Computer Architecture
                                                                                                            Namiq Sultan


Microprogrammed Control Units

1. Introduction

Our earlier discussion of control unit (CU) design focused on hardwired control units - i.e., ones where the control functions for the various components were synthesized using combinational logic. In this document, we will consider an alternate design technique: the microprogrammed CU. 

2. Background and Basic Concepts

Recall that a combinational network generates a Boolean function set whose values are used to control a set of micro-ops: one Boolean value means “don't do the operation'', the other value means “do the operation'' We can get the same effect by connection the control inputs to the bits of a register, and putting a bit pattern in the register which has the right values to operate the necessary control functions. 

A word which contains this type of control function pattern is called a control word (CW). A CU whose control information comes from such an arrangement is called a microprogrammed control unit (MCU). 

Clearly, performing sequences of micro-ops will require that we move a sequence of CWs into the control register. In essence, each CW is seen by the MCU as an “instruction''; these are known as microinstructions . A series of microinstructions is called a microprogram . Often, we find that the microprogram will be burned into a read-only memory (ROM), resulting in a static microprogram. 

Sometimes, though, an MCU is designed in such a way that its microprogram can be extended or modified by the customer. In this case, some or all of the microprogram will be kept in RAM. This is known as a dynamic microprogram. 

3. Overall Machine Architecture

It is important to realize that a microprogrammed computer is really two computers: the one seen by the high-level-language or machine-language programmer, consisting of the program-accessible registers, the PC, main memory, etc.; and the MCU itself, consisting of the CM, CAR, etc. The MCU executes the microprogram found in the CM, which in turn causes the processing of information found in the "machine-level" computer. 

The relationship between the micro-level and machine-level components can be illustrated this way: 
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Computer hardware configuration

Data paths are shown as solid lines; control paths, as dashed lines. The machine-level computer consists of everything outside the box in the lower left-hand corner; everything inside that box is the micro-level computer. 

4. Instruction Formats

Machine instructions have this format: 
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We will define only a few instructions, as all instructions will be implemented similarly: 

Mnem.
  Opcode
       Description

ADD

    0000
AC  ( AC + M[EA]

BRANCH
    0001
If (AC < 0) Then (PC  ( EA)

STORE 
    0010
M[EA] ( AC

EXCHANGE     0011
AC ( M[EA],  M[EA] ( AC  

EA is the final effective address of the memory operand, however it is calculated (i.e., direct or indirect addressing).

5. Microinstruction format

Microinstructions are somewhat different: 
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Figure 7-3 Mapping form instruction code to microinstruction address






Field(s)

Description



=============================



F1 / F2 / F3

Micro-operation field



CD


Branch condition specifier



BR


Branch type specifier



AD


Address

Most microinstructions will only specify a few micro-ops; to save memory, then, micro-ops will be grouped into collections of mutually exclusive operations (i.e., ones which won't be done by the same microinstruction). Each collection will be encoded with a three-bit field, of which there are three in the microinstruction. Reserving one code per field to indicate that no operation is to be done, a total of 21 micro-ops can be encoded, as follows: 

	Code
	F1
	F2
	F3

	
	Operation
	Mnem.
	Operation
	Mnem.
	Operation
	Mnem.

	0 0 0

0 0 1

0 1 0

0 1 1
	None

AC  (  AC+DR

AC  ( 0  

AC  ( AC + 1 
	NOP

ADD

CLRAC

INCAC
	None

AC ( AC - DR

AC ( AC \/ DR

AC ( AC /\ DR
	NOP

SUB

OR

AND
	None

AC ( AC ⊕ DR

AC ( AC' 

AC ( shl AC
	NOP

XOR

COM

SHL

	1 0 0

1 0 1

1 1 0

1 1 1
	AC ( DR

AR ( DR(10-0)

AR ( PC

M[AR] ( DR
	DRTAC

DRTAR

PCTAR

WRITE
	DR ( M[AR]

DR ( AC

DR ( DR + 1

DR(10-0) ( PC
	READ

ACTDR

INCDR

PCTDR
	AC ( shr AC

PC ( PC + 1

PC ( AR

Reserved
	SHR

INCPC

ARTPC


The CD and BR fields determine when and how branches take place. BR controls the type of branch; CD, the condition under which the branch occurs. Note that branching at the microinstruction level is done to support the execution of machine-level instructions; thus, the conditions under which branches take place are based on those needs. 

	CD
	Condition
	Symbol
	      Comments

	0 0

0 1

1 0

1 1
	Always = 1

DR(15)

AC(15)

AC = 0
	U

I

S

Z
	Unconditional branch

Indirect address bit

Sign bit of AC

Zero value in AC


	BR
	Symbol
	Function

	0 0

0 1

1 0

1 1
	JMP

CALL

RET

MAP
	CAR ( AD if condition = 1

CAR ( CAR + 1 if condition = 0

CAR ( AD , SBR ( CAR + 1 if condition = 1

CAR ( CAR + 1 if condition = 0

CAR ( SBR (Return from subroutine)

CAR(2-5) ( DR(11-14), CAR(0, 1, 6) ( 0


The microinstruction has access to three types of status information: DR(15) (the sign bit of the data register); AC(15) (sign bit of the accumulator); and the ORing together of all bits in the AC (AC=0). These are represented in microinstruction source code with the characters I (DR(15), the indirect bit of the machine instruction), S (AC(15), the sign bit of the accumulator), and Z (AC=0, for checking zero results). The character U is used to indicate unconditional transfers. 

Note that the CD and BR field contents, while they are interpreted together, are independent; i.e., any CD contents can be used with any BR contents. The bit combination specified by the CD field is used to determine what type of transfer occurs, as requested by the BR field. The appropriate condition is tested, yielding a 0 or 1 result; this, in turn, is used by the MCU hardware to determine how the CAR is loaded. 

Important note: As it is structured, there is no way to guarantee that an "increment" adjustment to CAR will be done. Thus, sequential microprogram execute must be done by embedding a "transfer to the next location in sequence" unconditional jump into the previous microinstruction! 

6. Microinstruction Source Code

Now that we know what microinstructions look like at the hardware level, let's talk about how we specify them at the software level. Microprograms are sequences of microinstructions; these, in turn, are written in a more human-readable form in a microassembly language, which is translated from source form into machine form by a microassembler. 

Microassemblers are very much like an assemblers. Source statements consist of five fields: 

[ label : ] micro-ops CD-spec BR-spec address

 Field




Contents

===============================================================

label
Optional; if present, contains a symbolic name followed by a colon character. The name is associated by the microassembler with the address of this microinstruction.

Micro-ops
A comma-separated list of one, two, or three symbolic names for micro-ops to be encoded in the F1, F2, and/or F3 field(s). No more than one symbol from each field may be used. Symbols are associated with fields from left to right; to specify an operation for a later field, all earlier fields must be explicitly coded as NOP, which generates a bit pattern of 000 for that field. Unspecified fields default to NOP.

CD-spec
One of the four CD-field characters described above.

BR-spec
One of the four BR-field symbols described above.

Address
The value for the AD field of the microinstruction. There are three options: a user-defined symbol (which must appear as a label on an microinstruction ); the symbol NEXT, for which the microassembler uses the address of the next microinstruction in sequence; or nothing, usable only with BR field of RET or MAP,  and fills AD with zeros.

There is also one directive, ORG, which serves the same purpose as in assembly language. 

7. Symbolic Microprogramming

Unlike the hardwired design, the MCU is programmed, so all cycles (fetch, decode, etc.) must exist as microprograms. Once the micro-op sequence is determined, a microprogram is constructed by writing microassembly statements which specify the desired operations. 


7.1. Fetch Cycle

The fetch cycle has the following micro-op sequence: 

AR ( PC 
DR ( M[AR], PC ( PC + 1 
AR ( DR(0-10), CAR(2-5) ( DR(11-14), CAR(0,1,6) ( 0 

This is coded as follows: 



ORG
64

FETCH:
PCTAR


U
JMP
NEXT



READ, INCPC

U
JMP
NEXT



DRTAR


U
MAP


Why does this cycle begin at location 64? We need space for instruction routines, which must begin at location 0 in the CM (mapping of opcode 0000 yields address 0). With 16 instructions, and four microinstructions per routine, we will need 64 locations at addresses 0...63; thus, the cycles must begin at location 64. 

Step 1: 

Copy the PC into the AR, then unconditionally transfer to the next address (65). 

Step 2: 

Read a machine instruction from memory; increment the PC; then unconditionally transfer to the next address (66). 

Step 3: 

Copy the machine instruction AD field into the AR (set up for memory reference - direct, or indirect), and map the opcode from the DR into the address of the next microinstruction to be executed. 

The resulting microcode looks like this: 

Address
F1
F2
F3
CD
BR
    AD

===============================================

1000000
110
000
000
00
00
1000001

1000001
000
100
101
00
00
1000010

1000010
101
000
000
00
11
0000000

7.2. Indirect Routine

After the fetch cycle, the CAR will contain an address of the form 0xxxx00, where the xxxx bits are the bits of the opcode just retrieved. At that location will be the first microinstruction of the routine implementing the machine instruction. 

For memory-reference instructions, the AD field in the machine instruction may actually be the address of an indirect word. We need to be able to translate that into a final EA for the operand; however, each machine instruction routine is only four microinstructions in length. Fortunately, we have the ability to do subroutines. The solution, then, is to have each machine instruction routine call a special indirect routine which performs the indirection. We'll do a conditional CALL to the indirect routine from the machine instruction routine based on the value in the instruction's I bit. 

The indirect routine can be placed anywhere in CM except in the first 64 words (see below); for simplicity, we can place it immediately after the fetch cycle. 


The indirect routine has the following micro-op sequence: 

DR ( M[AR] 
AR ( DR 

This is coded as follows: 

INDRCT:
READ


U
JMP
NEXT



DRTAR

U
RET

We begin by reading a machine word from memory. If we are here, we know that the machine instruction specified indirect addressing, so the AR contains the address of the indirect word (put there at the end of the fetch cycle). We retrieve that into the DR, and unconditionally jump to the next location. 

Next, we copy the DR into the AR (which puts the final EA into the AR), and return to wherever we were called from. 

7.3. Routines For Machine Instructions

Each machine instruction routine for memory-reference instructions begins with a conditional call to the indirection routine. These are coded according to the required micro-op sequences, as described earlier. 

The ADD instruction has the following micro-op sequence: 

If ( I = 1 ) Then (AR ( M[AR]) 
DR ( M[AR] 
AC ( AC + DR 

The first operation is already available as the INDRCT routine, so we begin by calling that. The second operation is a READ micro-op; the third, an ADD micro-op. After these, we want to fetch the next machine instruction, which involves going to the fetch cycle; as we got here via the MAP transfer, we must JMP back. 

Here is the implementation of the ADD routine: 



  ORG   0

ADD:

  NOP


I
CALL    INDRCT



  READ

U
JMP
  NEXT



  ADD


U
JMP
  FETCH

Here are implementations of the other selected instructions: 



  ORG
  4

BRANCH:
  NOP


S
JMP
  OVER



  NOP


U
JMP
  FETCH

OVER:
  NOP


I
CALL
  INDRCT



  ARTPC
 
U
JMP
  FETCH



  ORG
  8

STORE:
  NOP


I
CALL
  INDRCT



  ACTDR

U
JMP
  NEXT



  WRITE

U
JMP
  FETCH



  ORG
  12

EXCHANGE:
  NOP


I
CALL
  INDRCT



  READ

U
JMP
  NEXT



  ACTDR, DRTAC
U
JMP
  NEXT



  WRITE

U
JMP
  FETCH

Note that each begins with an ORG directive. As these routines vary in length, some will occupy all four words in the "slot" allocated to the machine instruction, while others won't. To ensure that each begins at the appropriate place, we preface each one with an ORG to the appropriate point in the CM. 

The machine instruction routines occupy locations 0...63, the fetch cycle occupies 64...66, and the indirect routine 67...68; thus, locations 69...127 are still empty. These can be used for other common routines required by additional machine instructions, or to hold subroutines for machine instruction routines which require more than four microinstructions to implement. 

Here is the full microprogram in binary: 

	Routine
	Address
	Contents

(Hex)
	Field Contents

	
	Hx
	Binary
	
	F1
	F2
	F3
	CD
	BR
	AD

	ADD
	00

01

02

03
	0000000

0000001

0000010

0000011
	002C3

10002

20040

00040
	000

000

001

000
	000

100

000

000
	000

000

000

000
	01

00

00

00
	01

00

00

00
	1000011

0000010

1000000

0000000

	BRANCH
	04

05

06

07
	0000100

0000101

0000110

0000111
	00406

00040

002C3

03040
	000

000

000

000
	000

000

000

000
	000

000

000

110
	10

00

01

00
	00

00

01

00
	0000110

1000000

1000011

1000000

	STORE
	08

09

0A

0B
	0001000

0001001

0001010

0001011
	002C3

1400A

E0040

00040
	000

000

111

000
	000

101

000

000
	000

000

000

000
	01

00

00

00
	01

00

00

00
	1000011

0001010

1000000

0000000

	EXCHANGE
	0C

0D

0E

0F
	0001100

0001101

0001110

0001111
	002C3

2000E

9400F

E0040
	000

000

100

111
	000

100

101

000
	000

000

000

000
	01

00

00

00
	01

00

00

00
	1000011

0001110

0001111

1000000

	FETCH
	40

41

42
	1000000

1000001

1000010
	C0041

12842

A0180
	110

000

101
	000

100

000
	000

101

000
	00

00

00
	00

00

11
	1000001

1000010

0000000

	INDRCT
	43

44
	1000011

1000100
	10044

A0100
	000

101
	100

000
	000

000
	00

00
	00

10
	1000100

0000000


8. Basic MCU Configuration

Essentially, an MCU will have a fundamental organization similar to this: 
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sequencer 

Used to generate the address of the next microinstruction to be retrieved from the control memory. 

control address register 

(CAR) Holds the address generated by the sequence; provides address inputs to the control memory 

control memory 

(CM) Usually a ROM; holds the control words which make up the microprogram for the MCU 

control data register 

(CDR) Holds the control word being retrieved; used to generate/propogate control function values to the MCU 

Because the CAR and CDR are registers, they can be used and modified in parallel. Thus, the CDR can be causing the execution of a collection of micro-ops at the same time that it's being used to generate the next address (via the sequencer) for the CAR. 

9. Sequencing

Each machine instruction is executed through the application of a sequence of microinstructions. Clearly, we must be able to sequence these; the collection of microinstructions which implements a particular machine instruction is called a routine. 

The MCU typically determines the address of the first microinstruction which implements a machine instruction based on that instruction's opcode. Upon machine power-up, the CAR should contain the address of the first microinstruction to be executed. 

The MCU must be able to execute microinstructions sequentially (e.g., within routines), but must also be able to "branch" to other microinstructions as required; hence, the need for a sequencer. 

The microinstructions executed in sequence can be found sequentially in the CM, or can be found by branching to another location within the CM. Sequential retrieval of microinstructions can be done by simply incrementing the current CAR contents; branching requires determining the desired CW address, and loading that into the CAR. 

Selection of address for control memory

CAR 


Control Address Register 

control ROM 

control memory (CM); holds CWs 

opcode 

opcode field from machine instruction 

mapping logic 
hardware which maps opcode into microinstruction address 

branch logic 
determines how the next CAR value will be determined from all the various possibilities 

multiplexors 

implements choice of branch logic for next CAR value 

incrementer 

generates CAR + 1 as a possible next CAR value 

SBR 


used to hold return address for subroutine-call branch operations 
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Conditional branches are necessary in the microprogram. We must be able to perform some sequences of micro-ops only when certain situations or conditions exist (e.g., for conditional branching at the machine instruction level); to implement these, we need to be able to conditional execute or avoid certain microinstructions within routines. 

Subroutine branches are helpful to have at the microprogram level. Many routines contain identical sequences of microinstructions; putting them into subroutines allows those routines to be shorter, thus saving memory. 

Mapping of opcodes to microinstruction addresses can be done very simply. When the CM is designed, a “required'' length is determine for the machine instruction routines (i.e., the length of the longest one). This is rounded up to the next power of 2, yielding a value k such that 2 k microinstructions will be sufficient to implement any routine. 

The first instruction of each routine will be located in the CM at multiples of this “required'' length. Say this is N. The first routine is at 0; the next, at N; the next, at 2*N; etc. This can be accomplished very easily. For instance, with a four-bit opcode and routine length of four microinstructions, k is two; generate the microinstruction address by appending two zero bits to the opcode: 
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Alternately, the n-bit opcode value can be used as the "address" input of a 2n x M ROM; the contents of the selected "word" in the ROM will be the desired M-bit CAR address for the beginning of the routine implementing that instruction. (This technique allows for variable-length routines in the CM). We choose between all the possible ways of generating CAR values by feeding them all into a multiplexor bank, and implementing special branch logic which will determine how the muxes will pass on the next address to the CAR. As there are four possible ways of determining the next address, the multiplexor bank is made up of N 4x1 muxes, where N is the number of bits in the address of a CW. The branch logic is used to determine which of the four possible ``next address'' values is to be passed on to the CAR; its two output lines are the select inputs for the muxes. 

The incrementer circuit can be constructed with two 4-bit adders. Input A7 is 0; A6 through A0 come from CAR. The B7 through B0 inputs are 00000001. Carry in to position 0 is 0; carry out from position 3 becomes carry-in to position 4. Output 7 is ignored; outputs 6 through 0 are send to MUX 1. 

Alternatively, a special-purpose "add 1" circuit can be designed from half-adders. Inputs to the low-order half-adder are CAR(0) and 1. For the higher-order half-adders, inputs are CAR(i) and the carry-out from the next lower half-adder. 

The input logic circuit for MUX 1 has the following (simplified) truth table: 


  Inputs
  Outputs

I1    I0    T
S1   S0    L

        ======================

0    0    0 
0      0     0

JMP, condition 0

0    0    1 
0      1     0

JMP, condition 1

0    1    0 
0      0     0

CALL, condition 0

0    1    1
0      1     1

CALL, condition 1

1    0    x 
1      0     0

RET

1    1    x 
1      1     0

MAP

where I1 and I0 come from the BR field of the microinstruction, and T is the result of the condition test selection from CD, and the output L becomes the Load input of the SBR. 

10. MCU Design

As with hardwired CU design, the design of the MCU must be done hand-in-hand with the design of the rest of the CPU. 

10.1. Overall Design

Consider the simple machine architecture introduced earlier. In order to implement this design, we need to specify more completely the collection of registers to be used at each level of the machine. 

MCU components: 

 
 Item


Function

===================================

SBR

SuBroutine Register (7 bits)

CAR

Control Address Register (7 bits)

Memory
128 words, 20 bits/word

Machine-level components: 

   Item 

Function

 ================================

  AR

Address Register (11 bits)

  PC

Program Counter (11 bits)

  DR

Data Register (16 bits)

  AC

Accumulator Register(16 bits)

  Memory
2K word, 16 bits/word RAM

  Muxes
one 2-1 bank, one 4-1 bank

The function of the AR, PC, DR, and AC are as you would expect. Words are 16 bits each, but there are only 2K of them in memory. Data transfers are done through mux switching rather than a common bus. Inputs to the DR can come from the PC, memory, the ALU, or the AC; the AR can be loaded from the DR or the PC; PC can only be loaded from AR. 

 10.2. MCU Implementation

As with the hardwired CU implementation, we must implement the MCU by interpreting (actually, decoding) the fields within the microinstruction and using that information to control the operation of the various registers in the CPU. 

The ALU and machine-level registers are designed as in the hardwired version. Translation of the various fields of the microinstruction into control signals can be done easily with a collection of decoders. Each Fi field can be translated with a 3x8 decoder; the outputs will specifically indicate which micro-ops are required, and can be used as control inputs to the rest of the implementation logic. Translation of the CD and BR fields could be done with decoders; however, as they are actually used to select from a number of possible choices, multiplexors are more commonly used. 
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The sequencer is the other major component of the MCU. Its purpose is to present an address to the CM so that the next microinstruction can be retrieved; as such, it must have input from the CD, BR, and AD fields of the microinstruction. 

Diagram of microinstruction micro-op decoding: 
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