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Novel Formulation for the Scalar-Field Approach of

IE-MEI Method to Solve the Three-Dimensional

Scattering Problem

N.M.Alam CHOWDHURY†a), Student Member, Jun-ichi TAKADA††,
and Masanobu HIROSE†††, Regular Members

SUMMARY A novel formulation for the Scalar-field ap-
proach of Integral Equation formulation of the Measured Equa-
tion of Invariance (SIE-MEI) is derived from the scalar reciprocity
relation to solve the scalar Helmholtz equation. The basics of this
formulation are similar to IE-MEI method for the electromagnetic
(EM) problem. The surface integral equation is derived from
reciprocity relation and on-surface MEI postulates are used. As
a result it generates a sparse linear system with the same num-
ber of unknowns as of Boundary Element Method (BEM) and
keeps the merits in minimum storage memory requirements and
CPU time consumption for computing the final matrix. IE-MEI
method has been proposed for two-dimensional (2D) electromag-
netic problem, but three-dimensional (3D) problem is very diffi-
cult to be extend. This scalar-field approach of IE-MEI method
is identical to electromagnetic in 2D, but easily extended to the
3D scalar-field scattering problem contrary to EM problem. The
numerical results of sphere and cube are verified with some rig-
orous or numerical solutions, which give excellent agreement.
key words: IE-MEI, SIE-MEI, scalar reciprocity relation, 3D

acoustic problem, numerical technique for 3D scattering problem

1. Introduction

The Measured Equation of Invariance (MEI) method
has been developed by Mei, Pous et al. [1], [2] for the
electromagnetic wave scattering which preserves the ad-
vantage of sparse matrix with effective truncation of the
mesh boundary near the object surface for the Finite
Difference (FD) method. This method can be applied
directly on the object surface by using surface integral
equation. This Integral Equation formulation of MEI
(IE-MEI) was proposed by Rius et al. [3], [4] which pre-
serves the same advantages as MEI, in addition it has
same number of unknowns as the conventional Bound-
ary Element Method (BEM) or Method of Moments
(MoM). The IE-MEI method has been successfully ap-
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plied to many electromagnetic (EM) scattering problem
by Rius et al. [5]–[7] and Hirose et al. [8]–[11].

IE-MEI method has been used to solve the 2D
electromagnetic scattering problem by preserving the
sparse linear system, resulting in storage memory and
computational time savings as same as MEI method.
This method was also applied to 3D scattering prob-
lems by Rius et al. [12] and it was found that the accu-
racy of the solution depends on the choice of metrons
and on the geometry of the problem. Recently he con-
cludes [13] that, IE-MEI method is excellent for EM
problem of 2D boundaries and not efficient for 3D ar-
bitrary boundaries.

By now, IE-MEI method has been applied only to
EM scattering problems. In this paper, we propose an
application of IE-MEI method to 3D scalar field prob-
lems, such as acoustics. We also describe that 3D ex-
tension is simple but effective, which is different from
EM scattering problems.

In Scalar-field approach of IE-MEI (SIE-MEI)
method, scalar reciprocity relation is first derived from
Green’s theorem by using 3D scalar Helmholtz equa-
tion. Using Hirose’s approach [9], the scalar-field inte-
gral equation is derived from scalar reciprocity relation
which satisfies the MEI postulates [1]. This integral
equation is localized and discretized to get the system
of linear equations which can be solved with minimum
norm solution. For 2D problem, SIE-MEI method is
identical to the conventional IE-MEI method for the
EM problem, but in 3D case it is simply a scalar-field
problem.

This paper is organized as follows. The detailed
derivation of scalar-field integral equation is given in
Sect. 2. The numerical formulation of SIE-MEI and
its boundary value solution are given in Sects. 3 and
4, respectively. Some numerical examples are given in
Sect. 5. Finally in Sect. 6, concluding remarks and fu-
ture extension of this method are presented.
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2. Scalar-Field Integral Equation Derived from
the Scalar Reciprocity Relation

2.1 Scalar Reciprocity Relation

Let us consider a scalar-field problem in the open space

∇2φ(r) + k2φ(r) = −g(r), (1)

where φ is the scalar field, k is the propagation constant
and g is the source distribution.

To derive the reciprocity relation, two separated
problems are considered within the same domain as
shown in Fig. 1. Then, they are represented by the
scalar Helmholtz equations

∇2φ1(r) + k2φ1(r) = −g1(r), (2)
∇2φ2(r) + k2φ2(r) = −g2(r), (3)

where φ1 and φ2 are the scalar fields due to the source
distribution g1(r) and g2(r), respectively.

These two problems satisfy the following Green’s
theorem:∫

V

(
φ1∇2φ2 − φ2∇2φ1

)
dV

=
∮

∂V

(φ1∇φ2 − φ2∇φ1) · dS. (4)

Using Eqs. (2) and (3) in Eq. (4), the following
Scalar Reciprocity Relation is obtained∫

V

(φ2(r)g1(r) − φ1(r)g2(r)) dV

=
∮

∂V

(
φ1(r)

∂φ2(r)
∂n

− φ2(r)
∂φ1(r)
∂n

)
dS. (5)

Fig. 1 Scalar-field problems within the same domain.

2.2 Derivation of Integral Equation

Let us consider a closed surface ∂V + placed very near to
the scatterer-2 which has the same shape as of scatterer-
1. Assume that the volume V + includes only the source
distribution g2 which produces scalar fields φ2 and ∂φ2

∂n
due to the presence of scatterer-2 [9] which are rep-
resented by the equivalent monopole source ρ2(r) and
the dipole moment n̂ ·µ2(r) as shown in Fig. 2. Let φ1

be the scattered field, then g1 = 0 in V +. Therefore,
in the region V + there exists scalar field contribution
of g2 and only the scattered field φ1 and its normal
derivative ∂φ1

∂n which are produced by the equivalent
surface sources of scatterer-1, then the reciprocity rela-
tion given in Eq. (5) can be written as∮

∂V +

(
φ1(r)

∂φ2(r)
∂n

− φ2(r)
∂φ1(r)
∂n

)
dS

= −
∫

V +
φ1(r)g2(r)dV. (6)

Taking the limit ∂V + → ∂V and by rearranging appro-
priate terms, Eq. (6) reduces to∮

∂V

(
φ1(r)ρ̃2(r) − ∂φ1(r)

∂n
n̂ · µ̃2(r)

)
dS = 0. (7)

Equation (7) is the Scalar-field Integral Equation, where
ρ̃2(r) = g2(r)∆w + ∂φ2(r)

∂n and n̂ · µ̃2(r) = φ2(r)
terms represent the equivalent sources near the scat-
terer. Here ∆w is the thickness of the volume source
g2.

3. Formulation of SIE-MEI Method

3.1 SIE-MEI Postulates

Reference to the MEI postulates [1], the scalar-field in-
tegral equation (7) is also expected to satisfy the SIE-
MEI postulates [14]. These are,

1. local sources exist near the scatterer,
and these sources are:

2. dependent on the scatterer geometry,
3. dependent on the position,
4. invariant to the excitation field.

Fig. 2 Surface ∂V + very near to the scatterer.
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Fig. 3 Arbitrary shaped 3D body.

Here the postulates 1 and 4 reveal that the invari-
ant local sources ρ̃2 and n̂ · µ̃2 can be measured from
the solutions of scalar-field integral equations, such as
φ1 and ∂φ1

∂n with different primary sources. Postulates 2
and 3 reveal that these local sources depend on position
and scatterer geometry.

3.2 Localization and Discretization

According to the postulates, let us assume the locally
confined sources are essentially non-zero in the local
portion, say So as shown in Fig. 3, and are zero in the
other portion of the scatterer [9].

Hence, Eq. (7) as the localized integral equation∫
S0

(
φ1(r)ρ̃2(r) − ∂φ1(r)

∂n
n̂ · µ̃2(r)

)
dS = 0, (8)

which is equivalent to Eq. (2) in Ref. [10].
For the discretization of 3D problem, let us dis-

cretize the scatterer surface ∂V and its local portion
So into N and M segments respectively. Let us expand
the local sources ρ̃2 and µ̃2 within So centered by rn
into M pulse basis functions as

ρ̃2,n(r) =
∑

m∈Rn

ρ̃2,n(rm)Pm(r), (9)

n̂ · µ̃2,n(r) =
∑

m∈Rn

n̂ · µ̃2,n(rm)Pm(r), (10)

where ρ̃2,n(rm) and n̂ · µ̃2,n(rm) are the local sources
at rm and Pm(r) is the pulse basis function given by

Pm(r) =
{

1, r is within m-th segment
0, otherwise (11)

and Rn is defined as

Rn = {m1,n,m2,n, · · · ,mM,n}, (12)

n = 1, 2, · · · , N .

Substituting Eqs. (9) and (10) into Eq. (8) and in-
terchanging integration and summation, we have

∑
m

[
ρ̃2,n(rm)

∫
So

φ1(r)Pm(r)dS

− n̂ · µ̃2,n(rm)
∫

So

∂φ1(r)
∂n

Pm(r)dS
]

= 0. (13)

If we assume that φ1 and ∂φ1
∂n are smooth within

the segment, then by defining anm = ρ̃2,n(rm) and
bnm = n̂ · µ̃2,n(rm), Eq. (13) reduces to

∑
m

[
anmφ1(rm) − bnm

∂φ1(rm)
∂n

]
= 0. (14)

3.3 Derivation of Unknown Coefficients and Sparse
Matrix Generation

To obtain anm and bnm of Eq. (14) the following “mea-
surement” scheme is considered.

For some q-th certain incident field, the secondary
source ρq is induced to generate the scattered wave for
a soft body [15], [17]

φ1,q(rm) =
∮

∂V

ρq(r′)G(rm, r′) dS′, (15)

∂φ1,q(rm)
∂n

=
∮

∂V

ρq(r′)
∂G(rm, r′)

∂n
dS′, (16)

q = 1, 2, · · · , Q

where G(rm, r′) is the three-dimensional free space
Green’s function, given by

G(rm, r′) =
e−jkR

4πR
, (17)

R = |rm − r′|.

In the practical implementation, ρq is explicitly
given instead of primary sources, and they are called
metrons [1].

In matrix form, Eq. (14) becomes

[C D ]
[
a
b

]
= 0, (18)

where [C D ] is the [Q× 2M ] known matrix composed

of metron fields and their normal derivatives and
[
a
b

]
is the unknown column vector composed of invariant
local sources.

The local matrix equation around rn represented
by Eq. (18) is underdetermined (if Q < 2M) or overde-
termined (if Q > 2M) system of linear equations, being
dependent on the number of metrons included in the
metron set. Whatever the system is, we can solve this
linear least square problem with minimum norm solu-
tion [16]. Singular Value Decomposition (SVD) is the
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best choice for this type of solution.
SVD of matrix [C D ] is expressed as

[C D ] = UΣVH , (19)

where U is an Q-by-Q unitary matrix, V is an 2M -
by-2M unitary matrix, and Σ is an Q-by-2M matrix
with diagonal entries σj i.e., Σ = diag {σ1, σ2, · · · , σp},
which are nonnegative and arranged in descending or-
der, σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, where p = min(Q, 2M).

The first min(Q, 2M) columns of U and V are the
left and right singular vector of matrix [C D ] and the
smallest singular value of V, is the least square solution
of Eq. (18).

Repeat the procedure for each nodal point n =
1, 2, · · · , N to get the sparse matrices A and B which
may be the cyclic band matrices (as of Eqs. (16) and
(17) in Ref. [14]) or scattered sparse matrices with M
nonzero elements in each row which correspond to a
and b in Eq. (18).

Therefore, the Eq. (14) is represented concisely as

A [ φsc] −B
[
∂φsc

∂n

]
= 0. (20)

4. SIE-MEI Method for Soft-Body Problem

As an implementation of SIE-MEI method, let us
consider a soft-body problem [17], which satisfies the
Dirichlet boundary condition as

φinc(rs) + φsc(rs) = 0, rs ∈ ∂V (21)

where φinc and φsc are the incident and scattered field,
respectively.

Using this condition, Eq. (20) can be expressed as

A [ φinc] + B
[
∂φsc

∂n

]
= 0, (22)

where ∂φsc

∂n is the normal derivative of the scattered
field.

Furthermore, the normal derivative of field on the
scatterer surface is

∂φ(rs)
∂n

=
∂φinc(rs)

∂n
+

∂φsc(rs)
∂n

. (23)

Using Eq. (22), we have[
∂φ(rs)

∂n

]
=

[
∂φinc(rs)

∂n

]
−B−1A[φinc(rs)], (24)

which represents the equation of equivalent surface
sources on the scatterer.

5. Numerical Examples and Results

As for numerical examples, we considered uniform
shape and arbitrary shape 3D convex object. Uniform
shape means the body with axial symmetry like sphere,
and arbitrary shape means the body with surface sin-
gularities like cube.

5.1 General Considerations

Let us consider the scatterer illuminated by the forward
directed plane wave

φinc(r) = e−jk · r, (25)

where k is the wave propagation vector, r is the posi-
tion vector.

Also assume the scattered field generated by the
metron

φsc(r) =
∮

∂V

ρ(r′)G(r, r′) dS′, (26)

where ρ(r′) is the arbitrarily chosen metron to be de-
scribed more in the next section, G(r, r′) is the free
space 3D Green’s function, and r and r′ are the po-
sition vectors of observation point and source point,
respectively.

Surface discretization is maintained as such that,
the segmentation length is approximately one tenth of
wavelength. In our observation it gives the good result
with minimum number of unknowns N .

Rectangular patch discretization with pulse-basis
point-matching method is used to keep the easier mesh
generation and minimum number of integration points
or nodes which can avoid the extra computational bur-
den. For this type of discretization the possible number
of nodes coupled with the local region are 3, 5, 9, etc.
The choice of number of segments in the local region
depends on the object geometry to get the smooth re-
sult.

For accuracy, all the floating point and complex
data are taken in double precision in the FORTRAN
code.

5.2 The Metron Set

The choice of suitable metron set is an important pa-
rameter of this method. Specially for 3D case, without
the selection of an appropriate metron set numerical
result will not be convergent.

In this paper we propose spherical wave functions
[18] as a metron set for 3D scattering problem, which
are expressed as

ρ(r , θ, ϕ)=
∞∑

n=0

h(2)
n (kr)

n∑
m=−n

P |m|
n (cos θ)ejmϕ. (27)

Here h
(2)
n (kr) is the n-th degree outward spherical Han-

kel function to represent the variation of radial distance
r of the object surface, P |m|

n (cos θ) is the n-th degree m-
th order Associated Legendre function that varies with
the polar angle θ, and ejmϕ is the harmonic function
along the equatorial angle ϕ.
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Fig. 4 Plane wave incident on a sphere.

Fig. 5 Localization and discretization of sphere.

5.3 Axially Symmetrical Body: Sphere

As for an example of axially symmetrical body, let us
consider a sphere as shown in Fig. 4, on which a plane
wave is incident from +z direction

φinc(r) = ejka cos θ, (28)

where k is the wave propagation number, a is the radius
of the sphere and θ is the angle in polar direction.

The problem has the axial symmetry with the sur-
face of constant radial distance. Thus the spherical
wave function of Eq. (27) reduces to

ρq = Pq(cos θ), q = 1, 2, · · · , Q (29)

i.e., the set of Zonal Harmonics can be chosen as
metron set. Equation (29) is used as local sources in
Eq. (26) to get the scattered and its normal derivative
field.

For numerical solution the sphere surface S is dis-
cretized into N segments in the polar direction θ within
the range from 0 to π and 2N segments in the azimuthal
direction ϕ within the range from 0 to 2π as shown in
Fig. 5. Due to the axial symmetry along ϕ, measuring
function is taken only in θ direction. It is sufficient to
discretize the local region So into M = 3 segments in
the polar direction. Azimuthal variation is considered
only for the numerical integration of Eq. (26).

 

 

Fig. 6 Equivalent surface source on the sphere (a) magnitude,
(b) phase variation.

Using the above numerical considerations in
Eqs. (14) and (24), the equivalent surface source on the
sphere can readily be obtained.

The numerical results of equivalent surface source
on a sphere using SIE-MEI method is given in Fig. 6.
The figure shows the result for a sphere of radius a = 3
wavelengths as a function of θ and compares it with the
rigorous solution using eigenfunction expansion [17].
The comparison gives the excellent agreement between
them except some error in the shadowed region. At
this region the phase cannot be calculated accurately
due to very small magnitude. But this error is negligi-
ble since it does not gives any significant deviation in
the scattering computation.

5.4 Arbitrary Shaped Body: Cube

Figure 7 shows a cube as an example of 3D arbitrary
shaped body. We consider the same type of plane
wave, as Eq. (25), incident on it. As in this problem
the surface has polar, azimuthal, and radial variations,
Eq. (27) is used as metron set.

Discretization is taken on six faces of the cube and
the measuring function is calculated on every segment
of all faces. In the measuring operation M = 5 seg-
ments are considered as the local region So as shown in
Fig. 8.
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Fig. 7 Plane wave incident on a cube.

Fig. 8 Segments in the local region with local indexing.

Fig. 9 Equivalent surface source on the Cube (a) magnitude,
(b) phase variation.

Figure 9 shows the 2D plot of equivalent surface
source on a cube along the perimeter of section-A
(Fig. 7) for the side of l = 1 wavelength. This re-

Fig. 10 (a) Total CPU time, and (b) storage memory required
by SIE-MEI method and CfMOM.

sult is also compared with the numerical solution using
Combined-field Method of Moments (CfMoM)† [15] and
gives an excellent agreement between them. As same
as sphere, there is some error in the shadowed region,
but it does not give any significant effect on the other
computation.

5.5 CPU Time and Storage Memory Requirements

In the SIE-MEI method, the surface integral equation
is used with the postulates of locality properties. This
keeps the advantages of CPU time savings and min-
imum storage memory requirements as same as MEI
[2] and IE-MEI [4] methods. Figure 10 shows the to-
tal CPU time (in sec) and storage memory (in bytes)
requirements in the SIE-MEI method and compares it
with the conventional numerical method (e.g. CfMoM).
In both of the cases same parameters are used on a Pen-
tium 533 MHz PC.

In the comparison, total CPU time consists of time
required in the integration process to fill the matrix and
that for the matrix inversion. In the SIE-MEI method,

†In CfMoM, the internal resonance problem is avoided
by using two integral equations, i.e., one for φ and the other
for ∂φ

∂n
.
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time required in the integration precess is O(QN2) and
sparse matrix inversion by using a sparse matrix solver
is O(N), respectively, where Q is the number of metrons
and N is the integration points on the scatterer surface.
On the other hand, for CfMoM the time required in the
integration process is O(N2) and in the matrix inver-
sion is O(N3). Although, SIE-MEI uses larger CPU
time compared to CfMoM for small value of N , this
time requirements decreases rapidly as N increases.

For the storage memory requirements, the sparse
matrices of SIE-MEI method have the total nonzero
elements of matrices Nt = 2 × (M × N), where M is
the number of nodes in the local region which may be
3, 5, or 9. Since M is very small compared to N and
is independent of N , thus in the comparison it can be
written as the order of N . Alternatively, the full matrix
of CfMoM has the N2 elements. Thus it is clear that
the storage memory requirement of SIE-MEI method
is also much smaller than the conventional numerical
method.

6. Conclusion

A novel formulation of Scalar-field approach of IE-MEI
(SIE-MEI) method for 3D scattering problem is de-
rived from scalar reciprocity relation using 3D scalar
Helmholtz equations. The basic concept of this method
is the same as IE-MEI method for the 2D electromag-
netic wave problem. It reveal that, SIE-MEI method
holds the same advantage as minimum memory require-
ments and CPU time consumption.

The scalar-field approach of IE-MEI with spherical
wave function as metron set is one choice. For smooth
convergence result, the choice of metrons was also the
key to this method. This selection depends on the scat-
terer geometry. Our proposed method and metron sets
are implemented to simple symmetrical shaped body
and to arbitrary shaped body and we compare the re-
sults with some rigorous and numerical solution. In
both of the cases, they have an excellent agreement.

For the body with large dimension and complex
structure, the extra care must be taken of the number
of metrons, choice of monopole and dipole sources, dis-
cretization, etc. To establish our proposed method it is
necessary to implement it to other arbitrary shape 3D
scalar-field problem and verify the results.
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