Computer Architecture Namiq Sultan

Instruction Set

1. Instruction Formats

· It is the function of the control unit within the CPU to interpret each instruction code

· The bits of the instruction are divided into groups called fields

· The most common fields are:

· Operation code

· Address field – memory address or a processor register

· Mode field – specifies the way the operand or effective address is determined

· A register address is a binary number of k bits that defines one of 2k registers in the CPU

· The instructions may have several different lengths containing varying number of addresses

· The number of address fields in the instruction format of a computer depends on the internal organization of its registers

· Most computers fall into one of the three following organizations:

· Single accumulator organization

· General register organization

· Stack organization

· Single accumulator org. uses one address field

ADD X : AC (AC + M[X]

· The general register org. uses three address fields

ADD R1, R2, R3: R1 (R2 + R3

· Can use two rather than three fields if the destination is assumed to be one of the source registers

· Stack org. would require one address field for PUSH/POP operations and none for operation-type instructions

PUSH X

ADD

· Some computers combine features from more than one organizational structure

Example: X = (A+B) * (C + D)

Three-address instructions:

ADD
R1, A, B
R1 (M[A] + M[B]

ADD
R2, C, D
R2 (M[C] + M[D]

MUL
X, R1, R2
M[X] (R1 * R2

Two-address instructions:

MOV
R1, A

R1 (M[A]

ADD
R1, B

R1 (R1 + M[B]

MOV
R2, C

R2 (M[C]

ADD
R2, D

R2 (R2 + D

MUL
R1, R2
R1 (R1 * R2

MOV
X, R1

M[X] (R1

One-address instructions:

LOAD
 A

AC (M[A]

ADD
 B

AC (AC + M[B]

STORE T

M[T] (AC

LOAD
 C

AC (M[C]

ADD
 D

AC (AC + M[D]

MUL
 T

AC (AC * M[T]

STORE X

M[X] (AC

Zero-address instructions: It is necessary to convert the expression into reverse polish notation.

PUSH
 A

TOS (A

PUSH
 B

TOS (B

ADD

TOS ((A +B)

PUSH
 C

TOS (C

PUSH
 D

TOS (D

ADD

TOS ((C + D)

MUL

TOS ((C + D) * (A + B)

POP
 X

M[X] (TOS

2. Addressing Modes

· The addressing mode specifies a rule for interpreting or modifying the address field of the instruction before the operand is actually referenced

· The decoding step in the instruction cycle determines the operation to be performed, the addressing mode of the instruction, and the location of the operands

· Two addressing modes require no address fields – the implied mode and immediate mode

· Implied mode: the operands are specified implicitly in the definition of the instruction – complement accumulator or zero-address instructions

· Immediate mode: the operand is specified in the instruction

· Register mode: the operands are in registers

· Register indirect mode: the instruction specifies a register that contains the address of the operand

· Autoincrement or autodecrement mode: similar to the register indirect mode

· Direct address mode: the operand is located at the specified address given

· Indirect address mode: the address specifies the effective address of the operand

· Relative address mode: the effective address is the summation of the address field and the content of the PC

· Indexed addressing mode: the effective address is the summation of an index register and the address field

· Base register address mode: the effective address is the summation of a base register and the address field

[image: image1.png]|F1]E1]
|F2le2|
|Fales|
BT

 TABLE 8-4 Tabular List of Numerical Example

 =====================================

 Addressing
 Effective
 Content

 Mode

 Address
 of AC

Direct address

500

800

Immediate operand

201

500

Indirect address

800

300

Relative address

702

325

Indexed address

600

900

Register

400

Register indirect

400

700

Autoincrement

400

700

Autodecrement

399

450

3. Data Transfer and Manipulation

· There is a basic set of operations that most computers include in their instruction set
· The opcode and/or symbolic code may differ for the same instruction among different computers
· There are three main categories of computer instructions:
· Data transfer
· Data manipulation
· Program control
· Data transfer instructions: transfer data from one location to another without changing the binary information content

Load

LD

Input

IN

Store

ST

Output
OUT

Move

MOV

Push

PUSH

Exchange

XCH

Pop

POP

· Some assembly language conventions modify the mnemonic symbol to differentiate between addressing modes

LDI – load immediate

· Some use a special character to designate the mode

TABLE 8-6 Eight Addressing Modes for the Load Instruction

 Assemble

 Mode

 Convention

Register Transfer

Direct address
 LD
ADR

AC (M[ADR]

Indirec address
 LD
@ADR
AC (M[M[ADR]]

Relative address
 LD
$ADR

AC (M[PC + ADR]

Immediate operand
 LD
#NBR

AC (NBR

Index addressing
 LD
ADR(X)
AC (M[ADR + XR]

Register

 LD
R1

AC (R1

Register indirect
 LD
(R1)

AC (M[R1]

Autoincrement
 LD
(R1)+

AC (M[R1], R1 (R1 + 1

· Data manipulation instructions: perform arithmetic, logic, and/or shift operation

· Arithmetic instructions:

Increment

INC

Divide

DIV

Decrement
DEC

Add w/carry

ADDC

Add

ADD

Sub. w/borrow
SUBB

Subtract

SUB

Negate (2’s comp)
NEG

Multiply

MUL

· Some computers have different instructions depending upon the data type

ADDI
Add two binary integer numbers

ADDF
Add two floating point numbers

ADDD
Add two decimal numbers in BCD

· Logical and bit manipulation instructions:

Clear

CLR

Clear carry

CLRC

Complement
COM

Set carry

SETC

AND

AND

Comp. carry

COMC

OR

OR

Enable inter.

EI

Exclusive-OR
XOR

Disable inter.
DI

· Clear selected bits – AND instruction

· Set selected bits – OR instruction

· Complement selected bits – XOR instruction

· Shift instructions:

Logical shift right

SHR

Rotate right

ROR

Logical shift left

SHL

Rotate left

ROL

Arithmetic shift right

SHRA

ROR thru carry
RORC

Arithmetic shift left

SHLA

ROL thru carry
ROLC

4. Program Control

· Program control instructions: provide decision-making capabilities and change the program path
· Typically, the program counter is incremented during the fetch phase to the location of the next instruction
· A program control type of instruction may change the address value in the program counter and cause the flow of control to be altered
· This provides control over the flow of program execution and a capability for branching to different program segments

Branch
BR

Return

RET

Jump
JMP

Compare

CMP

Skip
SKP

Test

TST

Call
CALL

· TST and CMP cause branches based upon four status bits: C, S, Z, and V
[image: image4.png]Address. Memory.

e] 200 [ToadwAC Vo]
201 [addess 2500
A= 202 [Newinsuston
m]
E =
[AT] 400 0
e a0
a0 a0
2]
a0)

Figure 8-7 Numerical example for addressing modes

TABLE 8-11 Conditional Branch Instrucitons

 Mnemonic
Branch condition

Tested condition

BZ

Branch if zero

Z = 1

BNZ

Branch if not zero

Z = 0

BC

Branch if carry

C = 1

BNC

Branch if no carry

C = 0

BP

Branch if plus

S = 0

BM

Branch if minus

S = 1

BV

Branch if overflow

V = 1

BNV

Branch if no overflow

V = 0

Unsigned compare conditions (A – B)

BHI

Branch if higher

A > B

BHE

Branch if higher or equal

A >= B

BLO

Branch if lower

A < B

BLOE

Branch if lower or equal

A <= B

BE

Branch if equal

A = B

BNE

Branch if not equal

A != B

Signed compare conditions (A – B)

BGT

Branch if greater than

A > B

BGE

Branch if greater or equal

A >= B

BLT

Branch if less than

A < B

BLE

Branch if less or equal

A <= B

BE

Branch if equal

A = B

BNE

Branch if not equal

A != B

 --

· A call subroutine instruction consists of an operation code together with an address that specifies the beginning of the subroutine

· Execution of CALL:

· Temporarily store return address

· Transfer control to the beginning of the subroutine – update PC

SP (SP – 1

M[SP]
(PC

PC (effective address

· Execution of RET:

· Transfer return address from the temporary location to the PC

PC (M[SP]

SP (SP + 1

· Program interrupt refers to the transfer of program control to a service routine as a result of interrupt request

· Control returns to the original program after the service program is executed

· An interrupt procedure is similar to a subroutine call except:

· The interrupt is usually initiated by an internal or external signal rather than an instruction

· The address of the interrupt service routine is determined by the hardware rather than the address field of an instruction

· All information necessary to define the state of the CPU is stored rather than just the return address

· The interrupted program should resume exactly as if nothing had happened

· The state of the CPU at the end of the execute cycle is determined from:

· The content of the PC

· The content of all processor registers

· The content of certain status conditions

· The program status word (PSW) is a register that holds the status and control flag conditions

5. Reduced Instruction Set Computer (RISC)
· An important aspect of computer architecture is the design of the instruction set for the processor

· The instruction set determines the way that machine language programs are constructed

· Many computers have instructions sets of about 100 - 250 instructions

· These computers employ a variety of data types and a large number of addressing modes – complex instruction set computer (CISC)

· A RISC uses fewer instructions with simple constructs so they can be executed much faster within the CPU without having to use memory as often

· The major characteristics of CISC architecture are:

· Large number of instructions

· Some instructions that perform specialized tasks and are used infrequently

· Large variety of addressing modes

· Variable length instruction formats

· Instructions that manipulate operands in memory

· The goal of RISC architecture is to reduce execution time by simplifying the instructions set

· The major characteristics of RISC architecture are:

· Relatively few instructions

· Relatively few addressing modes

· Memory access limited to load and store instructions

· All operations done within the registers of the CPU

· Fixed-length, easily decoded instruction format

· Hardwired rather than microprogrammed control

· Relatively large number of registers in the processor unit

· Efficient instruction pipeline

· Ability to execute one instruction per clock cycle

· Compiler support for efficient translation of high-level language programs into machine language programs

The example: X = (A+B) * (C + D) is written by RISC instructions as:

LOAD
 R1, A

R1 (M[A]

LOAD
 R2, B

R2 (M[B]

LOAD
 R3, C

R3 (M[C]

LOAD
 R4, D

R4 (M[D]

ADD
 R1, R1, R2

R1 (R1 + R2

ADD
 R3, R3, R4

R3 (R3 + R4

MUL
 R1, R1, R3

R1 (R1 * R3

STORE X, R1

M[X] (R1

Instruction Pipelining
· Instruction Cycle includes :
· Fetch next instruction (F).

· Decode and Execute the instruction (E).
[image: image5.png]—

[

7
{ B-bit ALU
8
[vTzTsle]
F7-Fo
7
Check for zero output
6
OutputF

Figure 88 Status register bits

· Time for executing four instructions without pipelining

 T = 4(tF + tE) .

· With pipelining :

[image: image6.png]

 T = tF + 4tE
· To gain further speedup , the pipelining must have more stages

 such as :

· Fetch Instruction (FI).

· Decode Instruction (DI).

· Calculate Operand (CO).

· Fetch Operand (FO).

· Execute instruction (EI).

· Write Operand (WO).

· Assume that the stages have equal duration . The following example

 shows that a six-stage pipelining can reduce the execution time for 9

 instructions from 54 time units to 14 time units.

[image: image2.png][1]2]3 |4 |58 |7 |8 |9 [10]11]12]13]14]
0,01,50,£0 B0
PRGN
[ERERSSENT:
[EREIRSSEENT:
JEREISNTCT:
[EREIRSSEENT:
[ERERSSET:
[ERERSSENT:

WFLDLCOFO NG

· The diagram implies that all accesses can occur simultaneously.

· Several factors limits the performance of pipelining :

· Stages are not of equal duration.

· Branch instruction can invalidate several instruction fetches.

· Interrupts have similar effect as branch.

[image: image3.png]

