O techniques :

2. Programmed I/O

3. Interrupted-driven I/O

4. Direct Memory Access (DMA)

[image: image4.png]. S——

10 Module

To peripherals

Data hus

Cantrol bus

Programmed I/O

· Input /output operations under direct control of the processor.
· It is the responsibility of the processor to check periodically the status of I/O module until it finds that it is ready.

· The problem is that processor has to wait along time for the I/O module to be ready for either receiving or transmitting data.

Interrupt-Driven I/O

· Three types of interrupts:

· External interrupts

· Internal interrupts

· Software interrupts

· External interrupts come from I/O devices, timing devices, or any other external source

· Internal interrupts arise from illegal or erroneous use of an instruction or data, also called traps (eg: devide by zero, illegal opcode)

· Both are initiated from signals that occur in the hardware of the CPU

· A software interrupt is initiated by executing an instruction

[image: image5.png]Cartrol signals Stetus signels Datato and from

fromUO moce | 4§ tolO modle 4 10 moskie
¥
Cortrol Butfer
Loge [——»
Transducer

1 atato and from
enviranment

[image: image6.png]Interface to Interface to
systembus external device

—

pete Deta regiters Extenal fe |y oo
ines e | device
interface (€ ¥ Status
Staus Contal ogic 4———» Cartrol
registers |
Address. "
P e T e Ll
D — wvee) e
ortrol nes . i
Cortrol i logic {4——— Cortral

Interrupted Processing

1. I/O module sends interrupt signal.

2. CPU finishes execution of the current instruction, then tests for interrupt. If there is one, the CPU sends an acknowledgment signal.

3. I/O module receives acknowledgment signal and removes its interrupt signal.

4. CPU pushes PSW register (Program Status Word, or flag register) and PC onto a stack.

5. CPU loads PC with entry address of the interrupt-service routine (interrupt-handling routine).

6. Interrupt-handling routine start execution , by saving the general registers onto the stack.

7. The interrupt handler processes it’s operations.

8. When interrupt processing is complete, the saved registers are restored to the registers.

9. Restore PSW and PC values from the stack.

· With multiple I/O module , how does the processor determine which device issued the interrupt ?

· Software poll.

· Daisy chain.

Software Polling Determination of the Requesting Device

A software routine is used to identify the device requesting service. A simple polling technique is used, each device is checked to see if it was the one needing service.

[image: image7.png]CPU sends read command
10110 mocte

C—

CPU do someting else.

- ——»{ cPureaas status or 10 moaute
Interrupt rom

10 modeto
cpu

CPUveads data word fram 10
mode

v
CPU it the word it memary|

o

Yes
v
Next nstruction

Having identified the device, the processor then branches to the appropriate interrupt-handling-routine address for the given device. The order in which the devices appear in the polling sequence determines their priority.

Summary of Software Polled I/O

Polling is the most common and simplest method of I/O control. It requires no special hardware and all I/O transfers are controlled by the CPU program. Polling is a synchronous mechanism, by which devices are serviced in sequential order.

The polling technique, however, has limitations:
1. it is wasteful of the processors time, as it needlessly checks the status of all devices all the time,

2. when fast devices are connected to a system, polling may simply not be fast enough to satisfy the minimum service requirements,

3. priority of the device is determined by the order in the polling loop, but it is possible to change it via software.

Software/Hardware Driven Identification (Daisy Chain)

This is significantly faster than a pure software approach. A daisy chain is used to identify the device requesting service.

[image: image8.png]CPU sends read command
010 moce.

—

CPUveads stetus ward
of 10 mace.

Mot ready "~ Error
Jresy

CPUveads data word fram

1O machle

CPU it the ward o]
memary

>

Yes

Next Instruction

Daisy Chain Polling Arrangement

Daisy chaining is used for level sensitive interrupts, which act like a wired 'OR' gate. Any requesting device can take the interrupt line low, and keep it asserted low until it is serviced.

Because more than one device can assert the shared interrupt line simultaneously, some method must be employed to ensure device priority. This is done using the interrupt acknowledge signal generated by the processor in response to an interrupt request.

Each device is connected to the same interrupt request line, but the interrupt acknowledge line is passed through each device, from the highest priority device first, to the lowest priority device last.

After preserving the required registers, the microprocessor generates an interrupt acknowledge signal. This is gated through each device. If device 1 generated the interrupt, it will place its identification signal on the data bus, which is read by the processor, and used to generate the address of the interrupt-service routine. If device 1 did not request the servicing, it will pass the interrupt acknowledge signal on to the next device in the chain. Device 2 follows the same procedure, and so on.

Direct Memory Access

· Programmed I/O and interrupt-driven I/O suffer from two drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test and service a device.

2. The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer.

· When large volumes of data are to be moved, the DMA technique is required.

· One technique, the DMA module must use the bus only when the processor does not need it.

· Another more common technique, the DMA module forces the processor to suspend operation temporarily. This technique referred to as cycle stealing.

· [image: image9.png]cpu

nterrupt
it scknowledgment

Deta bus

Address bus

10 machle

When the processor wishes to read or write a block of data, it issues to the DMA module the following information:

· read or write is requested

· address of I/O device

· starting location in memory to read from or write to, stored in address register.

· number of words to be read or written, stored in data count register.

· When the transfer is complete, the DMA module sends an interrupt signal to the processor.

PAGE
5

