12.2 Series

Infinite series is the mathematic terminology for the concept of the addition of infinite term, which is denoted by $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots$

1. Definition Given a series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots$, let s_{n} denote its $\boldsymbol{n}^{\text {th }}$ partial sum

$$
s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n} .
$$

If the sequence of s_{n} is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series is called convergent and we write

$$
a_{1}+a_{2}+\ldots+a_{n}+\ldots=s \quad \text { or } \quad \sum_{i=1}^{\infty} a_{i}=s
$$

The number s is called the sum of the series. Otherwise, the series is called divergent.
Precisely speaking, $\sum_{i=1}^{\infty} a_{i}=s$ means that by adding sufficiently as many terms of the series we can get closer as we like to the number s. Notice that $\sum_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}$
Example 1 Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent, and find its sum SOLUTION The partial sum is $s_{n}=\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}$. Notice that $\frac{1}{i(i+1)}=\frac{1}{i}-\frac{1}{i+1}$, we can rewrite the partial sum as $s_{n}=\sum_{i=1}^{n} \frac{1}{i(i+1)}=\sum_{i=1}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right)=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1}$

And so $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1-0=1$.
Therefore the series is convergent and $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$

2. The geometric series

The geometric series $\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}+\ldots$

- If $|r|<1$, the geometric series is convergent and its sum is $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$.
- If $|r| \geq 1$, the series is divergent.

Example $2 \sum_{n=1}^{\infty} \frac{1}{2^{n}}$ is a geometric series with $a=1 / 2, r=1 / 2$ so it is convergent and its sum is $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1 / 2}{1-1 / 2}=1$.

3. The p-series

The p - series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots$ is convergent if $p>1$ and divergent if $p \leq 1$.
Note: 1-series $(p=1)$ is called harmonic series.
4. Theorem If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$

Bonus Assignment: Find a series $\sum_{n=1}^{\infty} a_{n}$ such that it is divergent, even though $\lim _{n \rightarrow \infty} a_{n}=0$?
Is it contradicted to the theorem 4 ?

5. The Test for Divergence

If $\lim _{n \rightarrow \infty} a_{n}=0$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent
Example $3 \sum_{n=1}^{\infty} \sin n$ is divergent since $\lim _{n \rightarrow \infty} \sin n$ does not exist. So is $\sum_{n=1}^{\infty} \frac{n^{2}+5}{3 n^{2}+4 n-1}$ since $\lim _{n \rightarrow \infty} \frac{n^{2}+5}{3 n^{2}+4 n-1}=\lim _{n \rightarrow \infty} \frac{1+5 / n^{2}}{3+4 / n-1 / n^{2}}=\frac{1}{3} \neq 0$
6. Theorem If $\sum a_{n}$ and $\sum b_{n}$ are convergent series, then so are the series $\sum c a_{n}$ (where c is a constant), $\sum\left(a_{n}+b_{n}\right)$, and $\sum\left(a_{n}-b_{n}\right)$, and
(i) $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
(ii) $\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)=\sum_{n=1}^{\infty} a_{n} \pm \sum_{n=1}^{\infty} b_{n}$

Example $4 \sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+\frac{1}{2^{n}}\right)^{\text {Theorem } 4}=3 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}+\sum_{n=1}^{\infty} \frac{1}{2^{n}} \stackrel{\text { ex. } 1 \& 2}{=} 3 \cdot 1+1=4$

