
 

12.2 Series 
 
Infinite series is the mathematic terminology for the concept of the addition of infinite 

term, which is denoted by  ...321
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series is called convergent and we write 
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The number is called the sum of the series. Otherwise, the series is called divergent. s

Precisely speaking,  means that by adding sufficiently as many terms of the 

series we can get closer as we like to the number . Notice that  
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, we can rewrite the partial sum as 
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Therefore the series is convergent and 1
)1(

1
1

=
+∑

∞

=n nn
 

 
2. The geometric series  

The geometric series .  ..... 132
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 If 1<r , the geometric series is convergent and its sum is 
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 If 1≥r , the series is divergent. 
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3. The p-series 

The p- series ...
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 is convergent if and divergent if 1>p 1≤p .  

Note: 1-series (p = 1) is called harmonic series. 
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Bonus Assignment: Find a series  such that it is divergent, even though ∑
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Is it contradicted to the theorem 4? 
 
5. The Test for Divergence 

If  does not exist or if 0lim =na 0lim ≠
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6. Theorem If  and   are convergent series, then so are the series  

(where c is a constant), , and  
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