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LETTER

A New Technique of Reduction of MEI Coefficient

Computation Time for Scattering Problems

N.M. Alam CHOWDHURY†a), Student Member, Jun-ichi TAKADA†,
and Masanobu HIROSE††, Regular Members

SUMMARY In this letter, we propose a new technique that
reduces the computation time to derive the MEI coefficients in
solving scattering problems by the Measured Equation of Invari-
ance (MEI) methods. Methods that use the MEI technique spend
most of the computation time in the integration process to derive
the MEI coefficients. Moreover, in the conventional solution pro-
cess, some repeated computation of metron fields to derive the
MEI coefficients is included. To avoid the repeated operations
and thus save computation time, we propose a matrix localiza-
tion technique in computing the MEI coefficients. The time com-
parison for the computation of MEI coefficients of a cylinder and
a sphere is given to verify the CPU time reduction of our new
technique.
key words: MEI technique, matrix localization technique, SIE-
MEI method

1. Introduction

Methods [1]–[4] that use the Measured Equation of In-
variance (MEI) technique [5] to solve the wave scatter-
ing problem, generate a sparse linear system and re-
sult in minimum memory and CPU time requirements
for computing the final matrix. The total computation
time of these methods consists of the time required in
the integration process to fill the matrix with the MEI
coefficients and that for the matrix inversion. Since the
matrix is sparse, the time for solving the matrix sys-
tem is much less than that for generating the matrix
elements. Therefore, the computation of MEI coeffi-
cients becomes a bottleneck for solving the scattering
problem. Many researchers have tried to minimize the
computation time in different ways [6]–[14], but it is
still necessary to introduce some suitable technique for
the MEI coefficient calculation.

In this letter, we propose a Matrix Localization
(ML) technique for the reduction of computation time
of the MEI coefficients. Although we describe the ML
technique only with the Scalar-field approach of the IE-
MEI (SIE-MEI) method, it can be easily implemented
in other methods which use the MEI technique without
any significant modification.
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2. Scalar-Field Integral Equation of SIE-MEI
Method

Let us consider a closed surface ∂V + of region V +

placed very close to the scatterer and assume that the
region includes only a single source which is represented
by the equivalent monopole source ρ2 and the dipole
moment µ2 as shown in Fig. 1. This leads to the Scalar-
field Integral Equation [4]∮

∂V

(
ϕ1(r)ρ̃2(r)−

∂ϕ1(r)
∂n

n̂ · µ̃2(r)
)

dS=0, (1)

where ϕ1 and ∂ϕ1
∂n are the scattered field and its nor-

mal derivative, respectively, and ( ·̃ ) terms represent
the equivalent sources near the scatterer. The detailed
definition of Eq. (1) can be found in [4].

3. Derivation of MEI Coefficients

3.1 Conventional Technique

In the conventional solution process, SIE-MEI postu-
lates [4] are then applied to Eq. (1). Therefore, the
discretized version of a local linear equation for node
n (= 1, 2, · · · , N) is [4]∑

m

[anmϕ1(rnm)− bnmϕ′
1(rnm)] = 0, (2)

where m (=1, 2, · · · , M) are the integration points
within the local region, anm and bnm are the MEI
coefficients for the n-th node and its neighboring M
nodes, and ϕ1(rnm) and ϕ′

1(rnm) are the scattered
fields and their normal derivatives, respectively, gen-
erated by the suitable q (= 1, 2, · · · , Q)-set of secondary

Fig. 1 Surface ∂V + of region V + very near to the scatterer.
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sources, called metrons [5].
For the q-th certain metron ρq(rn), the metron

fields are [4]

ϕ1,q(rnm) =
N∑

n=1

ρq(rn)G(rnm, rn)∆Sn, (3)

ϕ′
1,q(rnm) =

N∑
n=1

ρq(rn)
∂G(rnm, rn)

∂n
∆Sn, (4)

where G(rnm, rn) is the 3D free-space Green’s function,
rnm and rn are the position vectors of observation and
source points, respectively, and ∆Sn is the area of the
n-th segment.

Using the abbreviations φq,n,m ≡ ϕ1,q(rnm) and
φ′

q,n,m ≡ ϕ′
1,q(rnm), Eq. (2) is expressed as a local ma-

trix equation [4]




φ1,n,1 · · · φ1,n,M φ′
1,n,1 · · · φ′

1,n,M

φ2,n,1 · · · φ2,n,M φ′
2,n,1 · · · φ′

2,n,M
...

...
...

...
...

...
φQ,n,1 · · · φQ,n,Mφ′

Q,n,1 · · · φ′
Q,n,M







an1

...
anM

bn1

...
bnM



= 0, (5)

or more concisely,

[C D ]
[
a
b

]
= 0, (6)

where [C D ] is the [Q × 2M ] matrix of metron fields

and their normal derivatives and
[
a
b

]
is the unknown

column vector of MEI coefficients.
In Eq. (5), each metron field φq,n,m or φ′

q,n,m is
obtained by the linear combination of reaction term
G(rnm, rn) or

∂G(rnm,rn)
∂n , multiplied with the metron

ρq(rn), according to Eq. (3) or (4), respectively, which
requires N operations. Accordingly, the local matrix
[C D ] requires a total of Q × 2M × N operations, to
obtain the MEI coefficients for a particular n node.

This procedure is repeated for each node (n =
1, 2, · · · , N) of the scatterer surface as shown in Fig. 2,
to obtain the sparse matrices A and B which are ex-
plained in Ref. [4] and consist of a and b in Eq. (6).

Fig. 2 N layer of local matrix equation.

The sparse matrices are the cyclic band matrices as of
Eqs. (16) and (17) in Ref. [15] or scattered sparse ma-
trices with M nonzero elements in each row depending
on the index of the scatterer surface.

Therefore, the conventional solution procedure re-
quires a total of Q×2M ×N ×N operations, to obtain
the MEI coefficients for all the nodes.

From the above discussion it is seen that, in the
conventional solution technique, localization is intro-
duced before the metron field generations. Hence, the
solution procedure requires some repeated operations
in the integration process which causes extra computa-
tion time. To avoid this type of repeated operation, we
propose the matrix localization technique, where local-
ization is introduced after the metron field generation.

3.2 Matrix Localization Technique

For the implementation issue, the following “measure-
ment” scheme is considered.

At first, we derive the metron field φq,n,1 and its
normal derivative φ′

q,n,1 for all q (= 1, 2, · · · , Q) and
n (= 1, 2, · · · , N) nodes by following the same procedure
as of Eq. (5). This produces a [Q × 2N ] dimensional
global matrix as


φ1,1 φ1,2 · · · φ1,N φ′
1,1 φ′

1,2 · · · φ′
1,N

φ2,1 φ2,2 · · · φ2,N φ′
2,1 φ′

2,2 · · · φ′
2,N

...
...

...
...

...
...

...
...

φQ,1 φQ,2 · · · φQ,N φ′
Q,1 φ′

Q,2 · · · φ′
Q,N


, (7)

where φq,n,1 and φ′
q,n,1 are defined as φq,n and φ′

q,n

respectively, and each of the metron fields requires N
operations. Correspondingly, the full matrix requires a
total of Q × 2N × N operations.

Finally, we introduce a selection matrix for the lo-
calization as

[S ] =


 L | 0

−−− −−−
0 | L


, (8)

where [S ] is the [ 2N × 2M ] matrix of 0’s except some
1’s in the localization part L. The dimension of L block
matrix is [N × M ], which keeps only a single 1 in each
column, and the rest are zero. Thus, the total number
of 1’s in matrix L is equal to M , i.e., the number of
nodes within the local region. The row position of 1’s
in the L part depends on the position of the localized
nodes on the surface, which changes with the change of
nodes considered for localization.

As an example, let us consider a sphere whose sur-
face S is discretized and localized as shown in Fig. 3.
Due to the axial symmetry along ϕ, measuring func-
tion is taken only in θ direction, and the local region
So consists of M = 3 segments in the polar direction.

Let us assume that the node n is considered for
the localization and the nodes n − 1, n, and n + 1 are
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Fig. 3 Axial symmetrical body: sphere.

the nodes within the local region, then the localization
part L of the selection matrix becomes

L =




0 0 0
...

...
...

1 0 0
0 1 0
0 0 1
...

...
...

0 0 0




1
...
n − 1
n
n + 1
...
N

(9)

where n − 1, n, and n + 1 represents the row position
of 1’s.

Now, by multiplying the global matrix (Eq. (7))
with the selection matrix (Eq. (8)), we can obtain the
local matrix equation for the node n as



φ1,n−1 φ1,n φ1,n+1 φ′

1,n−1 φ′
1,n φ′

1,n+1

φ2,n−1 φ2,n φ2,n+1 φ′
2,n−1 φ′

2,n φ′
2,n+1

...
...

...
...

...
...

φQ,n−1φQ,nφQ,n+1 φ′
Q,n−1φ

′
Q,nφ′

Q,n+1







ann−1

ann

ann+1

bnn−1

bnn

bnn+1



=0, (10)

which is equivalent to Eq. (5), where ann−1, an, ann+1

correspond to an1, an2, an3 respectively, and bnn−1, bn,
bnn+1 correspond to bn1, bn2, bn3 respectively, for M =
3.

In this way, by columnwise cascading, for all n
nodes of the scatterer surface we can solve the local
matrix simultaneously, to obtain the sparse matrix A
and B of MEI coefficients.

Therefore, the total computation time required in
our proposed technique is only Q × 2N × N , the time
required for the global matrix generation. This means
that the matrix localization technique can reduce the
computation time to 1

M of the conventional one.

4. Time Comparison

In the SIE-MEI method, the dominant part of the com-
putation is the integration process to obtain the MEI
coefficients. By using the conventional solution tech-
nique, the integration process requires O(2QMN2) op-
erations, alternatively, the proposed matrix localization

Fig. 4 Time comparison for MEI coefficient derivation by using
conventional technique and ML technique.

technique requires only O(2QN2) operations, where Q
is the number of metrons, M is the number of inte-
gration points in the local region, and N is the total
number of integration points on the scatterer surface.
Therefore, we can reduce the computation time to 1

M of
the conventional one by using the proposed localization
technique.

In the two-dimensional case, M is assumed to be
3 but in the three-dimensional case, M should be more
than 3 depending on the surface complexity. Hence,
by using the matrix localization technique more than 3
times the computation time can be saved, which gives
measurable time savings on the overall CPU time re-
quirements.

Figures 4(a) and (b) show the time comparison for
the 2D cylinder and the 3D sphere, respectively, for
different radii. In the comparison, the piecewise linear
discretization for the 2D cylinder and the rectangular
patch discretization for the 3D sphere and the pulse-
basis point matching method are used with ten points
in one wavelength. The number of integration points in
the local region are considered to be 3. In both of these
situations, we try to maintain the same parameters for
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a fair comparison.
From the comparison it is seen that, the time re-

quired in the conventional solution technique is larger
than the time required in the proposed matrix local-
ization technique. As M or the size of the scatterer
increases, we can save more computation time in our
matrix localization technique.

5. Conclusion

In the conventional technique, the localization process
is implemented at the beginning of the computation
which requires some repeated operation in the integra-
tion process. But in the matrix localization technique,
it is applied after the integration process. This modifi-
cation reduces the computation time without affecting
the scattering results.

The ML technique can also be applied to other
methods which use the MEI technique for the wave
scattering computation. To validate our comments, we
are working on implementing this technique in the FD-
MEI and the Integral Equation formulation of MEI (IE-
MEI) method.
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