

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 205-207

Tetrahedron Letters

Photooxygenation of 3-aryl-2-cyclohexenols: synthesis of a new series of antimalarial 1,2,4-trioxanes^{\Leftrightarrow}

Chandan Singh,^{a,*} Nitin Gupta^a and Sunil K. Puri^b

^aDivision of Medicinal & Process Chemistry, Central Drug Research Institute, Lucknow 226001, India ^bDivision of Parasitology, Central Drug Research Institute, Lucknow 226001, India

> Received 27 September 2004; revised 11 November 2004; accepted 16 November 2004 Available online 30 November 2004

Abstract—Using easily accessible 3-aryl-2-cyclohexenols, a photooxygenation route for the preparation of bicyclic 1,2,4-trioxanes is reported. Several of these trioxanes have shown significant antimalarial activity against multidrug resistant *Plasmodium yoelii* in mice by the oral route.

© 2004 Elsevier Ltd. All rights reserved.

Artemisinin 1, since its isolation and characterization in the early 1970s from *Artemisia annua*, has been a subject of much investigation, not only due to its unique structure but also because of its potent antimalarial activity.¹ With the establishment of 1,2,4-trioxane as the antimalarial pharmacophore of artemisinin, various successful attempts have been made to prepare derivatives¹ as well as simple 1,2,4-trioxanes with varying orders of antimalarial activity.^{2,3}

As a part of our endeavour to develop structurally simple synthetic substitutes of artemisinin, we earlier developed a new, convenient and high yielding method for the preparation of 1,2,4-trioxanes.^{2h} Preparation of β -hydroxyhydroperoxides by photooxygenation of allylic alcohols and the acid-catalyzed condensation of the

0040-4039/\$ - see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.11.078

hydroperoxides with aldehydes or ketones are the key steps of this method (Scheme 1). Several monocyclic 1,2,4-trioxanes prepared using this procedure have shown promising antimalarial activity in vitro and in vivo.⁴

Using easily accessible 3-aryl-2-cyclohexenols we have explored the scope of this photooxygenation route for the preparation of bicyclic 1,2,4-trioxanes and report herein the synthesis of a new series of 1,2,4-trioxanes some of which show significant antimalarial activity against multidrug resistant *Plasmodium yoelii* in mice by the oral route. There are only a few reports on photooxygenation of allylic cyclohexenols,⁵ and the hydroperoxides were isolated only in one study.^{5c} This is the first report on the synthesis of trioxanes using β -hydroxy-hydroperoxides derived from photooxygenation of cyclohexenols.

3-Aryl-2-cyclohexenones 5a-c, prepared by a literature procedure,⁶ were reduced with NaBH₄ in MeOH or

Scheme 1.

Keywords: Antimalarial; 1,2,4-Trioxane; Photooxygenation; *Plasmodium yoelii.*

^{*} CDRI Communication No: 6658.

^{*} Corresponding author. Tel.: +91 522 2624273; fax: +91 522 2623405; e-mail: chandancdri@yahoo.com

CH₂Cl₂–MeOH (2:1) to yield 3-aryl-2-cyclohexenols **6a**–**c** in 95–98% yields. No double-bond reduction was observed under these conditions.⁷ Methylene blue sensitized photooxygenation of these 3-aryl-2-cyclohexenols **6a–c** in MeCN gave 2-hydroperoxy-3-aryl-3-cyclohexenols **7a–c** in 22–35% yields. Hydroperoxides **7a–c** on acid catalyzed condensation with acetone furnished trioxanes **8a–c** in 25–37% yields.^{8,9} Similar condensation with benzaldehyde, cyclopentanone, cyclohexanone, cycloheptanone and 2-adamantanone furnished trioxanes **9a–c**, **10a–c**, **11a–c**, **12a–c** and **13a–c** in 28–37%, 16–26%, 19–21%, 12–16% and 17–24% yields, respectively⁹ (Scheme 2).

Though formation of both cis and trans fused trioxanes is possible, all the trioxanes isolated appeared to be single isomers by ¹H and ¹³C NMR.⁹ Also based on coupling constants it was not possible to assign unambiguously the stereochemistry. So an indirect approach was adopted. Thus trioxane 8a was treated with catalytic OsO₄ and 70% *t*-butyl hydroperoxide (TBHP) in the presence of triethylbenzylammonium acetate (Et₃BnNOAc) to give diol 14.¹⁰ This diol appeared as a mixture of two isomers on TLC but homogeneous by ¹H NMR. In the ¹H NMR spectrum of **14** H-8a appeared as a doublet at 4.19 ppm with J = 9.4 Hz, indicating that the stereochemistry at the ring junction is trans. This was further confirmed by Pb(OAc)₄ mediated cleavage of trioxane 14 to monocyclic trioxane 15. In the ¹H NMR spectrum of **15** H-6 appeared as a doublet at 5.20 ppm with J = 9.6 Hz, confirming the *trans* stereochemistry. Since NMR spectra of all the trioxanes were similar it is assumed that the stereochemistry at the ring junction in all these trioxanes is *trans*. Also the ¹H NMR spectra of these trioxanes deserves further comments. In the ¹H NMR spectrum of **8a** (as well as all the other trioxanes), although signals for each proton were easily assigned, most of the signals appeared as multiplets and H-8a in particular gave rise to a very complex pattern. Thus H-8a which would be expected to be either a doublet (coupling with only H-4a) or at the most a doublet of doublets (direct coupling with H-4a and allylic coupling with H-7) appeared as a seven-line pattern. The 2D NMR ($^{1}H-^{1}H$ COSY) spectrum of **8a** revealed that H-8a was not only coupling with H-4a and H-7, but also with the C-6 protons (Scheme 3).

a, Ar=Ph; b, Ar=4-CIC₆H₄; c, Ar=4-PhC₆H₄

Scheme 2. Reagents and conditions: (a) NaBH₄, MeOH, 0° C, 1 h; (b) O₂, *hv*, methylene blue, MeCN, 0° C, 18 h; (c) aldehyde/ketone, concd HCl (cat.), CH₂Cl₂, 0° C, 3–6 h.

Scheme 3. Reagents and conditions: (a) OsO_4 (cat.), 70% TBHP, Et₃BnNOAc, Me₂CO, rt, 2d, 64%; (b) Pb(OAc)₄, PhH, rt, stir, 1h, 84%.

 Table 1. In vivo antimalarial activity results of trioxanes against

 Plasmodium yoelii in mice by the oral route^a

Compound	Dose (mg/kg/day)	% Suppression on day 4 ^b
10c	96	96.2
11c	96	98.5
12c	96	100.0
13b	96	96.3
β-Arteether	48	100.0

^a See Ref. 11.

^b Percent suppression = $[(C - T)/C] \times 100$; where C = parasitaemia in the control group, and T = parasitaemia in the treated group.

These trioxanes were subjected to in vivo antimalarial activity against multidrug-resistant *P. yoelii* in mice at a dose of 96 mg/kg by the oral route.¹¹ Trioxanes **10c**, **11c**, **12c** and **13b** showed more than 95% suppression of parasitaemia at this dose (Table 1). As can be seen in Table 1, trioxane **12c** was the most active of the series. It shows complete suppression of parasitaemia on day 4.

In conclusion, we have developed a photooxygenation route for the preparation of *trans*-fused bicyclic 1,2,4trioxanes. Stereoselective photooxygenation of 3-aryl-2-cyclohexenols and acid catalyzed condensation of *trans*-2-hydroperoxy-3-aryl-3-cyclohexenols with aldehydes and ketones are the key steps of this method. Several new trioxanes prepared by this method have shown significant antimalarial activity against multidrug resistant *P. yoelii* in mice by the oral route.

Acknowledgements

Nitin Gupta is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of Senior Research Fellowship.

References and notes

- (a) Klayman, D. L. Science 1985, 228, 1049–1055; (b) Bhattacharya, A. K.; Sharma, R. P. Heterocycles 1999, 51, 1651–1681; (c) Borstnik, K.; Paik, I.; Shapiro, T. A.; Posner, G. H. Int. J. Parasitol. 2002, 32, 1661–1667; (d) Ploypradith, P. Acta Trop. 2004, 89, 329–342; (e) O'Neill, P. M.; Posner, G. H. J. Med. Chem. 2004, 47, 2945–2964.
- (a) O'Neill, P. M.; Mukhtar, A.; Ward, S. A.; Bickley, J. F.; Davies, J.; Bachi, M. D.; Stocks, P. A. Org. Lett. 2004,

6, 3035–3038; (b) O'Neill, P. M.; Pugh, M.; Davies, J.;
Ward, S. A.; Park, B. K. Tetrahedron Lett. 2001, 42, 4569–4571; (c) Bloodworth, A. J.; Johnson, K. A. Tetrahedron Lett. 1994, 35, 8057–8060; (d) Bloodworth, A. J.; Shah, A. J. Chem. Soc., Chem. Commun. 1991, 947–948; (e) Posner, G. H.; Oh, C. H.; Milhous, W. K. Tetrahedron Lett. 1991, 32, 4235–4238; (f) Bunnelle, W. H.; Isbell, T. A.; Barnes, C. L.; Qualls, S. J. Am. Chem. Soc. 1991, 113, 8168–8169; (g) Avery, M. A.; Chong, W. K. M.; Detre, G. Tetrahedron Lett. 1990, 31, 1799–1802; (h) Singh, C. Tetrahedron Lett. 1990, 31, 6901–6902; (i) Kepler, J. A.; Philip, A.; Lee, Y. W.; Morey, M. C.; Caroll, F. I. J. Med. Chem. 1988, 31, 713–716; (j) Jefford, C. W.; Jaggi, D.; Boukouvalas, J.; Kohmoto, S. J. Am. Chem. Soc. 1983, 105, 6497–6498.

- 3. (a) Peters, W.; Robinson, B. L.; Tovey, G.; Rossier, J. C.; Jefford, C. W. Ann. Trop. Med. Parasitol. 1993, 87, 1-7; (b) Peters, W.; Robinson, B. L.; Rossier, J. C.; Jefford, C. W. Ann. Trop. Med. Parasitol. 1993, 87, 9-16; (c) Peters, W.; Robinson, B. L.; Tovey, G.; Rossier, J. C.; Jefford, C. W. Ann. Trop. Med. Parasitol. 1993, 87, 111-123; (d) Posner, G. H.; Jeon, H. B.; Parker, M. H.; Krasavin, M.; Paik, I.-H.; Shapiro, T. A. J. Med. Chem. 2001, 44, 3054-3058; (e) Posner, G. H.; Jeon, H. B.; Polypradith, P.; Paik, I.-H.; Borstnik, K.; Xie, S.; Shapiro, T. A. J. Med. Chem. 2002, 45, 3824–3828; (f) Posner, G. H.; McRiner, A. J.; Paik, I.-H.; Sur, S.; Borstnik, K.; Xie, S.; Shapiro, T. A.; Alagbala, A.; Foster, B. J. Med. Chem. 2004, 47, 1299-1301; (g) Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman, S. A.; Chiu, F. C. K.; Chollet, J.; Dong, Y.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.; Padmanilayam, M.; Tomas, J. S.; Scheurer, C.; Scorneaux, B.; Tang, Y.; Urwyler, H.; Wittlin, S.; Charman, W. N. Nature 2004, 430, 900-904.
- (a) Singh, C.; Misra, D.; Saxena, G.; Chandra, S. *Bioorg. Med. Chem. Lett.* **1992**, *2*, 497–500; (b) Singh, C.; Misra, D.; Saxena, G.; Chandra, S. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 1913–1916; (c) Singh, C.; Gupta, N.; Puri, S. K. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1913–1916; (d) Singh, C.; Gupta, N.; Puri, S. K. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3447–3450; (e) Singh, C.; Malik, H.; Puri, S. K. *Bioorg. Med. Chem.* **2004**, *12*, 1177–1182; (f) Singh, C.; Malik, H.; Puri, S. K. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 459–462; (g) Singh, C.; Tiwari, P.; Puri, S. K. U.S. Patent 6737438 B2, 2004.
- (a) Marshall, J. A.; Fanta, W. I. J. Org. Chem. 1964, 29, 2501–2505;
 (b) Nickon, A.; Mendelson, W. L. J. Am. Chem. Soc. 1965, 87, 3921–3928;
 (c) Prein, M.; Adam, W. Angew. Chem., Int. Ed. Engl. 1996, 35, 477–494.
- (a) Woods, G. F.; Tucker, I. W. J. Am. Chem. Soc. 1948, 70, 3340–3342; (b) Woods, G. F.; Reed, F. T.; Arthur, T. E.; Ezekiel, H. J. Am. Chem. Soc. 1951, 73, 3854–3856.
- Iqbal, K.; Jackson, W. R. J. Chem. Soc. (C) 1968, 616– 620.
- 8. Typical procedure for the preparation of trioxanes: To a precooled solution (0°C) of hydroperoxide (**7a–c**, 1 equiv) and aldehyde or ketone (5–6 equiv) in CH_2Cl_2 was added concentrated HCl (4–5 drops) and the solution stirred at 0°C for 3–6h. The reaction mixture was poured over satd aq NaHCO₃ and extracted with CH_2Cl_2 . Standard workup gave the crude trioxane, which was chromatographed over silica gel (60–120 mesh) using EtOAc–hexane (1:99) as eluent to furnish the pure trioxane.
- Selected characteristic data. Hydroperoxide **7a**: IR (neat, cm⁻¹) 3354; ¹H NMR (200 MHz, CDCl₃): δ 1.70–1.88 (m, 1H), 1.95–2.09 (m, 1H), 2.30 (m, 2H), 2.60 (br s, 1H, OH),

4.36 (m, 1H), 4.82 (m, 1H), 6.18 (t, 1H, J = 3.4 Hz), 7.32 (m, 5H), 8.43 (br s, 1H, OOH); FAB-MS (m/z) 207 [M+H]⁺. Trioxane 8a: mp 88–89 °C; IR (KBr, cm⁻¹) 1605; ¹H NMR (200 MHz, CDCl₃): δ 1.40 (s, 3H), 1.66 (s, 3H), 1.76-1.98 (m, 2H), 2.40 (m, 2H), 4.18 (m, 1H), 5.15 (m, 1H), 5.89 (m, 1H), 7.21–7.36 (m, 5H); ¹³C NMR (50 MHz, CDCl₃): δ 21.14 (q), 25.21 (t), 25.85 (t), 26.41 (q), 70.67 (d), 82.76 (d), 104.67 (s) 127.13 (2×d), 127.76 (d), 128.52 $(3 \times d)$, 135.03 (s), 137.05 (s); FAB-MS (m/z) 247 [M+H]⁺; HR EIMS (m/z) calcd for C₂₂H₂₆O₃ 246.1256 (M)⁺, found 246.1263. Trioxane 9a: mp 135–136°C; IR (KBr, cm⁻¹) 1597; ¹H NMR (200 MHz, CDCl₃): δ 2.01–2.17 (m, 2H), 2.47 (m, 2H), 4.16 (m, 1H), 5.42 (m, 1H), 5.95 (m, 1H), 6.31 (s, 1H), 7.23–7.40 (m, 8H), 7.49–7.54 (m, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 25.24 (t), 25.55 (t), 77.90 (d), 82.61 (d), 105.70 (d) 127.22 (2×d), 127.46 (2×d), 127.87 (d), 128.81 (2×d), 128.87 (3×d), 130.39 (d), 134.56 (s), 134.86 (s), 136.94 (s); FAB-MS (m/z) 295 [M+H]⁺. Trioxane 11a: IR (neat, cm⁻¹) 1600; ¹H NMR (200 MHz, CDCl₃): δ 1.46–1.65 (m, 9H), 1.75–1.99 (m, 2H), 2.24–2.45 (m, 3H), 4.22 (m, 1H), 5.17 (m, 1H), 5.88 (m, 1H), 7.30 (m, 5H); 13 C NMR (50 MHz, CDCl₃): δ 22.71 (t), 22.82 (t), 25.24 (t), 25.95 (t), 25.99 (t), 29.90 (t), 35.72 (t), 69.78 (d), 82.93 (d), 104.88 (s), 127.10 $(2 \times d)$, 127.71 (d), 128.54 (3 × d), 135.19 (s), 137.15 (s); FAB-MS (m/z) 287 $[M+H]^+$. Trioxane **13a**: mp 138–140 °C; IR (KBr, cm⁻¹) 1604; ¹H NMR (200 MHz, CDCl₃): δ 1.55-2.19 (m, 15H), 2.40 (m, 2H), 2.97 (br s, 1H), 4.18 (m, 1H), 5.18 (m, 1H), 5.88 (m, 1H), 7.30 (m, 5H); ¹³C NMR (50 MHz, CDCl₃) 25.30 (t), 26.03 (t), 27.65 (2×d), 30.08 (d), 33.48 (t), 33.74 (t), 33.81 (t), 34.11 (t), 37.18 (d), 37.66 (t), 69.18 (d), 82.81 (d), 106.91 (s), 127.10 $(2 \times d)$, 127.67 (d), 128.56 (2d), 128.66 (d), 135.35 (s), 137.28 (s); FAB-MS (m/z) 339 $[M+H]^+$; HR EIMS (m/z) calcd for C₂₂H₂₆O₃ 338.1882 (M)⁺, found 338.1851. Trioxane 14: mp 146-148 °C; ¹H NMR (200 MHz, CDCl₃) δ 1.32 (s, 3H), 1.67 (s, 3H), 1.69-2.10 (m, 4H), 2.68 (s, 1H, OH), 3.90 (dd, 1H, J = 10.6, 4.8 Hz), 4.19 (d, 1H, J = 9.4 Hz), 4.47 (ddd, 1H, J = 11.2, 9.4, 4.2 Hz), 7.30–7.51 (m, 5H); ¹H NMR $(200 \text{ MHz}, \text{ CDCl}_3/\text{D}_2\text{O}): \delta 1.32 \text{ (s, 3H)}, 1.67 \text{ (s, 3H)},$ 1.69-2.10 (m, 4H), 3.90 (dd, 1H, J = 10.6, 4.8 Hz), 4.19 (d,1H, J = 9.4 Hz), 4.47 (ddd, 1H, J = 11.2, 9.4, 4.2 Hz), 7.30-7.51 (m, 5H); FAB-MS (m/z) 281 [M+H]⁺. Trioxane 15: IR (neat, cm⁻¹) 1688; ¹H NMR (300 MHz, CDCl₃): δ 1.40 (s, 3H), 1.64 (s, 3H), 1.69–1.96 (m, 2H), 2.61 (m, 2H), 4.40 (td, 1H, $J_t = 9.6$ Hz, $J_d = 3.0$ Hz), 5.20 (d, 1H, J = 9.6 Hz), 7.50 (t, 2H, J = 7.2Hz), 7.63 (t, 1H, J = 7.2Hz), 8.05 (d, 2H, J = 7.2Hz), 9.76 (t, 1H, J = 1.2Hz); FAB-MS (m/z) 279 [M+H]⁺.

- A slight modification of the Sharpless' procedure was used: Akashi, K.; Palermo, R. E.; Sharpless, K. B. J. Org. Chem. 1978, 43, 2063–2066.
- 11. The in vivo efficacy of compounds was evaluated against *Plasmodium yoelii* (MDR) in the Swiss mice model. The colony of bred Swiss mice $(25 \pm 1 \text{ g})$ were inoculated with 1×10^6 parasitized RBC on day zero and treatment was administered to a group of five mice at each dose, from day 0 to 3, in two divided doses daily. The drug dilutions were prepared in groundnut oil, so as to contain the required amount of the drug (1.2mg for a dose of 96 mg/kg) in 0.1 mL and administered orally for each dose. Parasitaemia level were recorded from thin blood smears between days 4–28.¹² Mice treated with β -arteether served as a positive control.
- 12. Puri, S. K.; Singh, N. Exp. Parasit. 2000, 94, 8-14.