12.2 Series

Infinite series is the mathematic terminology for the concept of the addition of infinite term, which is denoted by $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$

1. Definition Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$, let s_n denote its *n***th partial sum** $s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$.

If the sequence of s_n is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series is called convergent and we write

$$a_1 + a_2 + ... + a_n + ... = s$$
 or $\sum_{i=1}^{\infty} a_i = s$

The number s is called the **sum of the series**. Otherwise, the series is called **divergent**. Precisely speaking, $\sum_{i=1}^{\infty} a_i = s$ means that by **adding sufficiently as many terms of the**

series we can get closer as we like to the number s. Notice that $\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=1}^{n} a_i$

Example 1 Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent, and find its sum SOLUTION The partial sum is $s_n = \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)}$. Notice

that
$$\frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1}$$
, we can rewrite the partial sum as
 $s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$

And so $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1 - 0 = 1.$

Therefore the series is convergent and $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$

2. The geometric series

The geometric series
$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^{n-1}$$

• If |r| < 1, the geometric series is convergent and its sum is $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$.

...

• If $|r| \ge 1$, the series is divergent.

Example 2 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is a geometric series with $a = \frac{1}{2}$, $r = \frac{1}{2}$ so it is convergent and its sum is $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$.

3. The *p*-series

The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$ is convergent if p > 1 and divergent if $p \le 1$.

<u>Note</u>: 1-series (p = 1) is called **harmonic series**.

4. Theorem If the series
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then $\lim_{n \to \infty} a_n = 0$

<u>Bonus Assignment</u>: Find a series $\sum_{n=1}^{\infty} a_n$ such that it is divergent, even though $\lim_{n \to \infty} a_n = 0$? Is it contradicted to the theorem 4?

5. The Test for Divergence

If $\lim_{n \to \infty} a_n = 0$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent **Example 3** $\sum_{n=1}^{\infty} \sin n$ is divergent since $\limsup_{n \to \infty} n$ does not exist. So is $\sum_{n=1}^{\infty} \frac{n^2 + 5}{3n^2 + 4n - 1}$ since $\lim_{n \to \infty} \frac{n^2 + 5}{3n^2 + 4n - 1} = \lim_{n \to \infty} \frac{1 + \frac{5}{n^2}}{3 + \frac{4}{n} - \frac{1}{n^2}} = \frac{1}{3} \neq 0$

6. Theorem If $\sum a_n$ and $\sum b_n$ are convergent series, then so are the series $\sum ca_n$ (where *c* is a constant), $\sum (a_n + b_n)$, and $\sum (a_n - b_n)$, and (i) $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$ (ii) $\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$

Example 4
$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right)^{\text{Theorem 4}} = 3\sum_{n=1}^{\infty} \frac{1}{n(n+1)} + \sum_{n=1}^{\infty} \frac{1}{2^n} = 3 \cdot 1 + 1 = 4$$