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The applicability of insensitive properties of measured equation of invariance (MEI) coefficients for the computation of
scattering from modified structured bodies is presented in this letter. During scattering computation by using MEI technique
(in IE-MEI or SIE-MEI method), the MEI coefficients of the whole scatterer is calculated in the conventional method. In
contrast, using the insensitive properties of the MEI coefficients, the new method calculates the MEI coefficients only around
the modified area if some portion of the scatterer is modified and reuse those for the other portion of the scatterer. Thus CPU
time for solving the modified problem can be saved by using the new method. The numerical results verified the validity of the
new technique which is compared with the available numerical solutions. [DOI: 10.1143/JJAP.43.3620]
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1. Introduction

The measured equation of invariance (MEI) technique1)

and hence MEI coefficients were used by the integral
equation formulation of MEI (IE-MEI) and scalar-field
approach of IE-MEI (SIE-MEI) methods2–4) to solve the
wave scattering problem effectively. In this letter, we focus
on the insensitive properties of MEI coefficients with respect
to the small modification of the scatterer shape which can
broader the applicability of MEI technique. In the derivation
of MEI coefficients, we use the property of the local
geometrical dependence. Using these properties in the
scattering computation of modified scatterer, the computa-
tional time can be saved.

The newly founded insensitive properties of MEI coef-
ficients can be applied to any method that uses MEI
technique for the scattering computation. In this letter we
describe only with the SIE-MEI method for the 3D problem.
For 2D case this technique can easily be implemented
without any modification.

2. SIE-MEI Method

In the SIE-MEI method, the discretized version of local
linear equation of the problem can be expressed as4)

X
m

anm�1ðrmÞ � bnm
@�1ðrmÞ

@n

� �
¼ 0; ð1Þ

where anm and bnm are the unknown MEI coefficients for the
nð¼ 1; 2; � � �NÞ-th node associated with the mð¼ 1; 2; � � �MÞ
number of neighboring nodes, and �1 and @�1=@n are the
scattered wave and its normal derivative generated by the
suitable Q-sets of secondary sources called metrons.4)

In matrix form, eq. (1) becomes

½C D�
a

b

� �
¼ 0; ð2Þ

where [C D] is the [Q� 2M] known matrix composed of
metron fields and their normal derivatives and ½ ab � is the
column vector of unknown MEI coefficients composed of
invariant local sources.

This local matrix [eq. (2)] is solved repeatedly for the
whole scatterer surface by using least square solution.

Therefore, two sparse matrices A and B of MEI coefficients
which are invariant to excitation are obtained. Finally, by
using these sparse matrices, the desired solution of the
scattering problem can be derived.

3. Insensitive Properties of MEI Coefficients

The insensitive properties of MEI coefficients is effective
when the scatterer structure is modified in order that the
scattered field should be recalculated.

3.1 MEI postulates
As we know, MEI postulates1) are

(1) local sources exist near the scatterer, and these sources
are:

(2) dependent on the scatterer geometry,
(3) dependent on the position,
(4) invariant to the excitation field.
The postulates 1 and 4 state that, MEI coefficients can be
derived from the solutions of integral equations with
different metrons. Postulates 2 and 3 state that these
coefficients are depend on position and scatterer geometry.

According to the postulates, it has been considered that
the derived MEI coefficients are also dependent on the whole
scatterer geometry. But in fact, they do not depend so much
on the whole scatterer geometry. As in eq. (2), the MEI
coefficients of each node are derived from the metron fields
at the node for the possible sets of metrons, combined with
the interaction of metron fields at the neighboring nodes
associated in the local region. Again, the metron field that
are derived from the local sources, mostly depends on the
local geometry of the scatterer and do not give significant
effect on the other portion of the scatterer. This local
geometrical dependency i.e., insensitive properties of MEI
coefficients can be applied for the scattering computation of
modified structure to save the computational time.

3.2 Flow-chart of conventional and proposed solution
techniques

Figure 1 shows the flow-chart of conventional solution
technique to derive the equivalent surface source by using
SIE-MEI method. If some small portion of the scatterer is
modified, we must follow the same procedure again, which
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takes large time for the computation. On the other hand, we
propose a new solution technique which is summarized in
the Fig. 2, on the basis of the insensitive properties of MEI
coefficients.

According to the flow-chart of Fig. 2, at first we store the
MEI coefficients of the whole structure of original body
during scattering computation. Then we modify the structure
and calculate the MEI coefficients only around the modified
area and reuse the stored data for the other portion. Because
of the insensitive properties of MEI coefficients, new set of
data gives almost the same result as the result obtained by
the conventional solution process. Thus, by following the
proposed solution technique we can avoid the extra
computational burden and hence save the computational
time.

4. Numerical Implementation

Let us consider a cube as shown in Fig. 3, on which plane
wave is incident to the þy direction. Figures 4 and 5 show
the same cube with �l concave and �l convex modification,
respectively, at one of the edges parallel to z axis. In all of

these cases, the same type of plane wave is incident from the
same direction.

4.1 Inner product between two vectors
As a measure of the insensitive properties of the MEI

coefficients, we use the three kind of the inner products
between the vectors a and b by eq. (2) at each node of the
same (or unmodified) part between the original cube and the
modified cube. The first inner product is between the vector
a for the original cube and the vector ~aa for the modified cube
at each node of the unmodified part, then normalized by the
magnitude of the two vectors, indicated by ‘‘ra ¼ jaH ~aaj’’ in
Fig. 6. Similarly, the second one is between the vector b and
~bb, indicated by ‘‘rb’’ and the third one is between the vector
consisting of the vector ab and ~aa ~bb, indicated by ‘‘rab’’ in
Fig. 6.

Figure 6 shows the three kind of the inner products
between the vectors for both cubes at each node of the
unmodified part along the section-A in Fig. 5. From Fig. 6,
all inner products are seen to be nearly the unity. It ensures
the insensitive properties of the MEI coefficients. Therefore,
if some small portion of the scatterer is modified, we can get
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Fig. 1. Flow-chart of conventional solution technique.
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Fig. 2. Flow-chart of proposed solution technique.
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Fig. 4. Plane wave incident on a cube with concave modification.

ϕ
x

z

y
φ inc

∆l

θ

Cube
section-A

l

Fig. 5. Plane wave incident on cube with convex modification.
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the desired solutions and save the computational time by
following the proposed procedure of Fig. 2.

4.2 Equivalent surface source
Figures 7, 8, and 9 show the 2D plot of equivalent surface

source along the perimeter of section-A (Figs. 3, 4, 5) for the
side of l ¼ 1� . Each of the graphs contains the results of full
cube (or the original cube) by using conventional solution
technique and of the modified cube by using conventional
and proposed solution technique, in the SIE-MEI method.

The results of the modified cube are also compared with
the numerical solution using Combined-field Method of
Moments (CfMoM).5)

From the results shown in Fig. 7 and Fig. 8, it is seen that,
due to the concave nature in the modified section, the results
by the SIE-MEI method slightly deviate from those by the
CfMoM. This deviation comes from multiple reflections in
the concave parts of the modified section. But the results in
the other parts are in very good agreement.

In contrast, the results in Fig. 9 corresponding to Fig. 5 are
in excellent agreement with those by the CfMoM except the
shadowed region, but it does not give any significant effect
on the scattering characteristics.

4.3 Comparison of CPU time
In SIE-MEI method, most of the computational time is

spent in the integration process to derive the MEI coef-
ficients. Since the matrix is sparse, the time required for
matrix inversion is very small compared to the time required
in the integration process. In the proposed solution tech-
nique, we compute the MEI coefficients only around the
modified region and reuse the stored MEI coefficients for the
rest of the scatterer. Thus the new solution technique can
save a large amount of computational time which increases
rapidly as the size of the scatterer with the same modification
increases.

In the comparison we use cube of 1� and 2� side length
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Fig. 7. Equivalent surface source on the cube with 0:1� concave

modification (a) magnitude, (b) phase variation.
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Fig. 8. Equivalent surface source on the cube with 0:2� concave

modification a) magnitude, b) phase variation.
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with 10 segments per wavelength and 5 segments in the local
region. As the cube is modified as Fig. 5, for 1� cube the
required number of MEI coefficients in the conventional and
proposed solution techniques are 94% and 15.6%, respec-
tively, with respect to the full cube. Similarly, for 2� cube
these are 97% and 6.8% with respect to the full cube. Thus

by reducing the computation of MEI coefficients we can
save the CPU time which is increases with the increase of
the scatterer size.

From the comparison, it is clear that, by using proposed
solution technique based on the insensitive properties of
MEI coefficients for the scattering computation of modified
scatterer we can save the computational time.

5. Conclusion

A new solution technique is proposed for the scattering
from modified body based on the insensitive properties of
MEI coefficients. This technique is implemented on the
scatterer when its geometry is modified and its scattering
characteristics need to be recalculated. In the SIE-MEI
method, the dominant part of the computation is to derive
the MEI coefficients. Thus, by avoiding the computation for
some part of coefficients we can save large amount of CPU
time with the same accuracy in the result. To verify our
proposed technique the results are compared with the
available numerical solutions and they are in good agree-
ment.

If the whole scatterer size is much larger than its modified
area, the propose technique gives more similar result to the
original one as expected and saves much more CPU time.
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