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ABSTRACT 
 
A nonunique solution of integral equation of a region bounded by perfectly conducting walls a resonant cavity 
causes an internal resonant solution in addition with the true solution. Due to this resonant problem, the 
solution of electromagnetic scattering problem will degrade the accuracy at resonance frequencies. A 
combined electric and magnetic field integral equation is developed to solve this problem. In this paper, we 
observe the contamination of solution due to the resonant solution of the integral equation for transverse 
magnetic (TM) scattering from a conducting cylinder. The electric field and magnetic field integral equations 
fail to give unique solutions at resonance frequencies. The solution of combined-field integral equation can 
overcome this problem. The numerical results of electric field and magnetic field solution for two-dimensional 
(2D) perfectly conducting cylinder are verified with the combined-field solution that shows the good 
agreement. 
 

 

1. INTRODUCTION 
 
In the integral representation, the electric field integral 
equation (EFIE) [1-4] and the magnetic field integral 
equation (MFIE) [2,5-7] are widely used to solve the 
electromagnetic (EM) scattering problem. For a region 
bounded by perfectly conducting walls, a nonunique 
solution consists of the true solution plus an arbitrary 
number of resonant solutions arising during this 
solution. This resonant solution is nonphysical that 
gives a nontrival field inside the bounded region. The 
presence of resonance at certain values of wave 
number causes this internal resonant effects which 
adversely affects both the accuracy and computational 
time of the solution method. Therefore, the uniqueness 
of solution of EFIE and MFIE is not guaranteed at 
these interior resonant frequencies of closed body [8-
10]. 
 
Many methods have been proposed to overcome this 
problem, such as the combined-source method [11], 
the extended boundary condition method [12,13], the 
combining interior and exterior field expression 
method [14], the combined field integral equation 
method [15,16], etc. Among of them the Combined 
Field Integral Equation (CFIE) method is suitable for a 
region bounded by perfectly conducting walls in either 

the electric or magnetic sense. In the combined electric 
and magnetic field solution, the resonant solutions that 
enter into the electric field solution do not satisfy the 
boundary condition on the magnetic field; the resonant 
solutions that enter into the magnetic field solution do 
not satisfy the boundary condition on the electric field. 
Therefore, the lack of the other boundary condition 
solves the resonance problem in the combined field 
solution. 
 
In this paper we mainly concentrate on alleviating the 
resonance problem by using combined field integral 
equation of two-dimensional perfectly conducting 
body. The resonant solution that arises only at discrete 
values of the wavenumber is described in section 2. 
The formulation of electric, magnetic and combined 
field integral equations are given in section 3. Some 
numerical examples are given in section 4. Finally in 
section 5, concluding remarks of this paper are 
presented. 

 

2. EIGEN WAVENUMBERS 
 
Fredholm integral equations of first and second kinds 
are used to solve the electromagnetic scattering 
problem. Mathematically, these equations can be 
written as 
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( ) ( ) ( ), ,
b

a
f x x t t= Φ∫ K dt   (1) 

and 

( ) ( ) ( ) ( ), ,
b

a
f x x x t t dtλ= Φ − Φ∫ K

0

(2) 

where λ is a scalar parameter, functions K(x, t), f(x) 
and the limits a and b are known, and Φ(x) is 
unknown. The function K(x, t) is known as the kernal 
of the integral equation containing Green’s functions 
or derivatives of it. 
 
Table 1 shows the Green functions that are commonly 
used to solve the electromagnetic scattering problem. 
Where G is the Green function, k is the wavenumber, 
δ is the Dirac delta function, is the 
Hankel function of the second kind of order 0. 

(2)
0 0H J jN= −

 
Table 1: Green’s Function. 
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A resonant solution of Eq.(1) or (2) arise only at 
discrete values of the wavenumber k called eigen 
wavenumbers, which degrade the accuracy of the 
numerical solution of an electromagnetic scattering 
problem not only at the eigen wavenumbers but also 
over the range of the wavenumber spectrum. 
 
For a cylindrical body with circular geometry, the 
eigen wavenumbers are determined from the roots of 
Bessel functions 

( ) 0, 0,1, 2,nJ ka n= =  (3) 

where Jn is the Bessel function of the first kind of 
order n and a is the radius of the circular cylinder. 
 
Table 2 shows some roots of the Bessel function of 
first kind of order 0 and 1, for a circular cylinder of 
unit radius. More roots of Jn can be found in Ref.[17]. 
 

Table 2:Roots of Jn for a circular cylinder of unit 
radius. 

Zeros J0 J1

1 2.4048 3.8317 

2 5.5201 7.0156 

3 8.6537 10.1735 

4 11.7915 13.3237 

5 14.9309 16.4706 
 
3. INTEGRAL REPRESENTATION OF PERFECTLY 

CONDUCTING CYLINDER 
 
Let us consider a 2D electromagnetic scattering 
problem in the open space, as shown in Fig.1. Integral 
equations for this perfectly conducting scatterer are 
obtained by applying Dirichlet boundary condition to 
integral representations. If a TM wave incident 
perpendicularly on this z-directed scatterer, then the 
incident electric field has only the z-component  
and the incident magnetic field has only the l-
component . 

inc
zE

inc
lH

 
C∞ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: 2D electromagneti
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where Zc is the characteristic impedance, Jz is the z-
component of surface current density, ρ  and ′ρ  are 
the position vector of the observation and source 
point, respectively. 
 
Since the Eqs.(4) and (5) are the Fredholm integral 
equations of first and second kinds, these gives the 
unique solution only if their homogeneous equations 
has only the trivial solution. Due to the presence of 
eigen wavenumber in the range of the wavenumber 
spectrum a nontrivial solution is possible. A nontrivial 
solution consists with the true solution and the 
resonant solution which contaminated the solution of 
Eqs.(4) and (5). 
 
To eliminate these resonant solutions, a combined 
electric and magnetic field integral equation can be 
used [2]. For the TM incident field on the z-directed 
perfectly conducting cylinder, the combined field 
integral equation can be written as 

( ) ( )2
0

1 1
2 4

,

inc inc
z l z zC

c

p E H pk j
Z

H k dl

∂⎛ ⎞+ = + − ⋅⎜ ⎟∂⎝ ⎠

′ ′⋅ −

∫J J

ρ ρ

n  (6) 

where p is the positive real number lies between zero 
and one. 
 

4. NUMERICAL EXAMPLES AND RESULTS 
 
As for numerical example, consider a uniform shape 
perfectly conducting circular cylinder in the free 
space. Assume that the structure is uniform and 
infinitely long along the z-direction as shown in Fig.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: 
 

4.1 General Considerations 
 
Let us consider the scatterer illuminated by the 
forwarded directed plane wave 

,inc jeφ − ⋅= ρk     (7) 

where k is the wave propagation vector, ρ is the 
position vector. 
 
Piecewise linear discretization with pulse-basis point 
matching method and ten segments per wavelength 
are considered. Method of Moments (MoM) technique 
is used for numerical solution. 
 
4.2 2D Circular Cylinder 
 
Figure 3 shows a cross-section of 2D uniform shape 
circular cylinder, on which a z-directed TM plane 
wave is incident to +x direction. Therefore, z-
component of incident electric field is 

cos ,inc jka
zE e φ−=    (8) 

and the l-component of incident magnetic field is 
coscos ,inc jka

lH e φφ −= −    (9) 

where k is the wave propagation number, a is the 
radius of the cylinder and φ is the angular position on 
the surface boundary of the cylinder. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Field component of incident wave. 
 
Using the above numerical considerations in Eqs.(4), 
(5) and (6) the surface current density on the cylinder 
can readily be obtained. 
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Fig. 4: Surface current density of unit radius circular 
cylinder at the eigen wavenumber 8.6537. 
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Fig. 5: Surface current density of unit radius circular 
cylinder at the eigen wavenumber 11.7915. 
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Fig. 6: Surface current density of unit radius circular 
cylinder at the eigen wavenumber 14.9309. 

 
 

5. CONCLUSIONS 
 
The combined field integral equation is used to solve 
the resonance problem of integral equation for a region 
bounded by perfectly conducting walls. The resonant 
solution that arises at eigen wavenumber degrades the 
solution accuracy and CPU time. 
 
At certain values of eigen wavenumber, we observe the 
contamination of electric and magnetic field solution 
for TM scattering from a two-dimensional circular 
conducting cylinder. The removal of these resonant 
solutions of electromagnetic scattering problem by 
using combined field integral equation is also observed 
here. Necessary numerical results are derived to verify 
these solutions. 
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